author | kvn |
Tue, 23 Jun 2009 17:52:29 -0700 | |
changeset 3173 | c15503e54406 |
parent 2340 | cb47f8209cd8 |
child 3186 | 11ba3d09bd0e |
permissions | -rw-r--r-- |
1 | 1 |
/* |
1623 | 2 |
* Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved. |
1 | 3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 |
* |
|
5 |
* This code is free software; you can redistribute it and/or modify it |
|
6 |
* under the terms of the GNU General Public License version 2 only, as |
|
7 |
* published by the Free Software Foundation. |
|
8 |
* |
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT |
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that |
|
13 |
* accompanied this code). |
|
14 |
* |
|
15 |
* You should have received a copy of the GNU General Public License version |
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation, |
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 |
* |
|
19 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, |
|
20 |
* CA 95054 USA or visit www.sun.com if you need additional information or |
|
21 |
* have any questions. |
|
22 |
* |
|
23 |
*/ |
|
24 |
||
25 |
// Optimization - Graph Style |
|
26 |
||
27 |
class Block; |
|
28 |
class CFGLoop; |
|
29 |
class MachCallNode; |
|
30 |
class Matcher; |
|
31 |
class RootNode; |
|
32 |
class VectorSet; |
|
33 |
struct Tarjan; |
|
34 |
||
35 |
//------------------------------Block_Array------------------------------------ |
|
36 |
// Map dense integer indices to Blocks. Uses classic doubling-array trick. |
|
37 |
// Abstractly provides an infinite array of Block*'s, initialized to NULL. |
|
38 |
// Note that the constructor just zeros things, and since I use Arena |
|
39 |
// allocation I do not need a destructor to reclaim storage. |
|
40 |
class Block_Array : public ResourceObj { |
|
41 |
uint _size; // allocated size, as opposed to formal limit |
|
42 |
debug_only(uint _limit;) // limit to formal domain |
|
43 |
protected: |
|
44 |
Block **_blocks; |
|
45 |
void grow( uint i ); // Grow array node to fit |
|
46 |
||
47 |
public: |
|
48 |
Arena *_arena; // Arena to allocate in |
|
49 |
||
50 |
Block_Array(Arena *a) : _arena(a), _size(OptoBlockListSize) { |
|
51 |
debug_only(_limit=0); |
|
52 |
_blocks = NEW_ARENA_ARRAY( a, Block *, OptoBlockListSize ); |
|
53 |
for( int i = 0; i < OptoBlockListSize; i++ ) { |
|
54 |
_blocks[i] = NULL; |
|
55 |
} |
|
56 |
} |
|
57 |
Block *lookup( uint i ) const // Lookup, or NULL for not mapped |
|
58 |
{ return (i<Max()) ? _blocks[i] : (Block*)NULL; } |
|
59 |
Block *operator[] ( uint i ) const // Lookup, or assert for not mapped |
|
60 |
{ assert( i < Max(), "oob" ); return _blocks[i]; } |
|
61 |
// Extend the mapping: index i maps to Block *n. |
|
62 |
void map( uint i, Block *n ) { if( i>=Max() ) grow(i); _blocks[i] = n; } |
|
63 |
uint Max() const { debug_only(return _limit); return _size; } |
|
64 |
}; |
|
65 |
||
66 |
||
67 |
class Block_List : public Block_Array { |
|
68 |
public: |
|
69 |
uint _cnt; |
|
70 |
Block_List() : Block_Array(Thread::current()->resource_area()), _cnt(0) {} |
|
71 |
void push( Block *b ) { map(_cnt++,b); } |
|
72 |
Block *pop() { return _blocks[--_cnt]; } |
|
73 |
Block *rpop() { Block *b = _blocks[0]; _blocks[0]=_blocks[--_cnt]; return b;} |
|
74 |
void remove( uint i ); |
|
75 |
void insert( uint i, Block *n ); |
|
76 |
uint size() const { return _cnt; } |
|
77 |
void reset() { _cnt = 0; } |
|
1498 | 78 |
void print(); |
1 | 79 |
}; |
80 |
||
81 |
||
82 |
class CFGElement : public ResourceObj { |
|
83 |
public: |
|
84 |
float _freq; // Execution frequency (estimate) |
|
85 |
||
86 |
CFGElement() : _freq(0.0f) {} |
|
87 |
virtual bool is_block() { return false; } |
|
88 |
virtual bool is_loop() { return false; } |
|
89 |
Block* as_Block() { assert(is_block(), "must be block"); return (Block*)this; } |
