52946
|
1 |
/*
|
|
2 |
* Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation. Oracle designates this
|
|
8 |
* particular file as subject to the "Classpath" exception as provided
|
|
9 |
* by Oracle in the LICENSE file that accompanied this code.
|
|
10 |
*
|
|
11 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
12 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
13 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
14 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
15 |
* accompanied this code).
|
|
16 |
*
|
|
17 |
* You should have received a copy of the GNU General Public License version
|
|
18 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
19 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
20 |
*
|
|
21 |
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
22 |
* or visit www.oracle.com if you need additional information or have any
|
|
23 |
* questions.
|
|
24 |
*/
|
|
25 |
|
|
26 |
package sun.security.ec;
|
|
27 |
|
|
28 |
import sun.security.ec.point.*;
|
|
29 |
import sun.security.util.math.*;
|
|
30 |
import sun.security.util.math.intpoly.*;
|
|
31 |
|
|
32 |
import java.math.BigInteger;
|
|
33 |
import java.security.ProviderException;
|
|
34 |
import java.security.spec.ECFieldFp;
|
|
35 |
import java.security.spec.ECParameterSpec;
|
|
36 |
import java.security.spec.EllipticCurve;
|
|
37 |
import java.util.Map;
|
|
38 |
import java.util.Optional;
|
|
39 |
|
|
40 |
/*
|
|
41 |
* Elliptic curve point arithmetic for prime-order curves where a=-3.
|
|
42 |
* Formulas are derived from "Complete addition formulas for prime order
|
|
43 |
* elliptic curves" by Renes, Costello, and Batina.
|
|
44 |
*/
|
|
45 |
|
|
46 |
public class ECOperations {
|
|
47 |
|
|
48 |
/*
|
|
49 |
* An exception indicating a problem with an intermediate value produced
|
|
50 |
* by some part of the computation. For example, the signing operation
|
|
51 |
* will throw this exception to indicate that the r or s value is 0, and
|
|
52 |
* that the signing operation should be tried again with a different nonce.
|
|
53 |
*/
|
|
54 |
static class IntermediateValueException extends Exception {
|
|
55 |
private static final long serialVersionUID = 1;
|
|
56 |
}
|
|
57 |
|
|
58 |
static final Map<BigInteger, IntegerFieldModuloP> fields = Map.of(
|
|
59 |
IntegerPolynomialP256.MODULUS, new IntegerPolynomialP256(),
|
|
60 |
IntegerPolynomialP384.MODULUS, new IntegerPolynomialP384(),
|
|
61 |
IntegerPolynomialP521.MODULUS, new IntegerPolynomialP521()
|
|
62 |
);
|
|
63 |
|
|
64 |
static final Map<BigInteger, IntegerFieldModuloP> orderFields = Map.of(
|
|
65 |
P256OrderField.MODULUS, new P256OrderField(),
|
|
66 |
P384OrderField.MODULUS, new P384OrderField(),
|
|
67 |
P521OrderField.MODULUS, new P521OrderField()
|
|
68 |
);
|
|
69 |
|
|
70 |
public static Optional<ECOperations> forParameters(ECParameterSpec params) {
|
|
71 |
|
|
72 |
EllipticCurve curve = params.getCurve();
|
|
73 |
if (!(curve.getField() instanceof ECFieldFp)) {
|
|
74 |
return Optional.empty();
|
|
75 |
}
|
|
76 |
ECFieldFp primeField = (ECFieldFp) curve.getField();
|
|
77 |
|
|
78 |
BigInteger three = BigInteger.valueOf(3);
|
|
79 |
if (!primeField.getP().subtract(curve.getA()).equals(three)) {
|
|
80 |
return Optional.empty();
|
|
81 |
}
|
|
82 |
IntegerFieldModuloP field = fields.get(primeField.getP());
|
|
83 |
if (field == null) {
|
|
84 |
return Optional.empty();
|
|
85 |
}
|
|
86 |
|
|
87 |
IntegerFieldModuloP orderField = orderFields.get(params.getOrder());
|
|
88 |
if (orderField == null) {
|
|
89 |
return Optional.empty();
|
|
90 |
}
|
|
91 |
|
|
92 |
ImmutableIntegerModuloP b = field.getElement(curve.getB());
|
|
93 |
ECOperations ecOps = new ECOperations(b, orderField);
|
|
94 |
return Optional.of(ecOps);
|
|
