author | xuelei |
Fri, 08 Apr 2011 02:00:09 -0700 | |
changeset 9246 | c459f79af46b |
parent 8991 | 7df5283fd3b8 |
child 10336 | 0bb1999251f8 |
permissions | -rw-r--r-- |
2 | 1 |
/* |
8991
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
2 |
* Copyright (c) 1996, 2011, Oracle and/or its affiliates. All rights reserved. |
2 | 3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 |
* |
|
5 |
* This code is free software; you can redistribute it and/or modify it |
|
6 |
* under the terms of the GNU General Public License version 2 only, as |
|
5506 | 7 |
* published by the Free Software Foundation. Oracle designates this |
2 | 8 |
* particular file as subject to the "Classpath" exception as provided |
5506 | 9 |
* by Oracle in the LICENSE file that accompanied this code. |
2 | 10 |
* |
11 |
* This code is distributed in the hope that it will be useful, but WITHOUT |
|
12 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
13 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
14 |
* version 2 for more details (a copy is included in the LICENSE file that |
|
15 |
* accompanied this code). |
|
16 |
* |
|
17 |
* You should have received a copy of the GNU General Public License version |
|
18 |
* 2 along with this work; if not, write to the Free Software Foundation, |
|
19 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
20 |
* |
|
5506 | 21 |
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
22 |
* or visit www.oracle.com if you need additional information or have any |
|
23 |
* questions. |
|
2 | 24 |
*/ |
25 |
||
26 |
package sun.security.ssl; |
|
27 |
||
28 |
import java.io.*; |
|
29 |
import java.math.BigInteger; |
|
30 |
import java.security.*; |
|
31 |
import java.security.interfaces.*; |
|
32 |
import java.security.spec.*; |
|
33 |
import java.security.cert.*; |
|
34 |
import java.security.cert.Certificate; |
|
35 |
import java.util.*; |
|
36 |
import java.util.concurrent.ConcurrentHashMap; |
|
37 |
||
38 |
import java.lang.reflect.*; |
|
39 |
||
40 |
import javax.security.auth.x500.X500Principal; |
|
41 |
||
42 |
import javax.crypto.KeyGenerator; |
|
43 |
import javax.crypto.SecretKey; |
|
44 |
||
45 |
import javax.net.ssl.*; |
|
46 |
||
47 |
import sun.security.internal.spec.TlsPrfParameterSpec; |
|
48 |
import sun.security.ssl.CipherSuite.*; |
|
7043 | 49 |
import static sun.security.ssl.CipherSuite.PRF.*; |
2 | 50 |
|
51 |
/** |
|
52 |
* Many data structures are involved in the handshake messages. These |
|
53 |
* classes are used as structures, with public data members. They are |
|
54 |
* not visible outside the SSL package. |
|
55 |
* |
|
56 |
* Handshake messages all have a common header format, and they are all |
|
57 |
* encoded in a "handshake data" SSL record substream. The base class |
|
58 |
* here (HandshakeMessage) provides a common framework and records the |
|
59 |
* SSL record type of the particular handshake message. |
|
60 |
* |
|
61 |
* This file contains subclasses for all the basic handshake messages. |
|
62 |
* All handshake messages know how to encode and decode themselves on |
|
63 |
* SSL streams; this facilitates using the same code on SSL client and |
|
64 |
* server sides, although they don't send and receive the same messages. |
|
65 |
* |
|
66 |
* Messages also know how to print themselves, which is quite handy |
|
67 |
* for debugging. They always identify their type, and can optionally |
|
68 |
* dump all of their content. |
|
69 |
* |
|
70 |
* @author David Brownell |
|
71 |
*/ |
|
4236 | 72 |
public abstract class HandshakeMessage { |
2 | 73 |
|
74 |
HandshakeMessage() { } |
|
75 |
||
76 |
// enum HandshakeType: |
|
77 |
static final byte ht_hello_request = 0; |
|
78 |
static final byte ht_client_hello = 1; |
|
79 |
static final byte ht_server_hello = 2; |
|
80 |
||
81 |
static final byte ht_certificate = 11; |
|
82 |
static final byte ht_server_key_exchange = 12; |
|
83 |
static final byte ht_certificate_request = 13; |
|
84 |
static final byte ht_server_hello_done = 14; |
|
85 |
static final byte ht_certificate_verify = 15; |
|
86 |
static final byte ht_client_key_exchange = 16; |
|
87 |
||
88 |
static final byte ht_finished = 20; |
|
89 |
||
90 |
/* Class and subclass dynamic debugging support */ |
|
4236 | 91 |
public static final Debug debug = Debug.getInstance("ssl"); |
2 | 92 |
|
93 |
/** |
|
94 |
* Utility method to convert a BigInteger to a byte array in unsigned |
|
95 |
* format as needed in the handshake messages. BigInteger uses |
|
96 |
* 2's complement format, i.e. it prepends an extra zero if the MSB |
|
97 |
* is set. We remove that. |
|
98 |
*/ |
|
99 |
static byte[] toByteArray(BigInteger bi) { |
|
100 |
byte[] b = bi.toByteArray(); |
|
101 |
if ((b.length > 1) && (b[0] == 0)) { |
|
102 |
int n = b.length - 1; |
|
103 |
byte[] newarray = new byte[n]; |
|
104 |
System.arraycopy(b, 1, newarray, 0, n); |
|
105 |
b = newarray; |
|
106 |
} |
|
107 |
return b; |
|
108 |
} |
|
109 |
||
110 |
/* |
|
111 |
* SSL 3.0 MAC padding constants. |
|
112 |
* Also used by CertificateVerify and Finished during the handshake. |
|
113 |
*/ |
|
114 |
static final byte[] MD5_pad1 = genPad(0x36, 48); |
|
115 |
static final byte[] MD5_pad2 = genPad(0x5c, 48); |
|
116 |
||
117 |
static final byte[] SHA_pad1 = genPad(0x36, 40); |
|
118 |
static final byte[] SHA_pad2 = genPad(0x5c, 40); |
|
119 |
||
120 |
private static byte[] genPad(int b, int count) { |
|
121 |
byte[] padding = new byte[count]; |
|
122 |
Arrays.fill(padding, (byte)b); |
|
123 |
return padding; |
|
124 |
} |
|
125 |
||
126 |
/* |
|
127 |
* Write a handshake message on the (handshake) output stream. |
|
128 |
* This is just a four byte header followed by the data. |
|
129 |
* |
|
130 |
* NOTE that huge messages -- notably, ones with huge cert |
|
131 |
* chains -- are handled correctly. |
|
132 |
*/ |
|
133 |
final void write(HandshakeOutStream s) throws IOException { |
|
134 |
int len = messageLength(); |
|
135 |
if (len > (1 << 24)) { |
|
136 |
throw new SSLException("Handshake message too big" |
|
137 |
+ ", type = " + messageType() + ", len = " + len); |
|
138 |
} |
|
139 |
s.write(messageType()); |
|
140 |
s.putInt24(len); |
|
141 |
send(s); |
|
142 |
} |
|
143 |
||
144 |
/* |
|
145 |
* Subclasses implement these methods so those kinds of |
|
146 |
* messages can be emitted. Base class delegates to subclass. |
|
147 |
*/ |
|
148 |
abstract int messageType(); |
|
149 |
abstract int messageLength(); |
|
150 |
abstract void send(HandshakeOutStream s) throws IOException; |
|
151 |
||
152 |
/* |
|
153 |
* Write a descriptive message on the output stream; for debugging. |
|
154 |
*/ |
|
155 |
abstract void print(PrintStream p) throws IOException; |
|
156 |
||
157 |
// |
|
158 |
// NOTE: the rest of these classes are nested within this one, and are |
|
159 |
// imported by other classes in this package. There are a few other |
|
160 |
// handshake message classes, not neatly nested here because of current |
|
161 |
// licensing requirement for native (RSA) methods. They belong here, |
|
162 |
// but those native methods complicate things a lot! |
|
163 |
// |
|
164 |
||
165 |
||
166 |
/* |
|
167 |
* HelloRequest ... SERVER --> CLIENT |
|
168 |
* |
|
169 |
* Server can ask the client to initiate a new handshake, e.g. to change |
|
170 |
* session parameters after a connection has been (re)established. |
|
171 |
*/ |
|
6856 | 172 |
static final class HelloRequest extends HandshakeMessage { |
2 | 173 |
int messageType() { return ht_hello_request; } |
174 |
||
175 |
HelloRequest() { } |
|
176 |
||
177 |
HelloRequest(HandshakeInStream in) throws IOException |
|
178 |
{ |
|
179 |
// nothing in this message |
|
180 |
} |
|
181 |
||
182 |
int messageLength() { return 0; } |
|
183 |
||
184 |
void send(HandshakeOutStream out) throws IOException |
|
185 |
{ |
|
186 |
// nothing in this messaage |
|
187 |
} |
|
188 |
||
189 |
void print(PrintStream out) throws IOException |
|
190 |
{ |
|
191 |
out.println("*** HelloRequest (empty)"); |
|
192 |
} |
|
193 |
||
194 |
} |
|
195 |
||
196 |
||
197 |
/* |
|
198 |
* ClientHello ... CLIENT --> SERVER |
|
199 |
* |
|
200 |
* Client initiates handshake by telling server what it wants, and what it |
|
201 |
* can support (prioritized by what's first in the ciphe suite list). |
|
202 |
* |
|
203 |
* By RFC2246:7.4.1.2 it's explicitly anticipated that this message |
|
204 |
* will have more data added at the end ... e.g. what CAs the client trusts. |
|
205 |
* Until we know how to parse it, we will just read what we know |
|
206 |
* about, and let our caller handle the jumps over unknown data. |
|
207 |
*/ |
|
6856 | 208 |
static final class ClientHello extends HandshakeMessage { |
2 | 209 |
|
210 |
ProtocolVersion protocolVersion; |
|
211 |
RandomCookie clnt_random; |
|
212 |
SessionId sessionId; |
|
213 |
private CipherSuiteList cipherSuites; |
|
214 |
byte[] compression_methods; |
|
215 |
||
216 |
HelloExtensions extensions = new HelloExtensions(); |
|
217 |
||
218 |
private final static byte[] NULL_COMPRESSION = new byte[] {0}; |
|
219 |
||
6856 | 220 |
ClientHello(SecureRandom generator, ProtocolVersion protocolVersion, |
221 |
SessionId sessionId, CipherSuiteList cipherSuites) { |
|
2 | 222 |
|
6856 | 223 |
this.protocolVersion = protocolVersion; |
224 |
this.sessionId = sessionId; |
|
225 |
this.cipherSuites = cipherSuites; |
|
2 | 226 |
|
227 |
if (cipherSuites.containsEC()) { |
|
228 |
extensions.add(SupportedEllipticCurvesExtension.DEFAULT); |
|
229 |
extensions.add(SupportedEllipticPointFormatsExtension.DEFAULT); |
|
230 |
} |
|
231 |
||
6856 | 232 |
clnt_random = new RandomCookie(generator); |
233 |
compression_methods = NULL_COMPRESSION; |
|
2 | 234 |
} |
235 |
||
236 |
ClientHello(HandshakeInStream s, int messageLength) throws IOException { |
|
237 |
protocolVersion = ProtocolVersion.valueOf(s.getInt8(), s.getInt8()); |
|
238 |
clnt_random = new RandomCookie(s); |
|
239 |
sessionId = new SessionId(s.getBytes8()); |
|
240 |
cipherSuites = new CipherSuiteList(s); |
|
241 |
compression_methods = s.getBytes8(); |