|
90 |
CFGLoop* as_CFGLoop() { assert(is_loop(), "must be loop"); return (CFGLoop*)this; } |
|
91 |
}; |
|
92 |
||
93 |
//------------------------------Block------------------------------------------ |
|
94 |
// This class defines a Basic Block. |
|
95 |
// Basic blocks are used during the output routines, and are not used during |
|
96 |
// any optimization pass. They are created late in the game. |
|
97 |
class Block : public CFGElement { |
|
98 |
public: |
|
99 |
// Nodes in this block, in order |
|
100 |
Node_List _nodes; |
|
101 |
||
102 |
// Basic blocks have a Node which defines Control for all Nodes pinned in |
|
103 |
// this block. This Node is a RegionNode. Exception-causing Nodes |
|
104 |
// (division, subroutines) and Phi functions are always pinned. Later, |
|
105 |
// every Node will get pinned to some block. |
|
106 |
Node *head() const { return _nodes[0]; } |
|
107 |
||
108 |
// CAUTION: num_preds() is ONE based, so that predecessor numbers match |
|
109 |
// input edges to Regions and Phis. |
|
110 |
uint num_preds() const { return head()->req(); } |
|
111 |
Node *pred(uint i) const { return head()->in(i); } |
|
112 |
||
113 |
// Array of successor blocks, same size as projs array |
|
114 |
Block_Array _succs; |
|
115 |
||
116 |
// Basic blocks have some number of Nodes which split control to all |
|
117 |
// following blocks. These Nodes are always Projections. The field in |
|
118 |
// the Projection and the block-ending Node determine which Block follows. |
|
119 |
uint _num_succs; |
|
120 |
||
121 |
// Basic blocks also carry all sorts of good old fashioned DFS information |
|
122 |
// used to find loops, loop nesting depth, dominators, etc. |
|
123 |
uint _pre_order; // Pre-order DFS number |
|
124 |
||
125 |
// Dominator tree |
|
126 |
uint _dom_depth; // Depth in dominator tree for fast LCA |
|
127 |
Block* _idom; // Immediate dominator block |
|
128 |
||
129 |
CFGLoop *_loop; // Loop to which this block belongs |
|
130 |
uint _rpo; // Number in reverse post order walk |
|
131 |
||
132 |
virtual bool is_block() { return true; } |
|
1498 | 133 |
float succ_prob(uint i); // return probability of i'th successor |
134 |
int num_fall_throughs(); // How many fall-through candidate this block has |
|
135 |
void update_uncommon_branch(Block* un); // Lower branch prob to uncommon code |
|
136 |
bool succ_fall_through(uint i); // Is successor "i" is a fall-through candidate |
|
137 |
Block* lone_fall_through(); // Return lone fall-through Block or null |
|
1 | 138 |
|
139 |
Block* dom_lca(Block* that); // Compute LCA in dominator tree. |
|
140 |
#ifdef ASSERT |
|
141 |
bool dominates(Block* that) { |
|
142 |
int dom_diff = this->_dom_depth - that->_dom_depth; |
|
143 |
if (dom_diff > 0) return false; |
|
144 |
for (; dom_diff < 0; dom_diff++) that = that->_idom; |
|
145 |
return this == that; |
|
146 |
} |
|
147 |
#endif |
|
148 |
||
149 |
// Report the alignment required by this block. Must be a power of 2. |
|
150 |
// The previous block will insert nops to get this alignment. |
|
151 |
uint code_alignment(); |
|
1498 | 152 |
uint compute_loop_alignment(); |
1 | 153 |
|
154 |
// BLOCK_FREQUENCY is a sentinel to mark uses of constant block frequencies. |
|
155 |
// It is currently also used to scale such frequencies relative to |
|
156 |
// FreqCountInvocations relative to the old value of 1500. |
|
157 |
#define BLOCK_FREQUENCY(f) ((f * (float) 1500) / FreqCountInvocations) |
|
158 |
||
159 |
// Register Pressure (estimate) for Splitting heuristic |
|
160 |
uint _reg_pressure; |
|
161 |
uint _ihrp_index; |
|
162 |
uint _freg_pressure; |
|
163 |
uint _fhrp_index; |
|
164 |
||
165 |
// Mark and visited bits for an LCA calculation in insert_anti_dependences. |
|
166 |
// Since they hold unique node indexes, they do not need reinitialization. |