95 |
}
|
|
96 |
|
|
97 |
final ImmutableIntegerModuloP b;
|
|
98 |
final SmallValue one;
|
|
99 |
final SmallValue two;
|
|
100 |
final SmallValue three;
|
|
101 |
final SmallValue four;
|
|
102 |
final ProjectivePoint.Immutable neutral;
|
|
103 |
private final IntegerFieldModuloP orderField;
|
|
104 |
|
|
105 |
public ECOperations(IntegerModuloP b, IntegerFieldModuloP orderField) {
|
|
106 |
this.b = b.fixed();
|
|
107 |
this.orderField = orderField;
|
|
108 |
|
|
109 |
this.one = b.getField().getSmallValue(1);
|
|
110 |
this.two = b.getField().getSmallValue(2);
|
|
111 |
this.three = b.getField().getSmallValue(3);
|
|
112 |
this.four = b.getField().getSmallValue(4);
|
|
113 |
|
|
114 |
IntegerFieldModuloP field = b.getField();
|
|
115 |
this.neutral = new ProjectivePoint.Immutable(field.get0(),
|
|
116 |
field.get1(), field.get0());
|
|
117 |
}
|
|
118 |
|
|
119 |
public IntegerFieldModuloP getField() {
|
|
120 |
return b.getField();
|
|
121 |
}
|
|
122 |
public IntegerFieldModuloP getOrderField() {
|
|
123 |
return orderField;
|
|
124 |
}
|
|
125 |
|
|
126 |
protected ProjectivePoint.Immutable getNeutral() {
|
|
127 |
return neutral;
|
|
128 |
}
|
|
129 |
|
|
130 |
public boolean isNeutral(Point p) {
|
|
131 |
ProjectivePoint<?> pp = (ProjectivePoint<?>) p;
|
|
132 |
|
|
133 |
IntegerModuloP z = pp.getZ();
|
|
134 |
|
|
135 |
IntegerFieldModuloP field = z.getField();
|
|
136 |
int byteLength = (field.getSize().bitLength() + 7) / 8;
|
|
137 |
byte[] zBytes = z.asByteArray(byteLength);
|
|
138 |
return allZero(zBytes);
|
|
139 |
}
|
|
140 |
|
|
141 |
byte[] seedToScalar(byte[] seedBytes)
|
|
142 |
throws IntermediateValueException {
|
|
143 |
|
|
144 |
// Produce a nonce from the seed using FIPS 186-4,section B.5.1:
|
|
145 |
// Per-Message Secret Number Generation Using Extra Random Bits
|
|
146 |
// or
|
|
147 |
// Produce a scalar from the seed using FIPS 186-4, section B.4.1:
|
|
148 |
// Key Pair Generation Using Extra Random Bits
|
|
149 |
|
|
150 |
// To keep the implementation simple, sample in the range [0,n)
|
|
151 |
// and throw IntermediateValueException in the (unlikely) event
|
|
152 |
// that the result is 0.
|
|
153 |
|
|
154 |
// Get 64 extra bits and reduce in to the nonce
|
|
155 |
int seedBits = orderField.getSize().bitLength() + 64;
|
|
156 |
if (seedBytes.length * 8 < seedBits) {
|
|
157 |
throw new ProviderException("Incorrect seed length: " +
|
|
158 |
seedBytes.length * 8 + " < " + seedBits);
|
|
159 |
}
|
|
160 |
|
|
161 |
// input conversion only works on byte boundaries
|
|
162 |
// clear high-order bits of last byte so they don't influence nonce
|
|
163 |
int lastByteBits = seedBits % 8;
|
|
164 |
if (lastByteBits != 0) {
|
|
165 |
int lastByteIndex = seedBits / 8;
|
|
166 |
byte mask = (byte) (0xFF >>> (8 - lastByteBits));
|
|
167 |
seedBytes[lastByteIndex] &= mask;
|
|
168 |
}
|
|
169 |
|
|
170 |
int seedLength = (seedBits + 7) / 8;
|
|
171 |
IntegerModuloP scalarElem =
|
|
172 |
orderField.getElement(seedBytes, 0, seedLength, (byte) 0);
|
|
173 |
int scalarLength = (orderField.getSize().bitLength() + 7) / 8;
|
|
174 |
byte[] scalarArr = new byte[scalarLength];
|
|
175 |
scalarElem.asByteArray(scalarArr);
|
|
176 |
if (ECOperations.allZero(scalarArr)) {
|
|
177 |
throw new IntermediateValueException();
|
|
178 |
}
|
|
179 |
return scalarArr;
|
|
180 |
}
|
|
181 |
|
|
182 |
/*
|
|
183 |
* Compare all values in the array to 0 without branching on any value
|
|
184 |
*
|
|
185 |
*/
|
|
186 |
public static boolean allZero(byte[] arr) {
|
|
187 |
byte acc = 0;
|
|
188 |
for (int i = 0; i < arr.length; i++) {
|
|
189 |
acc |= arr[i];
|
|
190 |
}
|
|
191 |
return acc == 0;
|
|
192 |
}
|
|
193 |
|
|
194 |
/*
|
|
195 |
* 4-bit branchless array lookup for projective points.