|
242 |
if (messageLength() != messageLength) { |
|
243 |
extensions = new HelloExtensions(s); |
|
244 |
} |
|
245 |
} |
|
246 |
||
6856 | 247 |
CipherSuiteList getCipherSuites() { |
248 |
return cipherSuites; |
|
249 |
} |
|
250 |
||
251 |
// add renegotiation_info extension |
|
252 |
void addRenegotiationInfoExtension(byte[] clientVerifyData) { |
|
253 |
HelloExtension renegotiationInfo = new RenegotiationInfoExtension( |
|
254 |
clientVerifyData, new byte[0]); |
|
255 |
extensions.add(renegotiationInfo); |
|
256 |
} |
|
257 |
||
7043 | 258 |
// add server_name extension |
259 |
void addServerNameIndicationExtension(String hostname) { |
|
260 |
// We would have checked that the hostname ia a FQDN. |
|
7990 | 261 |
ArrayList<String> hostnames = new ArrayList<>(1); |
7043 | 262 |
hostnames.add(hostname); |
263 |
||
264 |
try { |
|
265 |
extensions.add(new ServerNameExtension(hostnames)); |
|
266 |
} catch (IOException ioe) { |
|
267 |
// ignore the exception and return |
|
268 |
} |
|
269 |
} |
|
270 |
||
271 |
// add signature_algorithm extension |
|
272 |
void addSignatureAlgorithmsExtension( |
|
273 |
Collection<SignatureAndHashAlgorithm> algorithms) { |
|
274 |
HelloExtension signatureAlgorithm = |
|
275 |
new SignatureAlgorithmsExtension(algorithms); |
|
276 |
extensions.add(signatureAlgorithm); |
|
277 |
} |
|
278 |
||
6856 | 279 |
@Override |
280 |
int messageType() { return ht_client_hello; } |
|
281 |
||
282 |
@Override |
|
283 |
int messageLength() { |
|
284 |
/* |
|
285 |
* Add fixed size parts of each field... |
|
286 |
* version + random + session + cipher + compress |
|
287 |
*/ |
|
288 |
return (2 + 32 + 1 + 2 + 1 |
|
289 |
+ sessionId.length() /* ... + variable parts */ |
|
290 |
+ (cipherSuites.size() * 2) |
|
291 |
+ compression_methods.length) |
|
292 |
+ extensions.length(); |
|
293 |
} |
|
294 |
||
295 |
@Override |
|
2 | 296 |
void send(HandshakeOutStream s) throws IOException { |
297 |
s.putInt8(protocolVersion.major); |
|
298 |
s.putInt8(protocolVersion.minor); |
|
299 |
clnt_random.send(s); |
|
300 |
s.putBytes8(sessionId.getId()); |
|
301 |
cipherSuites.send(s); |
|
302 |
s.putBytes8(compression_methods); |
|
303 |
extensions.send(s); |
|
304 |
} |
|
305 |
||
6856 | 306 |
@Override |
2 | 307 |
void print(PrintStream s) throws IOException { |
308 |
s.println("*** ClientHello, " + protocolVersion); |
|
309 |
||
310 |
if (debug != null && Debug.isOn("verbose")) { |
|
7043 | 311 |
s.print("RandomCookie: "); |
312 |
clnt_random.print(s); |
|
2 | 313 |
|
314 |
s.print("Session ID: "); |
|
315 |
s.println(sessionId); |
|
316 |
||
317 |
s.println("Cipher Suites: " + cipherSuites); |
|
318 |
||
319 |
Debug.println(s, "Compression Methods", compression_methods); |
|
320 |
extensions.print(s); |
|
321 |
s.println("***"); |
|
322 |
} |
|
323 |
} |
|
324 |
} |
|
325 |
||
326 |
/* |
|
327 |
* ServerHello ... SERVER --> CLIENT |
|
328 |
* |
|
329 |
* Server chooses protocol options from among those it supports and the |
|
330 |
* client supports. Then it sends the basic session descriptive parameters |
|
331 |
* back to the client. |
|
332 |
*/ |
|
333 |
static final |
|
334 |
class ServerHello extends HandshakeMessage |
|
335 |
{ |
|
336 |
int messageType() { return ht_server_hello; } |
|
337 |
||
338 |
ProtocolVersion protocolVersion; |
|
339 |
RandomCookie svr_random; |
|
340 |
SessionId sessionId; |
|
341 |
CipherSuite cipherSuite; |
|
342 |
byte compression_method; |
|
343 |
HelloExtensions extensions = new HelloExtensions(); |
|
344 |
||
345 |
ServerHello() { |
|
346 |
// empty |
|
347 |
} |
|
348 |
||
7043 | 349 |
ServerHello(HandshakeInStream input, int messageLength) |
350 |
throws IOException { |
|
2 | 351 |
protocolVersion = ProtocolVersion.valueOf(input.getInt8(), |
352 |
input.getInt8()); |
|
353 |
svr_random = new RandomCookie(input); |
|
354 |
sessionId = new SessionId(input.getBytes8()); |
|
355 |
cipherSuite = CipherSuite.valueOf(input.getInt8(), input.getInt8()); |
|
356 |
compression_method = (byte)input.getInt8(); |
|
357 |
if (messageLength() != messageLength) { |
|
358 |
extensions = new HelloExtensions(input); |
|
359 |
} |
|
360 |
} |
|
361 |
||
362 |
int messageLength() |
|
363 |
{ |
|
364 |
// almost fixed size, except session ID and extensions: |
|
365 |
// major + minor = 2 |
|
366 |
// random = 32 |
|
367 |
// session ID len field = 1 |
|
368 |
// cipher suite + compression = 3 |
|
369 |
// extensions: if present, 2 + length of extensions |
|
370 |
return 38 + sessionId.length() + extensions.length(); |
|
371 |
} |
|
372 |
||
373 |
void send(HandshakeOutStream s) throws IOException |
|
374 |
{ |
|
375 |
s.putInt8(protocolVersion.major); |
|
376 |
s.putInt8(protocolVersion.minor); |
|
377 |
svr_random.send(s); |
|
378 |
s.putBytes8(sessionId.getId()); |
|
379 |
s.putInt8(cipherSuite.id >> 8); |
|
380 |
s.putInt8(cipherSuite.id & 0xff); |
|
381 |
s.putInt8(compression_method); |
|
382 |
extensions.send(s); |
|
383 |
} |
|
384 |
||
385 |
void print(PrintStream s) throws IOException |
|
386 |
{ |
|
387 |
s.println("*** ServerHello, " + protocolVersion); |
|
388 |
||
389 |
if (debug != null && Debug.isOn("verbose")) { |
|
7043 | 390 |
s.print("RandomCookie: "); |
391 |
svr_random.print(s); |
|
2 | 392 |
|
393 |
int i; |
|
394 |
||
395 |
s.print("Session ID: "); |
|
396 |
s.println(sessionId); |
|
397 |
||
398 |
s.println("Cipher Suite: " + cipherSuite); |
|
399 |
s.println("Compression Method: " + compression_method); |
|
400 |
extensions.print(s); |
|
401 |
s.println("***"); |
|
402 |
} |
|
403 |
} |
|
404 |
} |
|
405 |
||
406 |
||
407 |
/* |
|
408 |
* CertificateMsg ... send by both CLIENT and SERVER |
|
409 |
* |
|
410 |
* Each end of a connection may need to pass its certificate chain to |
|
411 |
* the other end. Such chains are intended to validate an identity with |
|
412 |
* reference to some certifying authority. Examples include companies |
|
413 |
* like Verisign, or financial institutions. There's some control over |
|
414 |
* the certifying authorities which are sent. |
|
415 |
* |
|
416 |
* NOTE: that these messages might be huge, taking many handshake records. |
|
417 |
* Up to 2^48 bytes of certificate may be sent, in records of at most 2^14 |
|
418 |
* bytes each ... up to 2^32 records sent on the output stream. |
|
419 |
*/ |
|
420 |
static final |
|
421 |
class CertificateMsg extends HandshakeMessage |
|
422 |
{ |
|
423 |
int messageType() { return ht_certificate; } |
|
424 |
||
425 |
private X509Certificate[] chain; |
|
426 |
||
427 |
private List<byte[]> encodedChain; |
|
428 |
||
429 |
private int messageLength; |
|
430 |
||
431 |
CertificateMsg(X509Certificate[] certs) { |
|
432 |
chain = certs; |
|
433 |
} |
|
434 |
||
435 |
CertificateMsg(HandshakeInStream input) throws IOException { |
|
436 |
int chainLen = input.getInt24(); |
|
7990 | 437 |
List<Certificate> v = new ArrayList<>(4); |
2 | 438 |
|
439 |
CertificateFactory cf = null; |
|
440 |
while (chainLen > 0) { |
|
441 |
byte[] cert = input.getBytes24(); |
|
442 |
chainLen -= (3 + cert.length); |
|
443 |
try { |
|
444 |
if (cf == null) { |
|
445 |
cf = CertificateFactory.getInstance("X.509"); |
|
446 |
} |
|
447 |
v.add(cf.generateCertificate(new ByteArrayInputStream(cert))); |
|
448 |
} catch (CertificateException e) { |
|
7043 | 449 |
throw (SSLProtocolException)new SSLProtocolException( |
450 |
e.getMessage()).initCause(e); |
|
2 | 451 |
} |
452 |
} |
|
453 |
||
454 |
chain = v.toArray(new X509Certificate[v.size()]); |
|
455 |
} |
|
456 |
||
457 |
int messageLength() { |
|
458 |
if (encodedChain == null) { |
|
459 |
messageLength = 3; |
|
460 |
encodedChain = new ArrayList<byte[]>(chain.length); |
|
461 |
try { |
|
462 |
for (X509Certificate cert : chain) { |
|
463 |
byte[] b = cert.getEncoded(); |
|
464 |
encodedChain.add(b); |
|
465 |
messageLength += b.length + 3; |
|
466 |
} |
|
467 |
} catch (CertificateEncodingException e) { |
|
468 |
encodedChain = null; |
|
469 |
throw new RuntimeException("Could not encode certificates", e); |
|
470 |
} |
|
471 |
} |
|
472 |
return messageLength; |
|
473 |
} |
|
474 |
||
475 |
void send(HandshakeOutStream s) throws IOException { |
|
476 |
s.putInt24(messageLength() - 3); |
|
477 |
for (byte[] b : encodedChain) { |
|
478 |
s.putBytes24(b); |
|
479 |
} |
|
480 |
} |
|
481 |
||
482 |
void print(PrintStream s) throws IOException { |
|
483 |
s.println("*** Certificate chain"); |
|
484 |
||
485 |
if (debug != null && Debug.isOn("verbose")) { |
|
486 |
for (int i = 0; i < chain.length; i++) |
|
487 |
s.println("chain [" + i + "] = " + chain[i]); |
|
488 |
s.println("***"); |
|
489 |
} |
|
490 |
} |
|
491 |
||
492 |
X509Certificate[] getCertificateChain() { |
|
7043 | 493 |
return chain.clone(); |
2 | 494 |
} |
495 |
} |
|
496 |
||
497 |
/* |
|
498 |
* ServerKeyExchange ... SERVER --> CLIENT |
|
499 |
* |
|
500 |
* The cipher suite selected, when combined with the certificate exchanged, |
|
501 |
* implies one of several different kinds of key exchange. Most current |
|
502 |
* cipher suites require the server to send more than its certificate. |
|
503 |
* |
|
504 |
* The primary exceptions are when a server sends an encryption-capable |
|
505 |
* RSA public key in its cert, to be used with RSA (or RSA_export) key |
|
506 |
* exchange; and when a server sends its Diffie-Hellman cert. Those kinds |
|
507 |
* of key exchange do not require a ServerKeyExchange message. |
|
508 |
* |
|
509 |
* Key exchange can be viewed as having three modes, which are explicit |
|
510 |
* for the Diffie-Hellman flavors and poorly specified for RSA ones: |
|
511 |
* |
|
512 |
* - "Ephemeral" keys. Here, a "temporary" key is allocated by the |
|
513 |
* server, and signed. Diffie-Hellman keys signed using RSA or |
|
514 |
* DSS are ephemeral (DHE flavor). RSA keys get used to do the same |
|
515 |
* thing, to cut the key size down to 512 bits (export restrictions) |
|
516 |
* or for signing-only RSA certificates. |
|
517 |
* |
|
518 |
* - Anonymity. Here no server certificate is sent, only the public |
|
519 |