|
167 |
node_idx_t _raise_LCA_mark; |
|
168 |
void set_raise_LCA_mark(node_idx_t x) { _raise_LCA_mark = x; } |
|
169 |
node_idx_t raise_LCA_mark() const { return _raise_LCA_mark; } |
|
170 |
node_idx_t _raise_LCA_visited; |
|
171 |
void set_raise_LCA_visited(node_idx_t x) { _raise_LCA_visited = x; } |
|
172 |
node_idx_t raise_LCA_visited() const { return _raise_LCA_visited; } |
|
173 |
||
174 |
// Estimated size in bytes of first instructions in a loop. |
|
175 |
uint _first_inst_size; |
|
176 |
uint first_inst_size() const { return _first_inst_size; } |
|
177 |
void set_first_inst_size(uint s) { _first_inst_size = s; } |
|
178 |
||
179 |
// Compute the size of first instructions in this block. |
|
180 |
uint compute_first_inst_size(uint& sum_size, uint inst_cnt, PhaseRegAlloc* ra); |
|
181 |
||
182 |
// Compute alignment padding if the block needs it. |
|
183 |
// Align a loop if loop's padding is less or equal to padding limit |
|
184 |
// or the size of first instructions in the loop > padding. |
|
185 |
uint alignment_padding(int current_offset) { |
|
186 |
int block_alignment = code_alignment(); |
|
187 |
int max_pad = block_alignment-relocInfo::addr_unit(); |
|
188 |
if( max_pad > 0 ) { |
|
189 |
assert(is_power_of_2(max_pad+relocInfo::addr_unit()), ""); |
|
190 |
int current_alignment = current_offset & max_pad; |
|
191 |
if( current_alignment != 0 ) { |
|
192 |
uint padding = (block_alignment-current_alignment) & max_pad; |
|
1498 | 193 |
if( has_loop_alignment() && |
194 |
padding > (uint)MaxLoopPad && |
|
195 |
first_inst_size() <= padding ) { |
|
196 |
return 0; |
|
1 | 197 |
} |
1498 | 198 |
return padding; |
1 | 199 |
} |
200 |
} |
|
201 |
return 0; |
|
202 |
} |
|
203 |
||
204 |
// Connector blocks. Connector blocks are basic blocks devoid of |
|
205 |
// instructions, but may have relevant non-instruction Nodes, such as |
|
206 |
// Phis or MergeMems. Such blocks are discovered and marked during the |
|
207 |
// RemoveEmpty phase, and elided during Output. |
|
208 |
bool _connector; |
|
209 |
void set_connector() { _connector = true; } |
|
210 |
bool is_connector() const { return _connector; }; |
|
211 |
||
1498 | 212 |
// Loop_alignment will be set for blocks which are at the top of loops. |
213 |
// The block layout pass may rotate loops such that the loop head may not |
|
214 |
// be the sequentially first block of the loop encountered in the linear |
|
215 |
// list of blocks. If the layout pass is not run, loop alignment is set |
|
216 |
// for each block which is the head of a loop. |
|
217 |
uint _loop_alignment; |
|
218 |
void set_loop_alignment(Block *loop_top) { |
|
219 |
uint new_alignment = loop_top->compute_loop_alignment(); |
|
220 |
if (new_alignment > _loop_alignment) { |
|
221 |
_loop_alignment = new_alignment; |
|
222 |
} |
|
223 |
} |
|
224 |
uint loop_alignment() const { return _loop_alignment; } |
|
225 |
bool has_loop_alignment() const { return loop_alignment() > 0; } |
|
226 |
||
1 | 227 |
// Create a new Block with given head Node. |
228 |
// Creates the (empty) predecessor arrays. |
|
229 |
Block( Arena *a, Node *headnode ) |
|
230 |
: CFGElement(), |
|
231 |
_nodes(a), |
|
232 |
_succs(a), |
|
233 |
_num_succs(0), |
|
234 |
_pre_order(0), |
|
235 |
_idom(0), |
|
236 |
_loop(NULL), |
|
237 |
_reg_pressure(0), |
|
238 |
_ihrp_index(1), |
|
239 |
_freg_pressure(0), |
|
240 |
_fhrp_index(1), |
|
241 |
_raise_LCA_mark(0), |
|
242 |
_raise_LCA_visited(0), |
|
243 |
_first_inst_size(999999), |
|
1498 | 244 |
_connector(false), |
245 |
_loop_alignment(0) { |
|
1 | 246 |
_nodes.push(headnode); |
247 |
} |
|
248 |
||
249 |
// Index of 'end' Node |
|
250 |
uint end_idx() const { |
|
251 |
// %%%%% add a proj after every goto |
|
252 |
// so (last->is_block_proj() != last) always, then simplify this code |