|
|
196 |
*/
|
|
197 |
private void lookup4(ProjectivePoint.Immutable[] arr, int index,
|
|
198 |
ProjectivePoint.Mutable result, IntegerModuloP zero) {
|
|
199 |
|
|
200 |
for (int i = 0; i < 16; i++) {
|
|
201 |
int xor = index ^ i;
|
|
202 |
int bit3 = (xor & 0x8) >>> 3;
|
|
203 |
int bit2 = (xor & 0x4) >>> 2;
|
|
204 |
int bit1 = (xor & 0x2) >>> 1;
|
|
205 |
int bit0 = (xor & 0x1);
|
|
206 |
int inverse = bit0 | bit1 | bit2 | bit3;
|
|
207 |
int set = 1 - inverse;
|
|
208 |
|
|
209 |
ProjectivePoint.Immutable pi = arr[i];
|
|
210 |
result.conditionalSet(pi, set);
|
|
211 |
}
|
|
212 |
}
|
|
213 |
|
|
214 |
private void double4(ProjectivePoint.Mutable p, MutableIntegerModuloP t0,
|
|
215 |
MutableIntegerModuloP t1, MutableIntegerModuloP t2,
|
|
216 |
MutableIntegerModuloP t3, MutableIntegerModuloP t4) {
|
|
217 |
|
|
218 |
for (int i = 0; i < 4; i++) {
|
|
219 |
setDouble(p, t0, t1, t2, t3, t4);
|
|
220 |
}
|
|
221 |
}
|
|
222 |
|
|
223 |
/**
|
|
224 |
* Multiply an affine point by a scalar and return the result as a mutable
|
|
225 |
* point.
|
|
226 |
*
|
|
227 |
* @param affineP the point
|
|
228 |
* @param s the scalar as a little-endian array
|
|
229 |
* @return the product
|
|
230 |
*/
|
|
231 |
public MutablePoint multiply(AffinePoint affineP, byte[] s) {
|
|
232 |
|
|
233 |
// 4-bit windowed multiply with branchless lookup.
|
|
234 |
// The mixed addition is faster, so it is used to construct the array
|
|
235 |
// at the beginning of the operation.