* key of the server. This case is subject to man-in-the-middle |
|
520 |
* attacks. This can be done with Diffie-Hellman keys (DH_anon) or |
|
521 |
* with RSA keys, but is only used in SSLv3 for DH_anon. |
|
522 |
* |
|
523 |
* - "Normal" case. Here a server certificate is sent, and the public |
|
524 |
* key there is used directly in exchanging the premaster secret. |
|
525 |
* For example, Diffie-Hellman "DH" flavor, and any RSA flavor with |
|
526 |
* only 512 bit keys. |
|
527 |
* |
|
528 |
* If a server certificate is sent, there is no anonymity. However, |
|
529 |
* when a certificate is sent, ephemeral keys may still be used to |
|
530 |
* exchange the premaster secret. That's how RSA_EXPORT often works, |
|
531 |
* as well as how the DHE_* flavors work. |
|
532 |
*/ |
|
533 |
static abstract class ServerKeyExchange extends HandshakeMessage |
|
534 |
{ |
|
535 |
int messageType() { return ht_server_key_exchange; } |
|
536 |
} |
|
537 |
||
538 |
||
539 |
/* |
|
540 |
* Using RSA for Key Exchange: exchange a session key that's not as big |
|
541 |
* as the signing-only key. Used for export applications, since exported |
|
542 |
* RSA encryption keys can't be bigger than 512 bytes. |
|
543 |
* |
|
544 |
* This is never used when keys are 512 bits or smaller, and isn't used |
|
545 |
* on "US Domestic" ciphers in any case. |
|
546 |
*/ |
|
547 |
static final |
|
548 |
class RSA_ServerKeyExchange extends ServerKeyExchange |
|
549 |
{ |
|
550 |
private byte rsa_modulus[]; // 1 to 2^16 - 1 bytes |
|
551 |
private byte rsa_exponent[]; // 1 to 2^16 - 1 bytes |
|
552 |
||
553 |
private Signature signature; |
|
554 |
private byte[] signatureBytes; |
|
555 |
||
556 |
/* |
|
557 |
* Hash the nonces and the ephemeral RSA public key. |
|
558 |
*/ |
|
559 |
private void updateSignature(byte clntNonce[], byte svrNonce[]) |
|
560 |
throws SignatureException { |
|
561 |
int tmp; |
|
562 |
||
563 |
signature.update(clntNonce); |
|
564 |
signature.update(svrNonce); |
|
565 |
||
566 |
tmp = rsa_modulus.length; |
|
567 |
signature.update((byte)(tmp >> 8)); |
|
568 |
signature.update((byte)(tmp & 0x0ff)); |
|
569 |
signature.update(rsa_modulus); |
|
570 |
||
571 |
tmp = rsa_exponent.length; |
|
572 |
signature.update((byte)(tmp >> 8)); |
|
573 |
signature.update((byte)(tmp & 0x0ff)); |
|
574 |
signature.update(rsa_exponent); |
|
575 |
} |
|
576 |
||
577 |
||
578 |
/* |
|
579 |
* Construct an RSA server key exchange message, using data |
|
580 |
* known _only_ to the server. |
|
581 |
* |
|
582 |
* The client knows the public key corresponding to this private |
|
583 |
* key, from the Certificate message sent previously. To comply |
|
584 |
* with US export regulations we use short RSA keys ... either |
|
585 |
* long term ones in the server's X509 cert, or else ephemeral |
|
586 |
* ones sent using this message. |
|
587 |
*/ |
|
588 |
RSA_ServerKeyExchange(PublicKey ephemeralKey, PrivateKey privateKey, |
|
589 |
RandomCookie clntNonce, RandomCookie svrNonce, SecureRandom sr) |
|
590 |
throws GeneralSecurityException { |
|
591 |
RSAPublicKeySpec rsaKey = JsseJce.getRSAPublicKeySpec(ephemeralKey); |
|
592 |
rsa_modulus = toByteArray(rsaKey.getModulus()); |
|
593 |
rsa_exponent = toByteArray(rsaKey.getPublicExponent()); |
|
594 |
signature = RSASignature.getInstance(); |
|
595 |
signature.initSign(privateKey, sr); |
|
596 |
updateSignature(clntNonce.random_bytes, svrNonce.random_bytes); |
|
597 |
signatureBytes = signature.sign(); |
|
598 |
} |
|
599 |
||
600 |
||
601 |
/* |
|
602 |
* Parse an RSA server key exchange message, using data known |
|
603 |
* to the client (and, in some situations, eavesdroppers). |
|
604 |
*/ |
|
605 |
RSA_ServerKeyExchange(HandshakeInStream input) |
|
606 |
throws IOException, NoSuchAlgorithmException { |
|
607 |
signature = RSASignature.getInstance(); |
|
608 |
rsa_modulus = input.getBytes16(); |
|
609 |
rsa_exponent = input.getBytes16(); |
|
610 |
signatureBytes = input.getBytes16(); |
|
611 |
} |
|
612 |
||
613 |
/* |
|
614 |
* Get the ephemeral RSA public key that will be used in this |
|
615 |
* SSL connection. |
|
616 |
*/ |
|
617 |
PublicKey getPublicKey() { |
|
618 |
try { |
|
619 |
KeyFactory kfac = JsseJce.getKeyFactory("RSA"); |
|
620 |
// modulus and exponent are always positive |
|
7043 | 621 |
RSAPublicKeySpec kspec = new RSAPublicKeySpec( |
622 |
new BigInteger(1, rsa_modulus), |
|
623 |
new BigInteger(1, rsa_exponent)); |
|
2 | 624 |
return kfac.generatePublic(kspec); |
625 |
} catch (Exception e) { |
|
626 |
throw new RuntimeException(e); |
|
627 |
} |
|
628 |
} |
|
629 |
||
630 |
/* |
|
631 |
* Verify the signed temporary key using the hashes computed |
|
632 |
* from it and the two nonces. This is called by clients |
|
633 |
* with "exportable" RSA flavors. |
|
634 |
*/ |
|
635 |
boolean verify(PublicKey certifiedKey, RandomCookie clntNonce, |
|
636 |
RandomCookie svrNonce) throws GeneralSecurityException { |
|
637 |
signature.initVerify(certifiedKey); |
|
638 |
updateSignature(clntNonce.random_bytes, svrNonce.random_bytes); |
|
639 |
return signature.verify(signatureBytes); |
|
640 |
} |
|
641 |
||
642 |
int messageLength() { |
|
643 |
return 6 + rsa_modulus.length + rsa_exponent.length |
|
644 |
+ signatureBytes.length; |
|
645 |
} |
|
646 |
||
647 |
void send(HandshakeOutStream s) throws IOException { |
|
648 |
s.putBytes16(rsa_modulus); |
|
649 |
s.putBytes16(rsa_exponent); |
|
650 |
s.putBytes16(signatureBytes); |
|
651 |
} |
|
652 |
||
653 |
void print(PrintStream s) throws IOException { |
|
654 |
s.println("*** RSA ServerKeyExchange"); |
|
655 |
||
656 |
if (debug != null && Debug.isOn("verbose")) { |
|
657 |
Debug.println(s, "RSA Modulus", rsa_modulus); |
|
658 |
Debug.println(s, "RSA Public Exponent", rsa_exponent); |
|
659 |
} |
|
660 |
} |
|
661 |
} |
|
662 |
||
663 |
||
664 |
/* |
|
665 |
* Using Diffie-Hellman algorithm for key exchange. All we really need to |
|
666 |
* do is securely get Diffie-Hellman keys (using the same P, G parameters) |
|
667 |
* to our peer, then we automatically have a shared secret without need |
|
668 |
* to exchange any more data. (D-H only solutions, such as SKIP, could |
|
669 |
* eliminate key exchange negotiations and get faster connection setup. |
|
670 |
* But they still need a signature algorithm like DSS/DSA to support the |
|
671 |
* trusted distribution of keys without relying on unscalable physical |
|
672 |
* key distribution systems.) |
|
673 |
* |
|
674 |
* This class supports several DH-based key exchange algorithms, though |
|
675 |
* perhaps eventually each deserves its own class. Notably, this has |
|
676 |
* basic support for DH_anon and its DHE_DSS and DHE_RSA signed variants. |
|
677 |
*/ |
|
678 |
static final |
|
679 |
class DH_ServerKeyExchange extends ServerKeyExchange |
|
680 |
{ |
|
681 |
// Fix message encoding, see 4348279 |
|
682 |
private final static boolean dhKeyExchangeFix = |
|
683 |
Debug.getBooleanProperty("com.sun.net.ssl.dhKeyExchangeFix", true); |
|
684 |
||
685 |
private byte dh_p []; // 1 to 2^16 - 1 bytes |
|
686 |
private byte dh_g []; // 1 to 2^16 - 1 bytes |
|
687 |
private byte dh_Ys []; // 1 to 2^16 - 1 bytes |
|
688 |
||
689 |
private byte signature []; |
|
690 |
||
7043 | 691 |
// protocol version being established using this ServerKeyExchange message |
692 |
ProtocolVersion protocolVersion; |
|
693 |
||
694 |
// the preferable signature algorithm used by this ServerKeyExchange message |
|
695 |
private SignatureAndHashAlgorithm preferableSignatureAlgorithm; |
|
696 |
||
2 | 697 |
/* |
698 |
* Construct from initialized DH key object, for DH_anon |
|
699 |
* key exchange. |
|
700 |
*/ |
|
7043 | 701 |
DH_ServerKeyExchange(DHCrypt obj, ProtocolVersion protocolVersion) { |
702 |
this.protocolVersion = protocolVersion; |
|
703 |
this.preferableSignatureAlgorithm = null; |
|
704 |
||
705 |
setValues(obj); |
|
2 | 706 |
signature = null; |
707 |
} |
|
708 |
||
709 |
/* |
|
710 |
* Construct from initialized DH key object and the key associated |
|
711 |
* with the cert chain which was sent ... for DHE_DSS and DHE_RSA |
|
712 |
* key exchange. (Constructor called by server.) |
|
713 |
*/ |
|
714 |
DH_ServerKeyExchange(DHCrypt obj, PrivateKey key, byte clntNonce[], |
|
7043 | 715 |
byte svrNonce[], SecureRandom sr, |
716 |
SignatureAndHashAlgorithm signAlgorithm, |
|
717 |
ProtocolVersion protocolVersion) throws GeneralSecurityException { |
|
2 | 718 |
|
7043 | 719 |
this.protocolVersion = protocolVersion; |
720 |
||
721 |
setValues(obj); |
|
2 | 722 |
|
723 |
Signature sig; |
|
7043 | 724 |
if (protocolVersion.v >= ProtocolVersion.TLS12.v) { |
725 |
this.preferableSignatureAlgorithm = signAlgorithm; |
|
726 |
sig = JsseJce.getSignature(signAlgorithm.getAlgorithmName()); |
|
2 | 727 |
} else { |
7043 | 728 |
this.preferableSignatureAlgorithm = null; |
729 |
if (key.getAlgorithm().equals("DSA")) { |
|
730 |
sig = JsseJce.getSignature(JsseJce.SIGNATURE_DSA); |
|
731 |
} else { |
|
732 |
sig = RSASignature.getInstance(); |
|
733 |
} |
|
2 | 734 |
} |
7043 | 735 |
|
2 | 736 |
sig.initSign(key, sr); |
737 |
updateSignature(sig, clntNonce, svrNonce); |
|
738 |
signature = sig.sign(); |
|
739 |
} |
|
740 |
||
741 |
/* |
|
742 |
* Construct a DH_ServerKeyExchange message from an input |
|
743 |
* stream, as if sent from server to client for use with |
|
744 |
* DH_anon key exchange |
|
745 |
*/ |
|
7043 | 746 |
DH_ServerKeyExchange(HandshakeInStream input, |
747 |
ProtocolVersion protocolVersion) throws IOException { |
|
748 |
||
749 |
this.protocolVersion = protocolVersion; |
|
750 |
this.preferableSignatureAlgorithm = null; |
|
751 |
||
2 | 752 |
dh_p = input.getBytes16(); |
753 |
dh_g = input.getBytes16(); |
|
754 |
dh_Ys = input.getBytes16(); |
|
755 |
signature = null; |
|
756 |
} |
|
757 |
||
758 |
/* |
|
759 |
* Construct a DH_ServerKeyExchange message from an input stream |
|
760 |
* and a certificate, as if sent from server to client for use with |
|
761 |
* DHE_DSS or DHE_RSA key exchange. (Called by client.) |
|
762 |
*/ |
|
763 |