|
253 |
// This will not give correct end_idx for block 0 when it only contains root. |
|
254 |
int last_idx = _nodes.size() - 1; |
|
255 |
Node *last = _nodes[last_idx]; |
|
256 |
assert(last->is_block_proj() == last || last->is_block_proj() == _nodes[last_idx - _num_succs], ""); |
|
257 |
return (last->is_block_proj() == last) ? last_idx : (last_idx - _num_succs); |
|
258 |
} |
|
259 |
||
260 |
// Basic blocks have a Node which ends them. This Node determines which |
|
261 |
// basic block follows this one in the program flow. This Node is either an |
|
262 |
// IfNode, a GotoNode, a JmpNode, or a ReturnNode. |
|
263 |
Node *end() const { return _nodes[end_idx()]; } |
|
264 |
||
265 |
// Add an instruction to an existing block. It must go after the head |
|
266 |
// instruction and before the end instruction. |
|
267 |
void add_inst( Node *n ) { _nodes.insert(end_idx(),n); } |
|
268 |
// Find node in block |
|
269 |
uint find_node( const Node *n ) const; |
|
270 |
// Find and remove n from block list |
|
271 |
void find_remove( const Node *n ); |
|
272 |
||
273 |
// Schedule a call next in the block |
|
274 |
uint sched_call(Matcher &matcher, Block_Array &bbs, uint node_cnt, Node_List &worklist, int *ready_cnt, MachCallNode *mcall, VectorSet &next_call); |
|
275 |
||
276 |
// Perform basic-block local scheduling |
|
277 |
Node *select(PhaseCFG *cfg, Node_List &worklist, int *ready_cnt, VectorSet &next_call, uint sched_slot); |
|
278 |
void set_next_call( Node *n, VectorSet &next_call, Block_Array &bbs ); |
|
279 |
void needed_for_next_call(Node *this_call, VectorSet &next_call, Block_Array &bbs); |
|
280 |
bool schedule_local(PhaseCFG *cfg, Matcher &m, int *ready_cnt, VectorSet &next_call); |
|
281 |
// Cleanup if any code lands between a Call and his Catch |
|
282 |
void call_catch_cleanup(Block_Array &bbs); |
|
283 |
// Detect implicit-null-check opportunities. Basically, find NULL checks |
|
284 |
// with suitable memory ops nearby. Use the memory op to do the NULL check. |
|
285 |
// I can generate a memory op if there is not one nearby. |
|
286 |
void implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowed_reasons); |
|
287 |
||
288 |
// Return the empty status of a block |
|
289 |
enum { not_empty, empty_with_goto, completely_empty }; |
|
290 |
int is_Empty() const; |
|
291 |
||
292 |
// Forward through connectors |
|
293 |
Block* non_connector() { |
|
294 |
Block* s = this; |
|
295 |
while (s->is_connector()) { |
|
296 |
s = s->_succs[0]; |
|
297 |
} |
|
298 |
return s; |
|
299 |
} |
|
300 |
||
1498 | 301 |
// Return true if b is a successor of this block |
302 |
bool has_successor(Block* b) const { |
|
303 |
for (uint i = 0; i < _num_succs; i++ ) { |
|
304 |
if (non_connector_successor(i) == b) { |
|
305 |
return true; |
|
306 |
} |
|
307 |
} |
|
308 |
return false; |
|
309 |
} |
|
310 |
||
1 | 311 |
// Successor block, after forwarding through connectors |
312 |
Block* non_connector_successor(int i) const { |
|
313 |
return _succs[i]->non_connector(); |
|
314 |
} |
|
315 |
||
316 |
// Examine block's code shape to predict if it is not commonly executed. |
|
317 |
bool has_uncommon_code() const; |
|
318 |
||
319 |
// Use frequency calculations and code shape to predict if the block |
|
320 |
// is uncommon. |
|
321 |
bool is_uncommon( Block_Array &bbs ) const; |
|
322 |
||
323 |
#ifndef PRODUCT |
|
324 |
// Debugging print of basic block |
|
325 |
void dump_bidx(const Block* orig) const; |
|
326 |
void dump_pred(const Block_Array *bbs, Block* orig) const; |
|
327 |
void dump_head( const Block_Array *bbs ) const; |
|
328 |
void dump( ) const; |
|
329 |
void dump( const Block_Array *bbs ) const; |
|
330 |
#endif |
|
331 |
}; |
|
332 |
||
333 |
||
334 |
//------------------------------PhaseCFG--------------------------------------- |