|
|
236 |
|
|
237 |
IntegerFieldModuloP field = affineP.getX().getField();
|
|
238 |
ImmutableIntegerModuloP zero = field.get0();
|
|
239 |
// temporaries
|
|
240 |
MutableIntegerModuloP t0 = zero.mutable();
|
|
241 |
MutableIntegerModuloP t1 = zero.mutable();
|
|
242 |
MutableIntegerModuloP t2 = zero.mutable();
|
|
243 |
MutableIntegerModuloP t3 = zero.mutable();
|
|
244 |
MutableIntegerModuloP t4 = zero.mutable();
|
|
245 |
|
|
246 |
ProjectivePoint.Mutable result = new ProjectivePoint.Mutable(field);
|
|
247 |
result.getY().setValue(field.get1().mutable());
|
|
248 |
|
|
249 |
ProjectivePoint.Immutable[] pointMultiples =
|
|
250 |
new ProjectivePoint.Immutable[16];
|
|
251 |
// 0P is neutral---same as initial result value
|
|
252 |
pointMultiples[0] = result.fixed();
|
|
253 |
|
|
254 |
ProjectivePoint.Mutable ps = new ProjectivePoint.Mutable(field);
|
|
255 |
ps.setValue(affineP);
|
|
256 |
// 1P = P
|
|
257 |
pointMultiples[1] = ps.fixed();
|
|
258 |
|
|
259 |
// the rest are calculated using mixed point addition
|
|
260 |
for (int i = 2; i < 16; i++) {
|
|
261 |
setSum(ps, affineP, t0, t1, t2, t3, t4);
|
|
262 |
pointMultiples[i] = ps.fixed();
|
|
263 |
}
|
|
264 |
|
|
265 |
ProjectivePoint.Mutable lookupResult = ps.mutable();
|
|
266 |
|
|
267 |
for (int i = s.length - 1; i >= 0; i--) {
|
|
268 |
|
|
269 |
double4(result, t0, t1, t2, t3, t4);
|
|
270 |
|
|
271 |
int high = (0xFF & s[i]) >>> 4;
|
|
272 |
lookup4(pointMultiples, high, lookupResult, zero);
|
|
273 |
setSum(result, lookupResult, t0, t1, t2, t3, t4);
|
|
274 |
|
|
275 |
double4(result, t0, t1, t2, t3, t4);
|
|
276 |
|
|
277 |
int low = 0xF & s[i];
|
|
278 |
lookup4(pointMultiples, low, lookupResult, zero);
|
|
279 |
setSum(result, lookupResult, t0, t1, t2, t3, t4);
|
|
280 |
}
|
|
281 |
|
|
282 |
return result;
|
|
283 |
|
|
284 |
}
|
|
285 |
|
|
286 |
/*
|
|
287 |
* Point double
|
|
288 |
*/
|
|
289 |
private void setDouble(ProjectivePoint.Mutable p, MutableIntegerModuloP t0,
|
|
290 |
MutableIntegerModuloP t1, MutableIntegerModuloP t2,
|
|
291 |
MutableIntegerModuloP t3, MutableIntegerModuloP t4) {
|
|
292 |
|
|
293 |
t0.setValue(p.getX()).setSquare();
|
|
294 |
t1.setValue(p.getY()).setSquare();
|
|
295 |
t2.setValue(p.getZ()).setSquare();
|
|
296 |
t3.setValue(p.getX()).setProduct(p.getY());
|
|
297 |
t4.setValue(p.getY()).setProduct(p.getZ());
|
|
298 |
|
|
299 |
t3.setSum(t3);
|
|
300 |
p.getZ().setProduct(p.getX());
|
|
301 |
|
|
302 |
p.getZ().setProduct(two);
|
|
303 |
|
|
304 |
p.getY().setValue(t2).setProduct(b);
|
|
305 |
p.getY().setDifference(p.getZ());
|
|
306 |
|
|
307 |
p.getX().setValue(p.getY()).setProduct(two);
|
|
308 |
p.getY().setSum(p.getX());
|
|
309 |
p.getY().setReduced();
|
|
310 |
p.getX().setValue(t1).setDifference(p.getY());
|
|
311 |
|
|
312 |
p.getY().setSum(t1);
|
|
313 |
p.getY().setProduct(p.getX());
|
|
314 |
p.getX().setProduct(t3);
|
|
315 |
|
|
316 |
t3.setValue(t2).setProduct(two);
|
|
317 |
t2.setSum(t3);
|
|
318 |
p.getZ().setProduct(b);
|
|
319 |
|
|
320 |
t2.setReduced();
|
|
321 |
p.getZ().setDifference(t2);
|
|
322 |
p.getZ().setDifference(t0);
|
|
323 |
t3.setValue(p.getZ()).setProduct(two);
|
|
324 |
p.getZ().setReduced();
|
|
325 |
p.getZ().setSum(t3);
|
|
326 |
t0.setProduct(three);
|
|
327 |
|
|
328 |
t0.setDifference(t2);
|
|
329 |
t0.setProduct(p.getZ());
|
|
330 |
p.getY().setSum(t0);
|
|
331 |
|
|
332 |
t4.setSum(t4);
|
|
333 |
p.getZ().setProduct(t4);
|
|
334 |
|
|
335 |
p.getX().setDifference(p.getZ());
|
|
336 |
p.getZ().setValue(t4).setProduct(t1);
|
|
337 |
|
|
338 |
p.getZ().setProduct(four);
|
|
339 |
|
|
340 |
}
|
|
341 |
|
|
342 |
/*
|
|
343 |
* Mixed point addition. This method constructs new temporaries each time
|
|
344 |
* it is called. For better efficiency, the method that reuses temporaries
|
|
345 |
* should be used if more than one sum will be computed.