DH_ServerKeyExchange(HandshakeInStream input, PublicKey publicKey, |
|
7043 | 764 |
byte clntNonce[], byte svrNonce[], int messageSize, |
765 |
Collection<SignatureAndHashAlgorithm> localSupportedSignAlgs, |
|
766 |
ProtocolVersion protocolVersion) |
|
2 | 767 |
throws IOException, GeneralSecurityException { |
768 |
||
7043 | 769 |
this.protocolVersion = protocolVersion; |
770 |
||
771 |
// read params: ServerDHParams |
|
2 | 772 |
dh_p = input.getBytes16(); |
773 |
dh_g = input.getBytes16(); |
|
774 |
dh_Ys = input.getBytes16(); |
|
775 |
||
7043 | 776 |
// read the signature and hash algorithm |
777 |
if (protocolVersion.v >= ProtocolVersion.TLS12.v) { |
|
778 |
int hash = input.getInt8(); // hash algorithm |
|
779 |
int signature = input.getInt8(); // signature algorithm |
|
780 |
||
781 |
preferableSignatureAlgorithm = |
|
782 |
SignatureAndHashAlgorithm.valueOf(hash, signature, 0); |
|
783 |
||
784 |
// Is it a local supported signature algorithm? |
|
785 |
if (!localSupportedSignAlgs.contains( |
|
786 |
preferableSignatureAlgorithm)) { |
|
787 |
throw new SSLHandshakeException( |
|
788 |
"Unsupported SignatureAndHashAlgorithm in " + |
|
789 |
"ServerKeyExchange message"); |
|
790 |
} |
|
791 |
} else { |
|
792 |
this.preferableSignatureAlgorithm = null; |
|
793 |
} |
|
794 |
||
795 |
// read the signature |
|
2 | 796 |
byte signature[]; |
797 |
if (dhKeyExchangeFix) { |
|
798 |
signature = input.getBytes16(); |
|
799 |
} else { |
|
800 |
messageSize -= (dh_p.length + 2); |
|
801 |
messageSize -= (dh_g.length + 2); |
|
802 |
messageSize -= (dh_Ys.length + 2); |
|
803 |
||
804 |
signature = new byte[messageSize]; |
|
805 |
input.read(signature); |
|
806 |
} |
|
807 |
||
808 |
Signature sig; |
|
809 |
String algorithm = publicKey.getAlgorithm(); |
|
7043 | 810 |
if (protocolVersion.v >= ProtocolVersion.TLS12.v) { |
811 |
sig = JsseJce.getSignature( |
|
812 |
preferableSignatureAlgorithm.getAlgorithmName()); |
|
2 | 813 |
} else { |
7043 | 814 |
if (algorithm.equals("DSA")) { |
815 |
sig = JsseJce.getSignature(JsseJce.SIGNATURE_DSA); |
|
816 |
} else if (algorithm.equals("RSA")) { |
|
817 |
sig = RSASignature.getInstance(); |
|
818 |
} else { |
|
819 |
throw new SSLKeyException("neither an RSA or a DSA key"); |
|
820 |
} |
|
2 | 821 |
} |
822 |
||
823 |
sig.initVerify(publicKey); |
|
824 |
updateSignature(sig, clntNonce, svrNonce); |
|
825 |
||
826 |
if (sig.verify(signature) == false ) { |
|
827 |
throw new SSLKeyException("Server D-H key verification failed"); |
|
828 |
} |
|
829 |
} |
|
830 |
||
8991
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
831 |
/* Return the Diffie-Hellman modulus */ |
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
832 |
BigInteger getModulus() { |
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
833 |
return new BigInteger(1, dh_p); |
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
834 |
} |
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
835 |
|
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
836 |
/* Return the Diffie-Hellman base/generator */ |
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
837 |
BigInteger getBase() { |
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
838 |
return new BigInteger(1, dh_g); |
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
839 |
} |
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
840 |
|
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
841 |
/* Return the server's Diffie-Hellman public key */ |
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
842 |
BigInteger getServerPublicKey() { |
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
843 |
return new BigInteger(1, dh_Ys); |
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
844 |
} |
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
845 |
|
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
846 |
/* |
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
847 |
* Update sig with nonces and Diffie-Hellman public key. |
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
848 |
*/ |
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
849 |
private void updateSignature(Signature sig, byte clntNonce[], |
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
850 |
byte svrNonce[]) throws SignatureException { |
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
851 |
int tmp; |
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
852 |
|
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
853 |
sig.update(clntNonce); |
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
854 |
sig.update(svrNonce); |
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
855 |
|
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
856 |
tmp = dh_p.length; |
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
857 |
sig.update((byte)(tmp >> 8)); |
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
858 |
sig.update((byte)(tmp & 0x0ff)); |
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
859 |
sig.update(dh_p); |
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
860 |
|
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
861 |
tmp = dh_g.length; |
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
862 |
sig.update((byte)(tmp >> 8)); |
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
863 |
sig.update((byte)(tmp & 0x0ff)); |
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
864 |
sig.update(dh_g); |
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
865 |
|
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
866 |
tmp = dh_Ys.length; |
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
867 |
sig.update((byte)(tmp >> 8)); |
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
868 |
sig.update((byte)(tmp & 0x0ff)); |
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
869 |
sig.update(dh_Ys); |
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
870 |
} |
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
871 |
|
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
872 |
private void setValues(DHCrypt obj) { |
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
873 |
dh_p = toByteArray(obj.getModulus()); |
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
874 |
dh_g = toByteArray(obj.getBase()); |
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
875 |
dh_Ys = toByteArray(obj.getPublicKey()); |
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
876 |
} |
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
877 |
|
2 | 878 |
int messageLength() { |
879 |
int temp = 6; // overhead for p, g, y(s) values. |
|
880 |
||
881 |
temp += dh_p.length; |
|
882 |
temp += dh_g.length; |
|
883 |
temp += dh_Ys.length; |
|
7043 | 884 |
|
2 | 885 |
if (signature != null) { |
7043 | 886 |
if (protocolVersion.v >= ProtocolVersion.TLS12.v) { |
887 |
temp += SignatureAndHashAlgorithm.sizeInRecord(); |
|
888 |
} |
|
889 |
||
2 | 890 |
temp += signature.length; |
891 |
if (dhKeyExchangeFix) { |
|
892 |
temp += 2; |
|
893 |
} |
|
894 |
} |
|
7043 | 895 |
|
2 | 896 |
return temp; |
897 |
} |
|
898 |
||
899 |
void send(HandshakeOutStream s) throws IOException { |
|
900 |
s.putBytes16(dh_p); |
|
901 |
s.putBytes16(dh_g); |
|
902 |
s.putBytes16(dh_Ys); |
|
7043 | 903 |
|
2 | 904 |
if (signature != null) { |
7043 | 905 |
if (protocolVersion.v >= ProtocolVersion.TLS12.v) { |
906 |
s.putInt8(preferableSignatureAlgorithm.getHashValue()); |
|
907 |
s.putInt8(preferableSignatureAlgorithm.getSignatureValue()); |
|
908 |
} |
|
909 |
||
2 | 910 |
if (dhKeyExchangeFix) { |
911 |
s.putBytes16(signature); |
|
912 |
} else { |
|
913 |
s.write(signature); |
|
914 |
} |
|
915 |
} |
|
916 |
} |
|
917 |
||
918 |
void print(PrintStream s) throws IOException { |
|
919 |
s.println("*** Diffie-Hellman ServerKeyExchange"); |
|
920 |
||
921 |
if (debug != null && Debug.isOn("verbose")) { |
|
922 |
Debug.println(s, "DH Modulus", dh_p); |
|
923 |
Debug.println(s, "DH Base", dh_g); |
|
924 |
Debug.println(s, "Server DH Public Key", dh_Ys); |
|
925 |
||
926 |
if (signature == null) { |
|
927 |
s.println("Anonymous"); |
|
928 |
} else { |
|
7043 | 929 |
if (protocolVersion.v >= ProtocolVersion.TLS12.v) { |
930 |
s.println("Signature Algorithm " + |
|
931 |
preferableSignatureAlgorithm.getAlgorithmName()); |
|
932 |
} |
|
933 |
||
2 | 934 |
s.println("Signed with a DSA or RSA public key"); |
935 |
} |
|
936 |
} |
|
937 |
} |
|
938 |
} |
|
939 |
||
940 |
/* |
|
941 |
* ECDH server key exchange message. Sent by the server for ECDHE and ECDH_anon |
|
942 |
* ciphersuites to communicate its ephemeral public key (including the |
|
943 |
* EC domain parameters). |
|
944 |
* |
|
945 |
* We support named curves only, no explicitly encoded curves. |
|
946 |
*/ |
|
947 |
static final |
|
8991
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
948 |
class ECDH_ServerKeyExchange extends ServerKeyExchange { |
2 | 949 |
|
950 |
// constants for ECCurveType |
|
951 |
private final static int CURVE_EXPLICIT_PRIME = 1; |
|
952 |
private final static int CURVE_EXPLICIT_CHAR2 = 2; |
|
953 |
private final static int CURVE_NAMED_CURVE = 3; |
|
954 |
||
955 |
// id of the curve we are using |
|
956 |
private int curveId; |
|
957 |
// encoded public point |
|
958 |
private byte[] pointBytes; |
|
959 |
||
960 |
// signature bytes (or null if anonymous) |
|
961 |
private byte[] signatureBytes; |
|
962 |
||
963 |
// public key object encapsulated in this message |
|
964 |
private ECPublicKey publicKey; |
|
965 |
||
7043 | 966 |
// protocol version being established using this ServerKeyExchange message |
967 |
ProtocolVersion protocolVersion; |
|
968 |
||
969 |
// the preferable signature algorithm used by this ServerKeyExchange message |
|
970 |
private SignatureAndHashAlgorithm preferableSignatureAlgorithm; |
|
971 |
||
2 | 972 |
ECDH_ServerKeyExchange(ECDHCrypt obj, PrivateKey privateKey, |
7043 | 973 |
byte[] clntNonce, byte[] svrNonce, SecureRandom sr, |
974 |
SignatureAndHashAlgorithm signAlgorithm, |
|
975 |
ProtocolVersion protocolVersion) throws GeneralSecurityException { |
|
976 |
||
977 |