|
335 |
// Build an array of Basic Block pointers, one per Node. |
|
336 |
class PhaseCFG : public Phase { |
|
337 |
private: |
|
338 |
// Build a proper looking cfg. Return count of basic blocks |
|
339 |
uint build_cfg(); |
|
340 |
||
341 |
// Perform DFS search. |
|
342 |
// Setup 'vertex' as DFS to vertex mapping. |
|
343 |
// Setup 'semi' as vertex to DFS mapping. |
|
344 |
// Set 'parent' to DFS parent. |
|
345 |
uint DFS( Tarjan *tarjan ); |
|
346 |
||
347 |
// Helper function to insert a node into a block |
|
348 |
void schedule_node_into_block( Node *n, Block *b ); |
|
349 |
||
2130 | 350 |
void replace_block_proj_ctrl( Node *n ); |
2127
268ea58ed775
6809798: SafePointScalarObject node placed into incorrect block during GCM
kvn
parents:
1623
diff
changeset
|
351 |
|
1 | 352 |
// Set the basic block for pinned Nodes |
353 |
void schedule_pinned_nodes( VectorSet &visited ); |
|
354 |
||
355 |
// I'll need a few machine-specific GotoNodes. Clone from this one. |
|
356 |
MachNode *_goto; |
|
357 |
||
358 |
Block* insert_anti_dependences(Block* LCA, Node* load, bool verify = false); |
|
359 |
void verify_anti_dependences(Block* LCA, Node* load) { |
|
360 |
assert(LCA == _bbs[load->_idx], "should already be scheduled"); |
|
361 |
insert_anti_dependences(LCA, load, true); |
|
362 |
} |
|
363 |
||
364 |
public: |
|
365 |
PhaseCFG( Arena *a, RootNode *r, Matcher &m ); |
|
366 |
||
367 |
uint _num_blocks; // Count of basic blocks |
|
368 |
Block_List _blocks; // List of basic blocks |
|
369 |
RootNode *_root; // Root of whole program |
|
370 |
Block_Array _bbs; // Map Nodes to owning Basic Block |
|
371 |
Block *_broot; // Basic block of root |
|
372 |
uint _rpo_ctr; |
|
373 |
CFGLoop* _root_loop; |
|
2340 | 374 |
float _outer_loop_freq; // Outmost loop frequency |
1 | 375 |
|
376 |
// Per node latency estimation, valid only during GCM |
|
377 |
GrowableArray<uint> _node_latency; |
|
378 |
||
379 |
#ifndef PRODUCT |
|
380 |
bool _trace_opto_pipelining; // tracing flag |
|
381 |
#endif |
|
382 |
||
383 |
// Build dominators |
|
384 |
void Dominators(); |
|
385 |
||
386 |
// Estimate block frequencies based on IfNode probabilities |
|
387 |
void Estimate_Block_Frequency(); |
|
388 |
||
389 |
// Global Code Motion. See Click's PLDI95 paper. Place Nodes in specific |
|
390 |
// basic blocks; i.e. _bbs now maps _idx for all Nodes to some Block. |
|
391 |
void GlobalCodeMotion( Matcher &m, uint unique, Node_List &proj_list ); |
|
392 |
||
393 |
// Compute the (backwards) latency of a node from the uses |
|
394 |
void latency_from_uses(Node *n); |
|
395 |
||
396 |
// Compute the (backwards) latency of a node from a single use |
|
397 |
int latency_from_use(Node *n, const Node *def, Node *use); |
|
398 |
||
399 |
// Compute the (backwards) latency of a node from the uses of this instruction |
|
400 |
void partial_latency_of_defs(Node *n); |
|
401 |
||
402 |
// Schedule Nodes early in their basic blocks. |
|
403 |
bool schedule_early(VectorSet &visited, Node_List &roots); |
|
404 |
||
405 |
// For each node, find the latest block it can be scheduled into |
|
406 |
// and then select the cheapest block between the latest and earliest |
|
407 |
// block to place the node. |
|
408 |
void schedule_late(VectorSet &visited, Node_List &stack); |
|
409 |
||
410 |
// Pick a block between early and late that is a cheaper alternative |
|
411 |
// to late. Helper for schedule_late. |
|
412 |
Block* hoist_to_cheaper_block(Block* LCA, Block* early, Node* self); |
|
413 |
||
414 |
// Compute the instruction global latency with a backwards walk |
|
415 |
void ComputeLatenciesBackwards(VectorSet &visited, Node_List &stack); |
|
416 |
||
1498 | 417 |
// Set loop alignment |
418 |
void set_loop_alignment(); |
|
419 |
||
1 | 420 |
// Remove empty basic blocks |