|
|
346 |
*/
|
|
347 |
public void setSum(MutablePoint p, AffinePoint p2) {
|
|
348 |
|
|
349 |
IntegerModuloP zero = p.getField().get0();
|
|
350 |
MutableIntegerModuloP t0 = zero.mutable();
|
|
351 |
MutableIntegerModuloP t1 = zero.mutable();
|
|
352 |
MutableIntegerModuloP t2 = zero.mutable();
|
|
353 |
MutableIntegerModuloP t3 = zero.mutable();
|
|
354 |
MutableIntegerModuloP t4 = zero.mutable();
|
|
355 |
setSum((ProjectivePoint.Mutable) p, p2, t0, t1, t2, t3, t4);
|
|
356 |
|
|
357 |
}
|
|
358 |
|
|
359 |
/*
|
|
360 |
* Mixed point addition
|
|
361 |
*/
|
|
362 |
private void setSum(ProjectivePoint.Mutable p, AffinePoint p2,
|
|
363 |
MutableIntegerModuloP t0, MutableIntegerModuloP t1,
|
|
364 |
MutableIntegerModuloP t2, MutableIntegerModuloP t3,
|
|
365 |
MutableIntegerModuloP t4) {
|
|
366 |
|
|
367 |
t0.setValue(p.getX()).setProduct(p2.getX());
|
|
368 |
t1.setValue(p.getY()).setProduct(p2.getY());
|
|
369 |
t3.setValue(p2.getX()).setSum(p2.getY());
|
|
370 |
t4.setValue(p.getX()).setSum(p.getY());
|
|
371 |
p.getX().setReduced();
|
|
372 |
t3.setProduct(t4);
|
|
373 |
t4.setValue(t0).setSum(t1);
|
|
374 |
|
|
375 |
t3.setDifference(t4);
|
|
376 |
t4.setValue(p2.getY()).setProduct(p.getZ());
|
|
377 |
t4.setSum(p.getY());
|
|
378 |
|
|
379 |
p.getY().setValue(p2.getX()).setProduct(p.getZ());
|
|
380 |
p.getY().setSum(p.getX());
|
|
381 |
t2.setValue(p.getZ());
|
|
382 |
p.getZ().setProduct(b);
|
|
383 |
|
|
384 |
p.getX().setValue(p.getY()).setDifference(p.getZ());
|
|
385 |
p.getX().setReduced();
|
|
386 |
p.getZ().setValue(p.getX()).setProduct(two);
|
|
387 |
p.getX().setSum(p.getZ());
|
|
388 |
|
|
389 |
p.getZ().setValue(t1).setDifference(p.getX());
|
|
390 |
p.getX().setSum(t1);
|
|
391 |
p.getY().setProduct(b);
|
|
392 |
|
|
393 |
t1.setValue(t2).setProduct(two);
|
|
394 |
t2.setSum(t1);
|
|
395 |
t2.setReduced();
|
|
396 |
p.getY().setDifference(t2);
|
|
397 |
|
|
398 |
p.getY().setDifference(t0);
|
|
399 |
p.getY().setReduced();
|
|
400 |
t1.setValue(p.getY()).setProduct(two);
|
|
401 |
p.getY().setSum(t1);
|
|
402 |
|
|
403 |
t1.setValue(t0).setProduct(two);
|
|
404 |
t0.setSum(t1);
|
|
405 |
t0.setDifference(t2);
|
|
406 |
|
|
407 |
t1.setValue(t4).setProduct(p.getY());
|
|
408 |
t2.setValue(t0).setProduct(p.getY());
|
|
409 |
p.getY().setValue(p.getX()).setProduct(p.getZ());
|
|
410 |
|
|
411 |
p.getY().setSum(t2);
|
|
412 |
p.getX().setProduct(t3);
|
|
413 |
p.getX().setDifference(t1);
|
|
414 |
|
|
415 |
p.getZ().setProduct(t4);
|
|
416 |
t1.setValue(t3).setProduct(t0);