this.protocolVersion = protocolVersion; |
|
978 |
||
2 | 979 |
publicKey = (ECPublicKey)obj.getPublicKey(); |
980 |
ECParameterSpec params = publicKey.getParams(); |
|
981 |
ECPoint point = publicKey.getW(); |
|
982 |
pointBytes = JsseJce.encodePoint(point, params.getCurve()); |
|
983 |
curveId = SupportedEllipticCurvesExtension.getCurveIndex(params); |
|
984 |
||
985 |
if (privateKey == null) { |
|
986 |
// ECDH_anon |
|
987 |
return; |
|
988 |
} |
|
989 |
||
7043 | 990 |
Signature sig; |
991 |
if (protocolVersion.v >= ProtocolVersion.TLS12.v) { |
|
992 |
this.preferableSignatureAlgorithm = signAlgorithm; |
|
993 |
sig = JsseJce.getSignature(signAlgorithm.getAlgorithmName()); |
|
994 |
} else { |
|
995 |
sig = getSignature(privateKey.getAlgorithm()); |
|
996 |
} |
|
997 |
sig.initSign(privateKey); // where is the SecureRandom? |
|
2 | 998 |
|
999 |
updateSignature(sig, clntNonce, svrNonce); |
|
1000 |
signatureBytes = sig.sign(); |
|
1001 |
} |
|
1002 |
||
1003 |
/* |
|
1004 |
* Parse an ECDH server key exchange message. |
|
1005 |
*/ |
|
1006 |
ECDH_ServerKeyExchange(HandshakeInStream input, PublicKey signingKey, |
|
7043 | 1007 |
byte[] clntNonce, byte[] svrNonce, |
1008 |
Collection<SignatureAndHashAlgorithm> localSupportedSignAlgs, |
|
1009 |
ProtocolVersion protocolVersion) |
|
2 | 1010 |
throws IOException, GeneralSecurityException { |
7043 | 1011 |
|
1012 |
this.protocolVersion = protocolVersion; |
|
1013 |
||
1014 |
// read params: ServerECDHParams |
|
2 | 1015 |
int curveType = input.getInt8(); |
1016 |
ECParameterSpec parameters; |
|
1017 |
// These parsing errors should never occur as we negotiated |
|
1018 |
// the supported curves during the exchange of the Hello messages. |
|
1019 |
if (curveType == CURVE_NAMED_CURVE) { |
|
1020 |
curveId = input.getInt16(); |
|
7043 | 1021 |
if (SupportedEllipticCurvesExtension.isSupported(curveId) |
1022 |
== false) { |
|
1023 |
throw new SSLHandshakeException( |
|
1024 |
"Unsupported curveId: " + curveId); |
|
2 | 1025 |
} |
7043 | 1026 |
String curveOid = |
1027 |
SupportedEllipticCurvesExtension.getCurveOid(curveId); |
|
2 | 1028 |
if (curveOid == null) { |
7043 | 1029 |
throw new SSLHandshakeException( |
1030 |
"Unknown named curve: " + curveId); |
|
2 | 1031 |
} |
1032 |
parameters = JsseJce.getECParameterSpec(curveOid); |
|
1033 |
if (parameters == null) { |
|
7043 | 1034 |
throw new SSLHandshakeException( |
1035 |
"Unsupported curve: " + curveOid); |
|
2 | 1036 |
} |
1037 |
} else { |
|
7043 | 1038 |
throw new SSLHandshakeException( |
1039 |
"Unsupported ECCurveType: " + curveType); |
|
2 | 1040 |
} |
1041 |
pointBytes = input.getBytes8(); |
|
1042 |
||
1043 |
ECPoint point = JsseJce.decodePoint(pointBytes, parameters.getCurve()); |
|
1044 |
KeyFactory factory = JsseJce.getKeyFactory("EC"); |
|
7043 | 1045 |
publicKey = (ECPublicKey)factory.generatePublic( |
1046 |
new ECPublicKeySpec(point, parameters)); |
|
2 | 1047 |
|
1048 |
if (signingKey == null) { |
|
1049 |
// ECDH_anon |
|
1050 |
return; |
|
1051 |
} |
|
1052 |
||
7043 | 1053 |
// read the signature and hash algorithm |
1054 |
if (protocolVersion.v >= ProtocolVersion.TLS12.v) { |
|
1055 |
int hash = input.getInt8(); // hash algorithm |
|
1056 |
int signature = input.getInt8(); // signature algorithm |
|
1057 |
||
1058 |
preferableSignatureAlgorithm = |
|
1059 |
SignatureAndHashAlgorithm.valueOf(hash, signature, 0); |
|
1060 |
||
1061 |
// Is it a local supported signature algorithm? |
|
1062 |
if (!localSupportedSignAlgs.contains( |
|
1063 |
preferableSignatureAlgorithm)) { |
|
1064 |
throw new SSLHandshakeException( |
|
1065 |
"Unsupported SignatureAndHashAlgorithm in " + |
|
1066 |
"ServerKeyExchange message"); |
|
1067 |
} |
|
1068 |
} |
|
1069 |
||
1070 |
// read the signature |
|
2 | 1071 |
signatureBytes = input.getBytes16(); |
7043 | 1072 |
|
1073 |
// verify the signature |
|
1074 |
Signature sig; |
|
1075 |
if (protocolVersion.v >= ProtocolVersion.TLS12.v) { |
|
1076 |
sig = JsseJce.getSignature( |
|
1077 |
preferableSignatureAlgorithm.getAlgorithmName()); |
|
1078 |
} else { |
|
1079 |
sig = getSignature(signingKey.getAlgorithm()); |
|
1080 |
} |
|
2 | 1081 |
sig.initVerify(signingKey); |
1082 |
||
1083 |
updateSignature(sig, clntNonce, svrNonce); |
|
1084 |
||
1085 |
if (sig.verify(signatureBytes) == false ) { |
|
7043 | 1086 |
throw new SSLKeyException( |
1087 |
"Invalid signature on ECDH server key exchange message"); |
|
2 | 1088 |
} |
1089 |
} |
|
1090 |
||
1091 |
/* |
|
1092 |
* Get the ephemeral EC public key encapsulated in this message. |
|
1093 |
*/ |
|
1094 |
ECPublicKey getPublicKey() { |
|
1095 |
return publicKey; |
|
1096 |
} |
|
1097 |
||
7043 | 1098 |
private static Signature getSignature(String keyAlgorithm) |
1099 |
throws NoSuchAlgorithmException { |
|
2 | 1100 |
if (keyAlgorithm.equals("EC")) { |
1101 |
return JsseJce.getSignature(JsseJce.SIGNATURE_ECDSA); |
|
1102 |
} else if (keyAlgorithm.equals("RSA")) { |
|
1103 |
return RSASignature.getInstance(); |
|
1104 |
} else { |
|
1105 |
throw new NoSuchAlgorithmException("neither an RSA or a EC key"); |
|
1106 |
} |
|
1107 |
} |
|
1108 |
||
1109 |
private void updateSignature(Signature sig, byte clntNonce[], |
|
1110 |
byte svrNonce[]) throws SignatureException { |
|
1111 |
sig.update(clntNonce); |
|
1112 |
sig.update(svrNonce); |
|
1113 |
||
1114 |
sig.update((byte)CURVE_NAMED_CURVE); |
|
1115 |
sig.update((byte)(curveId >> 8)); |
|
1116 |
sig.update((byte)curveId); |
|
1117 |
sig.update((byte)pointBytes.length); |
|
1118 |
sig.update(pointBytes); |
|
1119 |
} |
|
1120 |
||
1121 |
int messageLength() { |
|
8991
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
1122 |
int sigLen = 0; |
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
1123 |
if (signatureBytes != null) { |
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
1124 |
sigLen = 2 + signatureBytes.length; |
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
1125 |
if (protocolVersion.v >= ProtocolVersion.TLS12.v) { |
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
1126 |
sigLen += SignatureAndHashAlgorithm.sizeInRecord(); |
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
1127 |
} |
7043 | 1128 |
} |
1129 |
||
2 | 1130 |
return 4 + pointBytes.length + sigLen; |
1131 |
} |
|
1132 |
||
1133 |
void send(HandshakeOutStream s) throws IOException { |
|
1134 |
s.putInt8(CURVE_NAMED_CURVE); |
|
1135 |
s.putInt16(curveId); |
|
1136 |
s.putBytes8(pointBytes); |
|
7043 | 1137 |
|
2 | 1138 |
if (signatureBytes != null) { |
8991
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
1139 |
if (protocolVersion.v >= ProtocolVersion.TLS12.v) { |
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
1140 |
s.putInt8(preferableSignatureAlgorithm.getHashValue()); |
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
1141 |
s.putInt8(preferableSignatureAlgorithm.getSignatureValue()); |
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
1142 |
} |
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
1143 |
|
2 | 1144 |
s.putBytes16(signatureBytes); |
1145 |
} |
|
1146 |
} |
|
1147 |
||
1148 |
void print(PrintStream s) throws IOException { |
|
1149 |
s.println("*** ECDH ServerKeyExchange"); |
|
1150 |
||
1151 |
if (debug != null && Debug.isOn("verbose")) { |
|
8991
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
1152 |
if (signatureBytes == null) { |
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
1153 |
s.println("Anonymous"); |
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
1154 |
} else { |
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
1155 |
if (protocolVersion.v >= ProtocolVersion.TLS12.v) { |
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
1156 |
s.println("Signature Algorithm " + |
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
1157 |
preferableSignatureAlgorithm.getAlgorithmName()); |
7df5283fd3b8
7027797: take care of ECDH_anon/DH_anon server key exchange for TLS 1.2
xuelei
parents:
7990
diff
changeset
|
1158 |
} |
7043 | 1159 |
} |
1160 |
||
2 | 1161 |
s.println("Server key: " + publicKey); |
1162 |
} |
|
1163 |
} |
|
1164 |
} |
|
1165 |
||
1166 |
static final class DistinguishedName { |
|
1167 |
||
1168 |
/* |
|
1169 |
* DER encoded distinguished name. |
|
1170 |
* TLS requires that its not longer than 65535 bytes. |
|
1171 |
*/ |
|
1172 |
byte name[]; |
|
1173 |
||
1174 |
DistinguishedName(HandshakeInStream input) throws IOException { |
|
1175 |
name = input.getBytes16(); |
|
1176 |
} |
|
1177 |
||
1178 |
DistinguishedName(X500Principal dn) { |
|
1179 |
name = dn.getEncoded(); |
|
1180 |
} |
|
1181 |
||
1182 |
X500Principal getX500Principal() throws IOException { |
|
1183 |
try { |
|
1184 |
return new X500Principal(name); |
|
1185 |
} catch (IllegalArgumentException e) { |
|
7043 | 1186 |
throw (SSLProtocolException)new SSLProtocolException( |
1187 |
e.getMessage()).initCause(e); |
|
2 | 1188 |
} |
1189 |
} |
|
1190 |
||
1191 |
int length() { |
|
1192 |
return 2 + name.length; |
|
1193 |
} |
|
1194 |
||
1195 |
void send(HandshakeOutStream output) throws IOException { |
|
1196 |
output.putBytes16(name); |
|
1197 |
} |
|
1198 |
||
1199 |
void print(PrintStream output) throws IOException { |
|
1200 |
X500Principal principal = new X500Principal(name); |
|
1201 |
output.println("<" + principal.toString() + ">"); |
|
1202 |
} |
|
1203 |
} |
|
1204 |
||
1205 |
/* |
|
1206 |
* CertificateRequest ... SERVER --> CLIENT |
|
1207 |
* |
|
1208 |
* Authenticated servers may ask clients to authenticate themselves |
|
1209 |
* in turn, using this message. |
|
7043 | 1210 |
* |
1211 |
* Prior to TLS 1.2, the structure of the message is defined as: |
|
1212 |
* struct { |
|
1213 |
* ClientCertificateType certificate_types<1..2^8-1>; |
|
1214 |
* DistinguishedName certificate_authorities<0..2^16-1>; |
|
1215 |
* } CertificateRequest; |
|
1216 |
* |
|
1217 |
* In TLS 1.2, the structure is changed to: |
|
1218 |
* struct { |
|
1219 |
* ClientCertificateType certificate_types<1..2^8-1>; |
|
1220 |
* SignatureAndHashAlgorithm |
|
1221 |
* supported_signature_algorithms<2^16-1>; |