1498 | 421 |
void remove_empty(); |
422 |
void fixup_flow(); |
|
423 |
bool move_to_next(Block* bx, uint b_index); |
|
424 |
void move_to_end(Block* bx, uint b_index); |
|
425 |
void insert_goto_at(uint block_no, uint succ_no); |
|
1 | 426 |
|
427 |
// Check for NeverBranch at block end. This needs to become a GOTO to the |
|
428 |
// true target. NeverBranch are treated as a conditional branch that always |
|
429 |
// goes the same direction for most of the optimizer and are used to give a |
|
430 |
// fake exit path to infinite loops. At this late stage they need to turn |
|
431 |
// into Goto's so that when you enter the infinite loop you indeed hang. |
|
432 |
void convert_NeverBranch_to_Goto(Block *b); |
|
433 |
||
434 |
CFGLoop* create_loop_tree(); |
|
435 |
||
436 |
// Insert a node into a block, and update the _bbs |
|
437 |
void insert( Block *b, uint idx, Node *n ) { |
|
438 |
b->_nodes.insert( idx, n ); |
|
439 |
_bbs.map( n->_idx, b ); |
|
440 |
} |
|
441 |
||
442 |
#ifndef PRODUCT |
|
443 |
bool trace_opto_pipelining() const { return _trace_opto_pipelining; } |
|
444 |
||
445 |
// Debugging print of CFG |
|
446 |
void dump( ) const; // CFG only |
|
447 |
void _dump_cfg( const Node *end, VectorSet &visited ) const; |
|
448 |
void verify() const; |
|
449 |
void dump_headers(); |
|
450 |
#else |
|
451 |
bool trace_opto_pipelining() const { return false; } |
|
452 |
#endif |
|
453 |
}; |
|
454 |
||
455 |
||
1498 | 456 |
//------------------------------UnionFind-------------------------------------- |
1 | 457 |
// Map Block indices to a block-index for a cfg-cover. |
458 |
// Array lookup in the optimized case. |
|
459 |
class UnionFind : public ResourceObj { |
|
460 |
uint _cnt, _max; |
|
461 |
uint* _indices; |
|
462 |
ReallocMark _nesting; // assertion check for reallocations |
|
463 |
public: |
|
464 |
UnionFind( uint max ); |
|
465 |
void reset( uint max ); // Reset to identity map for [0..max] |
|
466 |
||
467 |
uint lookup( uint nidx ) const { |
|
468 |
return _indices[nidx]; |
|
469 |
} |
|
470 |
uint operator[] (uint nidx) const { return lookup(nidx); } |
|
471 |
||
472 |
void map( uint from_idx, uint to_idx ) { |
|
473 |
assert( from_idx < _cnt, "oob" ); |
|
474 |
_indices[from_idx] = to_idx; |
|
475 |
} |
|
476 |
void extend( uint from_idx, uint to_idx ); |
|
477 |
||
478 |
uint Size() const { return _cnt; } |
|
479 |
||
480 |
uint Find( uint idx ) { |
|
481 |
assert( idx < 65536, "Must fit into uint"); |
|
482 |
uint uf_idx = lookup(idx); |
|
483 |
return (uf_idx == idx) ? uf_idx : Find_compress(idx); |
|
484 |
} |
|
485 |
uint Find_compress( uint idx ); |
|
486 |
uint Find_const( uint idx ) const; |
|
487 |
void Union( uint idx1, uint idx2 ); |
|
488 |
||
489 |
}; |
|
490 |
||
491 |
//----------------------------BlockProbPair--------------------------- |
|
492 |
// Ordered pair of Node*. |
|
493 |
class BlockProbPair VALUE_OBJ_CLASS_SPEC { |
|
494 |
protected: |
|
495 |
Block* _target; // block target |
|
496 |
float _prob; // probability of edge to block |
|
497 |
public: |
|
498 |
BlockProbPair() : _target(NULL), _prob(0.0) {} |
|
499 |
BlockProbPair(Block* b, float p) : _target(b), _prob(p) {} |
|
500 |
||
501 |
Block* get_target() const { return _target; } |
|
502 |
float get_prob() const { return _prob; } |
|
503 |
}; |
|
504 |
||
505 |
//------------------------------CFGLoop------------------------------------------- |
|
506 |
class CFGLoop : public CFGElement { |
|
507 |
int _id; |
|
508 |
int _depth; |
|
509 |
CFGLoop *_parent; // root of loop tree is the method level "pseudo" loop, it's parent is null |
|
510 |
CFGLoop *_sibling; // null terminated list |
|
511 |
CFGLoop *_child; // first child, use child's sibling to visit all immediately nested loops |
|
512 |
GrowableArray<CFGElement*> _members; // list of members of loop |