|
|
417 |
p.getZ().setSum(t1);
|
|
418 |
|
|
419 |
}
|
|
420 |
|
|
421 |
/*
|
|
422 |
* Projective point addition
|
|
423 |
*/
|
|
424 |
private void setSum(ProjectivePoint.Mutable p, ProjectivePoint.Mutable p2,
|
|
425 |
MutableIntegerModuloP t0, MutableIntegerModuloP t1,
|
|
426 |
MutableIntegerModuloP t2, MutableIntegerModuloP t3,
|
|
427 |
MutableIntegerModuloP t4) {
|
|
428 |
|
|
429 |
t0.setValue(p.getX()).setProduct(p2.getX());
|
|
430 |
t1.setValue(p.getY()).setProduct(p2.getY());
|
|
431 |
t2.setValue(p.getZ()).setProduct(p2.getZ());
|
|
432 |
|
|
433 |
t3.setValue(p.getX()).setSum(p.getY());
|
|
434 |
t4.setValue(p2.getX()).setSum(p2.getY());
|
|
435 |
t3.setProduct(t4);
|
|
436 |
|
|
437 |
t4.setValue(t0).setSum(t1);
|
|
438 |
t3.setDifference(t4);
|
|
439 |
t4.setValue(p.getY()).setSum(p.getZ());
|
|
440 |
|
|
441 |
p.getY().setValue(p2.getY()).setSum(p2.getZ());
|
|
442 |
t4.setProduct(p.getY());
|
|
443 |
p.getY().setValue(t1).setSum(t2);
|
|
444 |
|
|
445 |
t4.setDifference(p.getY());
|
|
446 |
p.getX().setSum(p.getZ());
|
|
447 |
p.getY().setValue(p2.getX()).setSum(p2.getZ());
|
|
448 |
|
|
449 |
p.getX().setProduct(p.getY());
|
|
450 |
p.getY().setValue(t0).setSum(t2);
|
|
451 |
p.getY().setAdditiveInverse().setSum(p.getX());
|
|
452 |
p.getY().setReduced();
|
|
453 |
|
|
454 |
p.getZ().setValue(t2).setProduct(b);
|
|
455 |
p.getX().setValue(p.getY()).setDifference(p.getZ());
|
|
456 |
p.getZ().setValue(p.getX()).setProduct(two);
|
|
457 |
|
|
458 |
p.getX().setSum(p.getZ());
|
|
459 |
p.getX().setReduced();
|
|
460 |
p.getZ().setValue(t1).setDifference(p.getX());
|
|
461 |
p.getX().setSum(t1);
|
|
462 |
|
|
463 |
p.getY().setProduct(b);
|
|
464 |
t1.setValue(t2).setSum(t2);
|
|
465 |
t2.setSum(t1);
|
|
466 |
t2.setReduced();
|
|
467 |
|
|
468 |
p.getY().setDifference(t2);
|
|
469 |
p.getY().setDifference(t0);
|
|
470 |
p.getY().setReduced();
|
|
471 |
t1.setValue(p.getY()).setSum(p.getY());
|
|
472 |
|
|
473 |
p.getY().setSum(t1);
|
|
474 |
t1.setValue(t0).setProduct(two);
|
|
475 |
t0.setSum(t1);
|
|
476 |
|
|
477 |
t0.setDifference(t2);
|
|
478 |
t1.setValue(t4).setProduct(p.getY());
|
|
479 |
t2.setValue(t0).setProduct(p.getY());
|
|
480 |
|
|
481 |
p.getY().setValue(p.getX()).setProduct(p.getZ());
|
|
482 |
p.getY().setSum(t2);
|
|
483 |
p.getX().setProduct(t3);
|
|
484 |
|
|
485 |
p.getX().setDifference(t1);
|
|
486 |
p.getZ().setProduct(t4);
|
|
487 |
t1.setValue(t3).setProduct(t0);
|
|
488 |
|
|
489 |
p.getZ().setSum(t1);
|
|
490 |
|
|
491 |
}
|
|
492 |
}
|
|
493 |
|