|
1222 |
* DistinguishedName certificate_authorities<0..2^16-1>; |
|
1223 |
* } CertificateRequest; |
|
1224 |
* |
|
2 | 1225 |
*/ |
1226 |
static final |
|
1227 |
class CertificateRequest extends HandshakeMessage |
|
1228 |
{ |
|
1229 |
// enum ClientCertificateType |
|
1230 |
static final int cct_rsa_sign = 1; |
|
1231 |
static final int cct_dss_sign = 2; |
|
1232 |
static final int cct_rsa_fixed_dh = 3; |
|
1233 |
static final int cct_dss_fixed_dh = 4; |
|
1234 |
||
1235 |
// The existance of these two values is a bug in the SSL specification. |
|
1236 |
// They are never used in the protocol. |
|
1237 |
static final int cct_rsa_ephemeral_dh = 5; |
|
1238 |
static final int cct_dss_ephemeral_dh = 6; |
|
1239 |
||
1240 |
// From RFC 4492 (ECC) |
|
1241 |
static final int cct_ecdsa_sign = 64; |
|
1242 |
static final int cct_rsa_fixed_ecdh = 65; |
|
1243 |
static final int cct_ecdsa_fixed_ecdh = 66; |
|
1244 |
||
1245 |
private final static byte[] TYPES_NO_ECC = { cct_rsa_sign, cct_dss_sign }; |
|
1246 |
private final static byte[] TYPES_ECC = |
|
1247 |
{ cct_rsa_sign, cct_dss_sign, cct_ecdsa_sign }; |
|
1248 |
||
1249 |
byte types []; // 1 to 255 types |
|
1250 |
DistinguishedName authorities []; // 3 to 2^16 - 1 |
|
1251 |
// ... "3" because that's the smallest DER-encoded X500 DN |
|
1252 |
||
7043 | 1253 |
// protocol version being established using this CertificateRequest message |
1254 |
ProtocolVersion protocolVersion; |
|
1255 |
||
1256 |
// supported_signature_algorithms for TLS 1.2 or later |
|
1257 |
private Collection<SignatureAndHashAlgorithm> algorithms; |
|
1258 |
||
1259 |
// length of supported_signature_algorithms |
|
1260 |
private int algorithmsLen; |
|
1261 |
||
1262 |
CertificateRequest(X509Certificate ca[], KeyExchange keyExchange, |
|
1263 |
Collection<SignatureAndHashAlgorithm> signAlgs, |
|
1264 |
ProtocolVersion protocolVersion) throws IOException { |
|
1265 |
||
1266 |
this.protocolVersion = protocolVersion; |
|
1267 |
||
2 | 1268 |
// always use X500Principal |
1269 |
authorities = new DistinguishedName[ca.length]; |
|
1270 |
for (int i = 0; i < ca.length; i++) { |
|
1271 |
X500Principal x500Principal = ca[i].getSubjectX500Principal(); |
|
1272 |
authorities[i] = new DistinguishedName(x500Principal); |
|
1273 |
} |
|
1274 |
// we support RSA, DSS, and ECDSA client authentication and they |
|
1275 |
// can be used with all ciphersuites. If this changes, the code |
|
1276 |
// needs to be adapted to take keyExchange into account. |
|
1277 |
// We only request ECDSA client auth if we have ECC crypto available. |
|
1278 |
this.types = JsseJce.isEcAvailable() ? TYPES_ECC : TYPES_NO_ECC; |
|
7043 | 1279 |
|
1280 |
// Use supported_signature_algorithms for TLS 1.2 or later. |
|
1281 |
if (protocolVersion.v >= ProtocolVersion.TLS12.v) { |
|
1282 |
if (signAlgs == null || signAlgs.isEmpty()) { |
|
1283 |
throw new SSLProtocolException( |
|
1284 |
"No supported signature algorithms"); |
|
1285 |
} |
|
1286 |
||
1287 |
algorithms = new ArrayList<SignatureAndHashAlgorithm>(signAlgs); |
|
1288 |
algorithmsLen = |
|
1289 |
SignatureAndHashAlgorithm.sizeInRecord() * algorithms.size(); |
|
1290 |
} else { |
|
1291 |
algorithms = new ArrayList<SignatureAndHashAlgorithm>(); |
|
1292 |
algorithmsLen = 0; |
|
1293 |
} |
|
2 | 1294 |
} |
1295 |
||
7043 | 1296 |
CertificateRequest(HandshakeInStream input, |
1297 |
ProtocolVersion protocolVersion) throws IOException { |
|
1298 |
||
1299 |
this.protocolVersion = protocolVersion; |
|
1300 |
||
1301 |
// Read the certificate_types. |
|
2 | 1302 |
types = input.getBytes8(); |
7043 | 1303 |
|
1304 |
// Read the supported_signature_algorithms for TLS 1.2 or later. |
|
1305 |
if (protocolVersion.v >= ProtocolVersion.TLS12.v) { |
|
1306 |
algorithmsLen = input.getInt16(); |
|
1307 |
if (algorithmsLen < 2) { |
|
1308 |
throw new SSLProtocolException( |
|
1309 |
"Invalid supported_signature_algorithms field"); |
|
1310 |
} |
|
1311 |
||
1312 |
algorithms = new ArrayList<SignatureAndHashAlgorithm>(); |
|
1313 |
int remains = algorithmsLen; |
|
1314 |
int sequence = 0; |
|
1315 |
while (remains > 1) { // needs at least two bytes |
|
1316 |
int hash = input.getInt8(); // hash algorithm |
|
1317 |
int signature = input.getInt8(); // signature algorithm |
|
1318 |
||
1319 |
SignatureAndHashAlgorithm algorithm = |
|
1320 |
SignatureAndHashAlgorithm.valueOf(hash, signature, |
|
1321 |
++sequence); |
|
1322 |
algorithms.add(algorithm); |
|
1323 |
remains -= 2; // one byte for hash, one byte for signature |
|
1324 |
} |
|
1325 |
||
1326 |
if (remains != 0) { |
|
1327 |
throw new SSLProtocolException( |
|
1328 |
"Invalid supported_signature_algorithms field"); |
|
1329 |
} |
|
1330 |
} else { |
|
1331 |
algorithms = new ArrayList<SignatureAndHashAlgorithm>(); |
|
1332 |
algorithmsLen = 0; |
|
1333 |
} |
|
1334 |
||
1335 |
// read the certificate_authorities |
|
2 | 1336 |
int len = input.getInt16(); |
7990 | 1337 |
ArrayList<DistinguishedName> v = new ArrayList<>(); |
2 | 1338 |
while (len >= 3) { |
1339 |
DistinguishedName dn = new DistinguishedName(input); |
|
1340 |
v.add(dn); |
|
1341 |
len -= dn.length(); |
|
1342 |
} |
|
1343 |
||
1344 |
if (len != 0) { |
|
1345 |
throw new SSLProtocolException("Bad CertificateRequest DN length"); |
|
1346 |
} |
|
1347 |
||
1348 |
authorities = v.toArray(new DistinguishedName[v.size()]); |
|
1349 |
} |
|
1350 |
||
1351 |
X500Principal[] getAuthorities() throws IOException { |
|
1352 |
X500Principal[] ret = new X500Principal[authorities.length]; |
|
1353 |
for (int i = 0; i < authorities.length; i++) { |
|
1354 |
ret[i] = authorities[i].getX500Principal(); |
|
1355 |
} |
|
1356 |
return ret; |
|
1357 |
} |
|
1358 |
||
7043 | 1359 |
Collection<SignatureAndHashAlgorithm> getSignAlgorithms() { |
1360 |
return algorithms; |
|
1361 |
} |
|
1362 |
||
1363 |
@Override |
|
1364 |
int messageType() { |
|
1365 |
return ht_certificate_request; |
|
1366 |
} |
|
2 | 1367 |
|
7043 | 1368 |
@Override |
1369 |
int messageLength() { |
|
1370 |
int len = 1 + types.length + 2; |
|
1371 |
||
1372 |
if (protocolVersion.v >= ProtocolVersion.TLS12.v) { |
|
1373 |
len += algorithmsLen + 2; |
|
1374 |
} |
|
1375 |
||
1376 |
for (int i = 0; i < authorities.length; i++) { |
|
2 | 1377 |
len += authorities[i].length(); |
7043 | 1378 |
} |
1379 |
||
2 | 1380 |
return len; |
1381 |
} |
|
1382 |
||
7043 | 1383 |
@Override |
1384 |
void send(HandshakeOutStream output) throws IOException { |
|
1385 |
// put certificate_types |
|
1386 |
output.putBytes8(types); |
|
2 | 1387 |
|
7043 | 1388 |
// put supported_signature_algorithms |
1389 |
if (protocolVersion.v >= ProtocolVersion.TLS12.v) { |
|
1390 |
output.putInt16(algorithmsLen); |
|
1391 |
for (SignatureAndHashAlgorithm algorithm : algorithms) { |
|
1392 |
output.putInt8(algorithm.getHashValue()); // hash |
|
1393 |
output.putInt8(algorithm.getSignatureValue()); // signature |
|
1394 |
} |
|
1395 |
} |
|
1396 |
||
1397 |
// put certificate_authorities |
|
1398 |
int len = 0; |
|
1399 |
for (int i = 0; i < authorities.length; i++) { |
|
2 | 1400 |
len += authorities[i].length(); |
7043 | 1401 |
} |
2 | 1402 |
|
1403 |
output.putInt16(len); |
|
7043 | 1404 |
for (int i = 0; i < authorities.length; i++) { |
2 | 1405 |
authorities[i].send(output); |
7043 | 1406 |
} |
2 | 1407 |
} |
1408 |
||
7043 | 1409 |
@Override |
1410 |
void print(PrintStream s) throws IOException { |
|
2 | 1411 |
s.println("*** CertificateRequest"); |
1412 |
||
1413 |
if (debug != null && Debug.isOn("verbose")) { |
|
1414 |
s.print("Cert Types: "); |
|
1415 |
for (int i = 0; i < types.length; i++) { |
|
1416 |
switch (types[i]) { |
|
1417 |
case cct_rsa_sign: |
|
1418 |
s.print("RSA"); break; |
|
1419 |
case cct_dss_sign: |
|
1420 |
s.print("DSS"); break; |
|
1421 |
case cct_rsa_fixed_dh: |
|
1422 |
s.print("Fixed DH (RSA sig)"); break; |
|
1423 |
case cct_dss_fixed_dh: |
|
1424 |
s.print("Fixed DH (DSS sig)"); break; |
|
1425 |
case cct_rsa_ephemeral_dh: |
|
1426 |
s.print("Ephemeral DH (RSA sig)"); break; |
|
1427 |
case cct_dss_ephemeral_dh: |
|
1428 |
s.print("Ephemeral DH (DSS sig)"); break; |
|
1429 |
case cct_ecdsa_sign: |
|
1430 |
s.print("ECDSA"); break; |
|
1431 |
case cct_rsa_fixed_ecdh: |
|
1432 |
s.print("Fixed ECDH (RSA sig)"); break; |
|
1433 |
case cct_ecdsa_fixed_ecdh: |
|
1434 |
s.print("Fixed ECDH (ECDSA sig)"); break; |
|
1435 |
default: |
|
1436 |
s.print("Type-" + (types[i] & 0xff)); break; |
|
1437 |
} |
|
1438 |
if (i != types.length - 1) { |
|
1439 |
s.print(", "); |
|
1440 |
} |
|
1441 |
} |
|
1442 |
s.println(); |
|
1443 |
||
7043 | 1444 |
if (protocolVersion.v >= ProtocolVersion.TLS12.v) { |
1445 |
StringBuffer buffer = new StringBuffer(); |
|
1446 |
boolean opened = false; |
|
1447 |
for (SignatureAndHashAlgorithm signAlg : algorithms) { |
|
1448 |
if (opened) { |
|
1449 |
buffer.append(", " + signAlg.getAlgorithmName()); |
|
1450 |
} else { |
|
1451 |
buffer.append(signAlg.getAlgorithmName()); |
|
1452 |
opened = true; |
|
1453 |
} |
|
1454 |
} |
|
1455 |
s.println("Supported Signature Algorithms: " + buffer); |
|
1456 |
} |
|
1457 |
||
2 | 1458 |
s.println("Cert Authorities:"); |
7039 | 1459 |
if (authorities.length == 0) { |
1460 |
s.println("<Empty>"); |
|
1461 |
} else { |
|
1462 |
for (int i = 0; i < authorities.length; i++) { |
|
1463 |
authorities[i].print(s); |
|
1464 |
} |
|
1465 |
} |
|
2 | 1466 |
} |
1467 |
} |
|
1468 |
} |
|
1469 |
||
1470 |
||
1471 |
/* |
|
1472 |
* ServerHelloDone ... SERVER --> CLIENT |
|
1473 |
* |
|
1474 |
* When server's done sending its messages in response to the client's |
|
1475 |
* "hello" (e.g. its own hello, certificate, key exchange message, perhaps |
|
1476 |
* client certificate request) it sends this message to flag that it's |
|
1477 |
* done that part of the handshake. |
|
1478 |
*/ |
|
1479 |
static final |
|
1480 |
class ServerHelloDone extends HandshakeMessage |
|
1481 |
{ |
|
1482 |
int messageType() { return ht_server_hello_done; } |
|
1483 |
||
1484 |
ServerHelloDone() { } |
|
1485 |
||