|
513 |
GrowableArray<BlockProbPair> _exits; // list of successor blocks and their probabilities |
|
514 |
float _exit_prob; // probability any loop exit is taken on a single loop iteration |
|
515 |
void update_succ_freq(Block* b, float freq); |
|
516 |
||
517 |
public: |
|
518 |
CFGLoop(int id) : |
|
519 |
CFGElement(), |
|
520 |
_id(id), |
|
521 |
_depth(0), |
|
522 |
_parent(NULL), |
|
523 |
_sibling(NULL), |
|
524 |
_child(NULL), |
|
525 |
_exit_prob(1.0f) {} |
|
526 |
CFGLoop* parent() { return _parent; } |
|
527 |
void push_pred(Block* blk, int i, Block_List& worklist, Block_Array& node_to_blk); |
|
528 |
void add_member(CFGElement *s) { _members.push(s); } |
|
529 |
void add_nested_loop(CFGLoop* cl); |
|
530 |
Block* head() { |
|
531 |
assert(_members.at(0)->is_block(), "head must be a block"); |
|
532 |
Block* hd = _members.at(0)->as_Block(); |
|
533 |
assert(hd->_loop == this, "just checking"); |
|
534 |
assert(hd->head()->is_Loop(), "must begin with loop head node"); |
|
535 |
return hd; |
|
536 |
} |
|
537 |
Block* backedge_block(); // Return the block on the backedge of the loop (else NULL) |
|
538 |
void compute_loop_depth(int depth); |
|
539 |
void compute_freq(); // compute frequency with loop assuming head freq 1.0f |
|
540 |
void scale_freq(); // scale frequency by loop trip count (including outer loops) |
|
2340 | 541 |
float outer_loop_freq() const; // frequency of outer loop |
1 | 542 |
bool in_loop_nest(Block* b); |
543 |
float trip_count() const { return 1.0f / _exit_prob; } |
|
544 |
virtual bool is_loop() { return true; } |
|
545 |
int id() { return _id; } |
|
546 |
||
547 |
#ifndef PRODUCT |
|
548 |
void dump( ) const; |
|
549 |
void dump_tree() const; |
|
550 |
#endif |
|
551 |
}; |
|
1498 | 552 |
|
553 |
||
554 |
//----------------------------------CFGEdge------------------------------------ |
|
555 |
// A edge between two basic blocks that will be embodied by a branch or a |
|
556 |
// fall-through. |
|
557 |
class CFGEdge : public ResourceObj { |
|
558 |
private: |
|
559 |
Block * _from; // Source basic block |
|
560 |
Block * _to; // Destination basic block |
|
561 |
float _freq; // Execution frequency (estimate) |
|
562 |
int _state; |
|
563 |
bool _infrequent; |
|
564 |
int _from_pct; |
|
565 |
int _to_pct; |
|
566 |
||
567 |
// Private accessors |
|
568 |
int from_pct() const { return _from_pct; } |
|
569 |
int to_pct() const { return _to_pct; } |
|
570 |
int from_infrequent() const { return from_pct() < BlockLayoutMinDiamondPercentage; } |
|
571 |
int to_infrequent() const { return to_pct() < BlockLayoutMinDiamondPercentage; } |
|
572 |
||
573 |
public: |
|
574 |
enum { |
|
575 |
open, // initial edge state; unprocessed |
|
576 |
connected, // edge used to connect two traces together |
|
577 |
interior // edge is interior to trace (could be backedge) |
|
578 |
}; |
|
579 |
||
580 |
CFGEdge(Block *from, Block *to, float freq, int from_pct, int to_pct) : |
|
581 |
_from(from), _to(to), _freq(freq), |
|
582 |
_from_pct(from_pct), _to_pct(to_pct), _state(open) { |
|
583 |
_infrequent = from_infrequent() || to_infrequent(); |
|
584 |
} |
|
585 |
||
586 |
float freq() const { return _freq; } |
|
587 |
Block* from() const { return _from; } |
|
588 |
Block* to () const { return _to; } |
|
589 |
int infrequent() const { return _infrequent; } |
|
590 |
int state() const { return _state; } |
|
591 |
||
592 |
void set_state(int state) { _state = state; } |
|
593 |
||
594 |
#ifndef PRODUCT |
|
595 |
void dump( ) const; |
|
596 |
#endif |
|
597 |
}; |
|
598 |
||
599 |
||
600 |
//-----------------------------------Trace------------------------------------- |
|
601 |
// An ordered list of basic blocks. |
|
602 |
class Trace : public ResourceObj { |
|
603 |
private: |
|
604 |
uint _id; // Unique Trace id (derived from initial block) |