1486 |
ServerHelloDone(HandshakeInStream input) |
|
1487 |
{ |
|
1488 |
// nothing to do |
|
1489 |
} |
|
1490 |
||
1491 |
int messageLength() |
|
1492 |
{ |
|
1493 |
return 0; |
|
1494 |
} |
|
1495 |
||
1496 |
void send(HandshakeOutStream s) throws IOException |
|
1497 |
{ |
|
1498 |
// nothing to send |
|
1499 |
} |
|
1500 |
||
1501 |
void print(PrintStream s) throws IOException |
|
1502 |
{ |
|
1503 |
s.println("*** ServerHelloDone"); |
|
1504 |
} |
|
1505 |
} |
|
1506 |
||
1507 |
||
1508 |
/* |
|
1509 |
* CertificateVerify ... CLIENT --> SERVER |
|
1510 |
* |
|
1511 |
* Sent after client sends signature-capable certificates (e.g. not |
|
1512 |
* Diffie-Hellman) to verify. |
|
1513 |
*/ |
|
1514 |
static final class CertificateVerify extends HandshakeMessage { |
|
1515 |
||
7043 | 1516 |
// the signature bytes |
1517 |
private byte[] signature; |
|
2 | 1518 |
|
7043 | 1519 |
// protocol version being established using this ServerKeyExchange message |
1520 |
ProtocolVersion protocolVersion; |
|
1521 |
||
1522 |
// the preferable signature algorithm used by this CertificateVerify message |
|
1523 |
private SignatureAndHashAlgorithm preferableSignatureAlgorithm = null; |
|
2 | 1524 |
|
1525 |
/* |
|
1526 |
* Create an RSA or DSA signed certificate verify message. |
|
1527 |
*/ |
|
7043 | 1528 |
CertificateVerify(ProtocolVersion protocolVersion, |
1529 |
HandshakeHash handshakeHash, PrivateKey privateKey, |
|
1530 |
SecretKey masterSecret, SecureRandom sr, |
|
1531 |
SignatureAndHashAlgorithm signAlgorithm) |
|
1532 |
throws GeneralSecurityException { |
|
1533 |
||
1534 |
this.protocolVersion = protocolVersion; |
|
1535 |
||
2 | 1536 |
String algorithm = privateKey.getAlgorithm(); |
7043 | 1537 |
Signature sig = null; |
1538 |
if (protocolVersion.v >= ProtocolVersion.TLS12.v) { |
|
1539 |
this.preferableSignatureAlgorithm = signAlgorithm; |
|
1540 |
sig = JsseJce.getSignature(signAlgorithm.getAlgorithmName()); |
|
1541 |
} else { |
|
1542 |
sig = getSignature(protocolVersion, algorithm); |
|
1543 |
} |
|
2 | 1544 |
sig.initSign(privateKey, sr); |
1545 |
updateSignature(sig, protocolVersion, handshakeHash, algorithm, |
|
1546 |
masterSecret); |
|
1547 |
signature = sig.sign(); |
|
1548 |
} |
|
1549 |
||
1550 |
// |
|
1551 |
// Unmarshal the signed data from the input stream. |
|
1552 |
// |
|
7043 | 1553 |
CertificateVerify(HandshakeInStream input, |
1554 |
Collection<SignatureAndHashAlgorithm> localSupportedSignAlgs, |
|
1555 |
ProtocolVersion protocolVersion) throws IOException { |
|
1556 |
||
1557 |
this.protocolVersion = protocolVersion; |
|
1558 |
||
1559 |
// read the signature and hash algorithm |
|
1560 |
if (protocolVersion.v >= ProtocolVersion.TLS12.v) { |
|
1561 |
int hashAlg = input.getInt8(); // hash algorithm |
|
1562 |
int signAlg = input.getInt8(); // signature algorithm |
|
1563 |
||
1564 |
preferableSignatureAlgorithm = |
|
1565 |
SignatureAndHashAlgorithm.valueOf(hashAlg, signAlg, 0); |
|
1566 |
||
1567 |
// Is it a local supported signature algorithm? |
|
1568 |
if (!localSupportedSignAlgs.contains( |
|
1569 |
preferableSignatureAlgorithm)) { |
|
1570 |
throw new SSLHandshakeException( |
|
1571 |
"Unsupported SignatureAndHashAlgorithm in " + |
|
1572 |
"ServerKeyExchange message"); |
|
1573 |
} |
|
1574 |
} |
|
1575 |
||
1576 |
// read the signature |
|
2 | 1577 |
signature = input.getBytes16(); |
1578 |
} |
|
1579 |
||
1580 |
/* |
|
7043 | 1581 |
* Get the preferable signature algorithm used by this message |
1582 |
*/ |
|
1583 |
SignatureAndHashAlgorithm getPreferableSignatureAlgorithm() { |
|
1584 |
return preferableSignatureAlgorithm; |
|
1585 |
} |
|
1586 |
||
1587 |
/* |
|
2 | 1588 |
* Verify a certificate verify message. Return the result of verification, |
1589 |
* if there is a problem throw a GeneralSecurityException. |
|
1590 |
*/ |
|
1591 |
boolean verify(ProtocolVersion protocolVersion, |
|
1592 |
HandshakeHash handshakeHash, PublicKey publicKey, |
|
1593 |
SecretKey masterSecret) throws GeneralSecurityException { |
|
1594 |
String algorithm = publicKey.getAlgorithm(); |
|
7043 | 1595 |
Signature sig = null; |
1596 |
if (protocolVersion.v >= ProtocolVersion.TLS12.v) { |
|
1597 |
sig = JsseJce.getSignature( |
|
1598 |
preferableSignatureAlgorithm.getAlgorithmName()); |
|
1599 |
} else { |
|
1600 |
sig = getSignature(protocolVersion, algorithm); |
|
1601 |
} |
|
2 | 1602 |
sig.initVerify(publicKey); |
1603 |
updateSignature(sig, protocolVersion, handshakeHash, algorithm, |
|
1604 |
masterSecret); |
|
1605 |
return sig.verify(signature); |
|
1606 |
} |
|
1607 |
||
1608 |
/* |
|
1609 |
* Get the Signature object appropriate for verification using the |
|
1610 |
* given signature algorithm and protocol version. |
|
1611 |
*/ |
|
1612 |
private static Signature getSignature(ProtocolVersion protocolVersion, |
|
1613 |
String algorithm) throws GeneralSecurityException { |
|
1614 |
if (algorithm.equals("RSA")) { |
|
1615 |
return RSASignature.getInternalInstance(); |
|
1616 |
} else if (algorithm.equals("DSA")) { |
|
1617 |
return JsseJce.getSignature(JsseJce.SIGNATURE_RAWDSA); |
|
1618 |
} else if (algorithm.equals("EC")) { |
|
1619 |
return JsseJce.getSignature(JsseJce.SIGNATURE_RAWECDSA); |
|
1620 |
} else { |
|
1621 |
throw new SignatureException("Unrecognized algorithm: " |
|
1622 |
+ algorithm); |
|
1623 |
} |
|
1624 |
} |
|
1625 |
||
1626 |
/* |
|
1627 |
* Update the Signature with the data appropriate for the given |
|
1628 |
* signature algorithm and protocol version so that the object is |
|
1629 |
* ready for signing or verifying. |
|
1630 |
*/ |
|
1631 |
private static void updateSignature(Signature sig, |
|
1632 |
ProtocolVersion protocolVersion, |
|
1633 |
HandshakeHash handshakeHash, String algorithm, SecretKey masterKey) |
|
1634 |
throws SignatureException { |
|
7043 | 1635 |
|
2 | 1636 |
if (algorithm.equals("RSA")) { |
7043 | 1637 |
if (protocolVersion.v < ProtocolVersion.TLS12.v) { // TLS1.1- |
1638 |
MessageDigest md5Clone = handshakeHash.getMD5Clone(); |
|
1639 |
MessageDigest shaClone = handshakeHash.getSHAClone(); |
|
1640 |
||
1641 |
if (protocolVersion.v < ProtocolVersion.TLS10.v) { // SSLv3 |
|
1642 |
updateDigest(md5Clone, MD5_pad1, MD5_pad2, masterKey); |
|
1643 |
updateDigest(shaClone, SHA_pad1, SHA_pad2, masterKey); |
|
1644 |
} |
|
1645 |
||
1646 |
// The signature must be an instance of RSASignature, need |
|
1647 |
// to use these hashes directly. |
|
1648 |
RSASignature.setHashes(sig, md5Clone, shaClone); |
|
1649 |
} else { // TLS1.2+ |
|
1650 |
sig.update(handshakeHash.getAllHandshakeMessages()); |
|
2 | 1651 |
} |
1652 |
} else { // DSA, ECDSA |
|
7043 | 1653 |
if (protocolVersion.v < ProtocolVersion.TLS12.v) { // TLS1.1- |
1654 |
MessageDigest shaClone = handshakeHash.getSHAClone(); |
|
1655 |
||
1656 |
if (protocolVersion.v < ProtocolVersion.TLS10.v) { // SSLv3 |
|
1657 |
updateDigest(shaClone, SHA_pad1, SHA_pad2, masterKey); |
|
1658 |
} |
|
1659 |
||
1660 |
sig.update(shaClone.digest()); |
|
1661 |
} else { // TLS1.2+ |
|
1662 |
sig.update(handshakeHash.getAllHandshakeMessages()); |
|
2 | 1663 |
} |
1664 |
} |
|
1665 |
} |
|
1666 |
||
1667 |
/* |
|
1668 |
* Update the MessageDigest for SSLv3 certificate verify or finished |
|
1669 |
* message calculation. The digest must already have been updated with |
|
1670 |
* all preceding handshake messages. |
|
1671 |
* Used by the Finished class as well. |
|
1672 |
*/ |
|
7043 | 1673 |
private static void updateDigest(MessageDigest md, |
1674 |
byte[] pad1, byte[] pad2, |
|
2 | 1675 |
SecretKey masterSecret) { |
1676 |
// Digest the key bytes if available. |
|
1677 |
// Otherwise (sensitive key), try digesting the key directly. |
|
1678 |
// That is currently only implemented in SunPKCS11 using a private |
|
1679 |
// reflection API, so we avoid that if possible. |
|
1680 |
byte[] keyBytes = "RAW".equals(masterSecret.getFormat()) |
|
1681 |
? masterSecret.getEncoded() : null; |
|
1682 |
if (keyBytes != null) { |
|
1683 |
md.update(keyBytes); |
|
1684 |
} else { |
|
1685 |
digestKey(md, masterSecret); |
|
1686 |
} |
|
1687 |
md.update(pad1); |
|
1688 |
byte[] temp = md.digest(); |
|
1689 |
||
1690 |
if (keyBytes != null) { |
|
1691 |
md.update(keyBytes); |
|
1692 |
} else { |
|
1693 |
digestKey(md, masterSecret); |
|
1694 |
} |
|
1695 |
md.update(pad2); |
|
1696 |
md.update(temp); |
|
1697 |
} |
|
1698 |
||
1699 |
private final static Class delegate; |
|
1700 |
private final static Field spiField; |
|
1701 |
||
1702 |
static { |
|
1703 |
try { |
|
1704 |
delegate = Class.forName("java.security.MessageDigest$Delegate"); |
|
1705 |
spiField = delegate.getDeclaredField("digestSpi"); |
|
1706 |
} catch (Exception e) { |
|
1707 |
throw new RuntimeException("Reflection failed", e); |
|
1708 |
} |
|
1709 |
makeAccessible(spiField); |
|
1710 |
} |
|
1711 |
||
1712 |
private static void makeAccessible(final AccessibleObject o) { |
|
1713 |
AccessController.doPrivileged(new PrivilegedAction<Object>() { |
|
1714 |
public Object run() { |
|
1715 |
o.setAccessible(true); |
|
1716 |
return null; |
|
1717 |
} |
|
1718 |
}); |
|
1719 |
} |
|
1720 |
||
1721 |
// ConcurrentHashMap does not allow null values, use this marker object |
|
1722 |
private final static Object NULL_OBJECT = new Object(); |
|
1723 |
||
1724 |
// cache Method objects per Spi class |
|
1725 |
// Note that this will prevent the Spi classes from being GC'd. We assume |
|
1726 |
// that is not a problem. |
|
1727 |
private final static Map<Class,Object> methodCache = |
|
7990 | 1728 |
new ConcurrentHashMap<>(); |
2 | 1729 |
|
1730 |
private static void digestKey(MessageDigest md, SecretKey key) { |
|
1731 |
try { |
|
1732 |
// Verify that md is implemented via MessageDigestSpi, not |
|
1733 |
// via JDK 1.1 style MessageDigest subclassing. |
|
1734 |
if (md.getClass() != delegate) { |
|
1735 |
throw new Exception("Digest is not a MessageDigestSpi"); |
|
1736 |
} |
|
1737 |
MessageDigestSpi spi = (MessageDigestSpi)spiField.get(md); |
|
1738 |
Class<?> clazz = spi.getClass(); |
|
1739 |
Object r = methodCache.get(clazz); |
|
1740 |
if (r == null) { |
|
1741 |
try { |
|
1742 |
r = clazz.getDeclaredMethod("implUpdate", SecretKey.class); |
|
1743 |
makeAccessible((Method)r); |
|
1744 |
} catch (NoSuchMethodException e) { |
|
1745 |
r = NULL_OBJECT; |
|
1746 |
} |
|
1747 |
methodCache.put(clazz, r); |
|
1748 |
} |
|
1749 |
if (r == NULL_OBJECT) { |
|
7043 | 1750 |
throw new Exception( |
1751 |
"Digest does not support implUpdate(SecretKey)"); |
|
2 | 1752 |
} |
1753 |
Method update = (Method)r; |
|
1754 |
update.invoke(spi, key); |
|
1755 |
} catch (Exception e) { |
|
7043 | 1756 |
throw new RuntimeException( |
1757 |
"Could not obtain encoded key and " |
|
1758 |
+ "MessageDigest cannot digest key", e); |
|
2 | 1759 |
} |
1760 |
} |
|
1761 |
||
7043 | 1762 |
@Override |
1763 |
int messageType() { |
|
1764 |
return ht_certificate_verify; |
|
2 | 1765 |
} |
1766 |
||
7043 | 1767 |
@Override |
1768 |
int messageLength() { |
|
1769 |
int temp = 2; |
|
1770 |
||
1771 |
if (protocolVersion.v >= ProtocolVersion.TLS12.v) { |
|
1772 |
temp += SignatureAndHashAlgorithm.sizeInRecord(); |
|
1773 |
} |
|
1774 |
||
1775 |
return temp + signature.length; |
|
1776 |
} |
|
1777 |
||
1778 |
@Override |
|
2 | 1779 |
void send(HandshakeOutStream s) throws IOException { |
7043 | 1780 |
if (protocolVersion.v >= ProtocolVersion.TLS12.v) { |
1781 |
s.putInt8(preferableSignatureAlgorithm.getHashValue()); |
|
1782 |
s.putInt8(preferableSignatureAlgorithm.getSignatureValue()); |
|
1783 |
} |
|
1784 |
||
2 | 1785 |
s.putBytes16(signature); |
1786 |
} |
|
1787 |
||
7043 | 1788 |
@Override |
2 | 1789 |
void print(PrintStream s) throws IOException { |
1790 |
s.println("*** CertificateVerify"); |
|
7043 | 1791 |
|
1792 |
if (debug != null && Debug.isOn("verbose")) { |
|
1793 |
if (protocolVersion.v >= ProtocolVersion.TLS12.v) { |
|
1794 |
s.println("Signature Algorithm " + |
|
1795 |
preferableSignatureAlgorithm.getAlgorithmName()); |
|
1796 |
} |
|
1797 |
} |
|
2 | 1798 |
} |
1799 |
} |
|
1800 |
||
1801 |
||
1802 |
/* |
|
1803 |
* FINISHED ... sent by both CLIENT and SERVER |
|
1804 |
* |
|
1805 |
* This is the FINISHED message as defined in the SSL and TLS protocols. |
|
1806 |
* Both protocols define this handshake message slightly differently. |
|
1807 |
* This class supports both formats. |
|
1808 |
* |
|
1809 |
* When handshaking is finished, each side sends a "change_cipher_spec" |
|
1810 |
* record, then immediately sends a "finished" handshake message prepared |
|
1811 |
* according to the newly adopted cipher spec. |
|
1812 |
* |
|
1813 |
* NOTE that until this is sent, no application data may be passed, unless |
|
1814 |
* some non-default cipher suite has already been set up on this connection |
|
1815 |
* connection (e.g. a previous handshake arranged one). |
|
1816 |
*/ |
|
1817 |
static final class Finished extends HandshakeMessage { |
|
1818 |
||
1819 |
// constant for a Finished message sent by the client |
|
1820 |
final static int CLIENT = 1; |
|
1821 |
||
1822 |
// constant for a Finished message sent by the server |
|
1823 |
final static int SERVER = 2; |
|
1824 |
||
1825 |
// enum Sender: "CLNT" and "SRVR" |
|
1826 |
private static final byte[] SSL_CLIENT = { 0x43, 0x4C, 0x4E, 0x54 }; |
|
1827 |
private static final byte[] SSL_SERVER = { 0x53, 0x52, 0x56, 0x52 }; |
|
1828 |
||
1829 |
/* |
|
1830 |
* Contents of the finished message ("checksum"). For TLS, it |
|
1831 |
* is 12 bytes long, for SSLv3 36 bytes. |
|
1832 |
*/ |
|
1833 |
private byte[] verifyData; |
|
1834 |
||
1835 |
/* |
|
7043 | 1836 |
* Current cipher suite we are negotiating. TLS 1.2 has |
1837 |
* ciphersuite-defined PRF algorithms. |
|
1838 |
*/ |
|
1839 |
private ProtocolVersion protocolVersion; |
|
1840 |
private CipherSuite cipherSuite; |
|
1841 |
||
1842 |
/* |
|
2 | 1843 |
* Create a finished message to send to the remote peer. |
1844 |
*/ |
|
1845 |
Finished(ProtocolVersion protocolVersion, HandshakeHash handshakeHash, |
|
7043 | 1846 |
int sender, SecretKey master, CipherSuite cipherSuite) { |
1847 |
this.protocolVersion = protocolVersion; |
|
1848 |
this.cipherSuite = cipherSuite; |
|
1849 |
verifyData = getFinished(handshakeHash, sender, master); |
|
2 | 1850 |
} |
1851 |
||
1852 |
/* |
|
1853 |
* Constructor that reads FINISHED message from stream. |
|
1854 |
*/ |
|
7043 | 1855 |
Finished(ProtocolVersion protocolVersion, HandshakeInStream input, |
1856 |
CipherSuite cipherSuite) throws IOException { |
|
1857 |
this.protocolVersion = protocolVersion; |
|
1858 |
this.cipherSuite = cipherSuite; |
|
2 | 1859 |
int msgLen = (protocolVersion.v >= ProtocolVersion.TLS10.v) ? 12 : 36; |
1860 |
verifyData = new byte[msgLen]; |
|
1861 |
input.read(verifyData); |
|
1862 |
} |
|
1863 |
||
1864 |
/* |
|
1865 |
* Verify that the hashes here are what would have been produced |
|
1866 |
* according to a given set of inputs. This is used to ensure that |
|
1867 |
* both client and server are fully in sync, and that the handshake |
|
1868 |
* computations have been successful. |
|
1869 |
*/ |
|
7043 | 1870 |
boolean verify(HandshakeHash handshakeHash, int sender, SecretKey master) { |
1871 |
byte[] myFinished = getFinished(handshakeHash, sender, master); |
|
2 | 1872 |
return Arrays.equals(myFinished, verifyData); |
1873 |
} |
|
1874 |
||
1875 |
/* |
|
1876 |
* Perform the actual finished message calculation. |
|
1877 |
*/ |
|
7043 | 1878 |
private byte[] getFinished(HandshakeHash handshakeHash, |
1879 |
int sender, SecretKey masterKey) { |
|
2 | 1880 |
byte[] sslLabel; |
1881 |
String tlsLabel; |
|
1882 |
if (sender == CLIENT) { |
|
1883 |
sslLabel = SSL_CLIENT; |
|
1884 |
tlsLabel = "client finished"; |
|
1885 |
} else if (sender == SERVER) { |
|
1886 |
sslLabel = SSL_SERVER; |
|
1887 |
tlsLabel = "server finished"; |
|
1888 |
} else { |
|
1889 |
throw new RuntimeException("Invalid sender: " + sender); |
|
1890 |
} |
|
7043 | 1891 |
|
2 | 1892 |
if (protocolVersion.v >= ProtocolVersion.TLS10.v) { |
7043 | 1893 |
// TLS 1.0+ |
2 | 1894 |
try { |
7043 | 1895 |
byte [] seed; |
1896 |
String prfAlg; |
|
1897 |
PRF prf; |
|
1898 |
||
1899 |
// Get the KeyGenerator alg and calculate the seed. |
|
1900 |
if (protocolVersion.v >= ProtocolVersion.TLS12.v) { |
|
1901 |
// TLS 1.2 |
|
1902 |
seed = handshakeHash.getFinishedHash(); |
|
1903 |
||
1904 |
prfAlg = "SunTls12Prf"; |
|
1905 |
prf = cipherSuite.prfAlg; |
|
1906 |
} else { |
|
1907 |
// TLS 1.0/1.1 |
|
1908 |
MessageDigest md5Clone = handshakeHash.getMD5Clone(); |
|
1909 |
MessageDigest shaClone = handshakeHash.getSHAClone(); |
|
1910 |
seed = new byte[36]; |
|
1911 |
md5Clone.digest(seed, 0, 16); |
|
1912 |
shaClone.digest(seed, 16, 20); |
|
2 | 1913 |
|
7043 | 1914 |
prfAlg = "SunTlsPrf"; |
1915 |
prf = P_NONE; |
|
1916 |
} |
|
1917 |
||
1918 |
String prfHashAlg = prf.getPRFHashAlg(); |
|
1919 |
int prfHashLength = prf.getPRFHashLength(); |
|
1920 |
int prfBlockSize = prf.getPRFBlockSize(); |
|
1921 |
||
1922 |
/* |
|
1923 |
* RFC 5246/7.4.9 says that finished messages can |
|
1924 |
* be ciphersuite-specific in both length/PRF hash |
|
1925 |
* algorithm. If we ever run across a different |
|
1926 |
* length, this call will need to be updated. |
|
1927 |
*/ |
|
1928 |
TlsPrfParameterSpec spec = new TlsPrfParameterSpec( |
|
1929 |
masterKey, tlsLabel, seed, 12, |
|
1930 |
prfHashAlg, prfHashLength, prfBlockSize); |
|
1931 |
||
1932 |
KeyGenerator kg = JsseJce.getKeyGenerator(prfAlg); |
|
1933 |
kg.init(spec); |
|
1934 |
SecretKey prfKey = kg.generateKey(); |
|
2 | 1935 |
if ("RAW".equals(prfKey.getFormat()) == false) { |
7043 | 1936 |
throw new ProviderException( |
1937 |
"Invalid PRF output, format must be RAW"); |
|
2 | 1938 |
} |
1939 |
byte[] finished = prfKey.getEncoded(); |
|
1940 |
return finished; |
|
1941 |
} catch (GeneralSecurityException e) { |
|
1942 |
throw new RuntimeException("PRF failed", e); |
|
1943 |
} |
|
1944 |
} else { |
|
1945 |
// SSLv3 |
|
7043 | 1946 |
MessageDigest md5Clone = handshakeHash.getMD5Clone(); |
1947 |
MessageDigest shaClone = handshakeHash.getSHAClone(); |
|
2 | 1948 |
updateDigest(md5Clone, sslLabel, MD5_pad1, MD5_pad2, masterKey); |
1949 |
updateDigest(shaClone, sslLabel, SHA_pad1, SHA_pad2, masterKey); |
|
1950 |
byte[] finished = new byte[36]; |
|
1951 |
try { |
|
1952 |
md5Clone.digest(finished, 0, 16); |
|
1953 |
shaClone.digest(finished, 16, 20); |
|
1954 |
} catch (DigestException e) { |
|
1955 |
// cannot occur |
|
1956 |
throw new RuntimeException("Digest failed", e); |
|
1957 |
} |
|
1958 |
return finished; |
|
1959 |
} |
|
1960 |
} |
|
1961 |
||
1962 |
/* |
|
1963 |
* Update the MessageDigest for SSLv3 finished message calculation. |
|
1964 |
* The digest must already have been updated with all preceding handshake |
|
1965 |
* messages. This operation is almost identical to the certificate verify |
|
1966 |
* hash, reuse that code. |
|
1967 |
*/ |
|
1968 |
private static void updateDigest(MessageDigest md, byte[] sender, |
|
1969 |
byte[] pad1, byte[] pad2, SecretKey masterSecret) { |
|
1970 |
md.update(sender); |
|
1971 |
CertificateVerify.updateDigest(md, pad1, pad2, masterSecret); |
|
1972 |
} |
|
1973 |
||
6856 | 1974 |
// get the verify_data of the finished message |
1975 |
byte[] getVerifyData() { |
|
1976 |
return verifyData; |
|
1977 |
} |
|
1978 |
||
1979 |
@Override |
|
1980 |
int messageType() { return ht_finished; } |
|
1981 |
||
1982 |
@Override |
|
2 | 1983 |
int messageLength() { |
1984 |
return verifyData.length; |
|
1985 |
} |
|
1986 |
||
6856 | 1987 |
@Override |
2 | 1988 |
void send(HandshakeOutStream out) throws IOException { |
1989 |
out.write(verifyData); |
|
1990 |
} |
|
1991 |
||
6856 | 1992 |
@Override |
2 | 1993 |
void print(PrintStream s) throws IOException { |
1994 |
s.println("*** Finished"); |
|
1995 |
if (debug != null && Debug.isOn("verbose")) { |
|
1996 |
Debug.println(s, "verify_data", verifyData); |
|
1997 |
s.println("***"); |
|
1998 |
} |
|
1999 |
} |
|
2000 |
} |
|
2001 |
||
2002 |
// |
|
2003 |
// END of nested classes |
|
2004 |
// |
|
2005 |
||
2006 |
} |