|
605 |
Block ** _next_list; // Array mapping index to next block |
|
606 |
Block ** _prev_list; // Array mapping index to previous block |
|
607 |
Block * _first; // First block in the trace |
|
608 |
Block * _last; // Last block in the trace |
|
609 |
||
610 |
// Return the block that follows "b" in the trace. |
|
611 |
Block * next(Block *b) const { return _next_list[b->_pre_order]; } |
|
612 |
void set_next(Block *b, Block *n) const { _next_list[b->_pre_order] = n; } |
|
613 |
||
2131 | 614 |
// Return the block that precedes "b" in the trace. |
1498 | 615 |
Block * prev(Block *b) const { return _prev_list[b->_pre_order]; } |
616 |
void set_prev(Block *b, Block *p) const { _prev_list[b->_pre_order] = p; } |
|
617 |
||
618 |
// We've discovered a loop in this trace. Reset last to be "b", and first as |
|
619 |
// the block following "b |
|
620 |
void break_loop_after(Block *b) { |
|
621 |
_last = b; |
|
622 |
_first = next(b); |
|
623 |
set_prev(_first, NULL); |
|
624 |
set_next(_last, NULL); |
|
625 |
} |
|
626 |
||
627 |
public: |
|
628 |
||
629 |
Trace(Block *b, Block **next_list, Block **prev_list) : |
|
630 |
_first(b), |
|
631 |
_last(b), |
|
632 |
_next_list(next_list), |
|
633 |
_prev_list(prev_list), |
|
634 |
_id(b->_pre_order) { |
|
635 |
set_next(b, NULL); |
|
636 |
set_prev(b, NULL); |
|
637 |
}; |
|
638 |
||
639 |
// Return the id number |
|
640 |
uint id() const { return _id; } |
|
641 |
void set_id(uint id) { _id = id; } |
|
642 |
||
643 |
// Return the first block in the trace |
|
644 |
Block * first_block() const { return _first; } |
|
645 |
||
646 |
// Return the last block in the trace |
|
647 |
Block * last_block() const { return _last; } |
|
648 |
||
649 |
// Insert a trace in the middle of this one after b |
|
650 |
void insert_after(Block *b, Trace *tr) { |
|
651 |
set_next(tr->last_block(), next(b)); |
|
652 |
if (next(b) != NULL) { |
|
653 |
set_prev(next(b), tr->last_block()); |
|
654 |
} |
|
655 |
||
656 |
set_next(b, tr->first_block()); |
|
657 |
set_prev(tr->first_block(), b); |
|
658 |
||
659 |
if (b == _last) { |
|
660 |
_last = tr->last_block(); |
|
661 |
} |
|
662 |
} |
|
663 |
||
664 |
void insert_before(Block *b, Trace *tr) { |
|
665 |
Block *p = prev(b); |
|
666 |
assert(p != NULL, "use append instead"); |
|
667 |
insert_after(p, tr); |
|
668 |
} |
|
669 |
||
670 |
// Append another trace to this one. |
|
671 |
void append(Trace *tr) { |
|
672 |
insert_after(_last, tr); |
|
673 |
} |
|
674 |
||
675 |
// Append a block at the end of this trace |
|
676 |
void append(Block *b) { |
|
677 |
set_next(_last, b); |
|
678 |
set_prev(b, _last); |
|
679 |
_last = b; |
|
680 |
} |
|
681 |
||
682 |
// Adjust the the blocks in this trace |
|
683 |
void fixup_blocks(PhaseCFG &cfg); |
|
684 |
bool backedge(CFGEdge *e); |
|
685 |
||
686 |
#ifndef PRODUCT |
|
687 |
void dump( ) const; |
|
688 |
#endif |
|
689 |
}; |
|
690 |
||
691 |
//------------------------------PhaseBlockLayout------------------------------- |
|
692 |
// Rearrange blocks into some canonical order, based on edges and their frequencies |
|
693 |
class PhaseBlockLayout : public Phase { |
|
694 |
PhaseCFG &_cfg; // Control flow graph |
|
695 |
||
696 |
GrowableArray<CFGEdge *> *edges; |
|
697 |
Trace **traces; |
|
698 |
Block **next; |
|
699 |
Block **prev; |
|
700 |
UnionFind *uf; |
|
701 |
||
702 |
// Given a block, find its encompassing Trace |
|
703 |
Trace * trace(Block *b) { |
|
704 |
return traces[uf->Find_compress(b->_pre_order)]; |
|
705 |
} |
|
706 |
public: |
|
707 |
PhaseBlockLayout(PhaseCFG &cfg); |
|
708 |
||
709 |
void find_edges(); |
|
710 |
void grow_traces(); |
|
711 |
void merge_traces(bool loose_connections); |
|
712 |
void reorder_traces(int count); |
|
713 |
void union_traces(Trace* from, Trace* to); |
|
714 |
}; |