1
|
1 |
/*
|
|
2 |
* Copyright 2005 Sun Microsystems, Inc. All Rights Reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation.
|
|
8 |
*
|
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
13 |
* accompanied this code).
|
|
14 |
*
|
|
15 |
* You should have received a copy of the GNU General Public License version
|
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
18 |
*
|
|
19 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
20 |
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
21 |
* have any questions.
|
|
22 |
*
|
|
23 |
*/
|
|
24 |
|
|
25 |
#include "incls/_precompiled.incl"
|
|
26 |
#include "incls/_c1_LinearScan_x86.cpp.incl"
|
|
27 |
|
|
28 |
|
|
29 |
//----------------------------------------------------------------------
|
|
30 |
// Allocation of FPU stack slots (Intel x86 only)
|
|
31 |
//----------------------------------------------------------------------
|
|
32 |
|
|
33 |
void LinearScan::allocate_fpu_stack() {
|
|
34 |
// First compute which FPU registers are live at the start of each basic block
|
|
35 |
// (To minimize the amount of work we have to do if we have to merge FPU stacks)
|
|
36 |
if (ComputeExactFPURegisterUsage) {
|
|
37 |
Interval* intervals_in_register, *intervals_in_memory;
|
|
38 |
create_unhandled_lists(&intervals_in_register, &intervals_in_memory, is_in_fpu_register, NULL);
|
|
39 |
|
|
40 |
// ignore memory intervals by overwriting intervals_in_memory
|
|
41 |
// the dummy interval is needed to enforce the walker to walk until the given id:
|
|
42 |
// without it, the walker stops when the unhandled-list is empty -> live information
|
|
43 |
// beyond this point would be incorrect.
|
|
44 |
Interval* dummy_interval = new Interval(any_reg);
|
|
45 |
dummy_interval->add_range(max_jint - 2, max_jint - 1);
|
|
46 |
dummy_interval->set_next(Interval::end());
|
|
47 |
intervals_in_memory = dummy_interval;
|
|
48 |
|
|
49 |
IntervalWalker iw(this, intervals_in_register, intervals_in_memory);
|
|
50 |
|
|
51 |
const int num_blocks = block_count();
|
|
52 |
for (int i = 0; i < num_blocks; i++) {
|
|
53 |
BlockBegin* b = block_at(i);
|
|
54 |
|
|
55 |
// register usage is only needed for merging stacks -> compute only
|
|
56 |
// when more than one predecessor.
|
|
57 |
// the block must not have any spill moves at the beginning (checked by assertions)
|
|
58 |
// spill moves would use intervals that are marked as handled and so the usage bit
|
|
59 |
// would been set incorrectly
|
|
60 |
|
|
61 |
// NOTE: the check for number_of_preds > 1 is necessary. A block with only one
|
|
62 |
// predecessor may have spill moves at the begin of the block.
|
|
63 |
// If an interval ends at the current instruction id, it is not possible
|
|
64 |
// to decide if the register is live or not at the block begin -> the
|
|
65 |
// register information would be incorrect.
|
|
66 |
if (b->number_of_preds() > 1) {
|
|
67 |
int id = b->first_lir_instruction_id();
|
|
68 |
BitMap regs(FrameMap::nof_fpu_regs);
|
|
69 |
regs.clear();
|
|
70 |
|
|
71 |
iw.walk_to(id); // walk after the first instruction (always a label) of the block
|
|
72 |
assert(iw.current_position() == id, "did not walk completely to id");
|
|
73 |
|
|
74 |
// Only consider FPU values in registers
|
|
75 |
Interval* interval = iw.active_first(fixedKind);
|
|
76 |
while (interval != Interval::end()) {
|
|
77 |
int reg = interval->assigned_reg();
|
|
78 |
assert(reg >= pd_first_fpu_reg && reg <= pd_last_fpu_reg, "no fpu register");
|
|
79 |
assert(interval->assigned_regHi() == -1, "must not have hi register (doubles stored in one register)");
|
|
80 |
assert(interval->from() <= id && id < interval->to(), "interval out of range");
|
|
81 |
|
|
82 |
#ifndef PRODUCT
|
|
83 |
if (TraceFPURegisterUsage) {
|
|
84 |
tty->print("fpu reg %d is live because of ", reg - pd_first_fpu_reg); interval->print();
|
|
85 |
}
|
|
86 |
#endif
|
|
87 |
|
|
88 |
regs.set_bit(reg - pd_first_fpu_reg);
|
|
89 |
interval = interval->next();
|
|
90 |
}
|
|
91 |
|
|
92 |
b->set_fpu_register_usage(regs);
|
|
93 |
|
|
94 |
#ifndef PRODUCT
|
|
95 |
if (TraceFPURegisterUsage) {
|
|
96 |
tty->print("FPU regs for block %d, LIR instr %d): ", b->block_id(), id); regs.print_on(tty); tty->print_cr("");
|
|
97 |
}
|
|
98 |
#endif
|
|
99 |
}
|
|
100 |
}
|
|
101 |
}
|
|
102 |
|
|
103 |
FpuStackAllocator alloc(ir()->compilation(), this);
|
|
104 |
_fpu_stack_allocator = &alloc;
|
|
105 |
alloc.allocate();
|
|
106 |
_fpu_stack_allocator = NULL;
|
|
107 |
}
|
|
108 |
|
|
109 |
|
|
110 |
FpuStackAllocator::FpuStackAllocator(Compilation* compilation, LinearScan* allocator)
|
|
111 |
: _compilation(compilation)
|
|
112 |
, _lir(NULL)
|
|
113 |
, _pos(-1)
|
|
114 |
, _allocator(allocator)
|
|
115 |
, _sim(compilation)
|
|
116 |
, _temp_sim(compilation)
|
|
117 |
{}
|
|
118 |
|
|
119 |
void FpuStackAllocator::allocate() {
|
|
120 |
int num_blocks = allocator()->block_count();
|
|
121 |
for (int i = 0; i < num_blocks; i++) {
|
|
122 |
// Set up to process block
|
|
123 |
BlockBegin* block = allocator()->block_at(i);
|
|
124 |
intArray* fpu_stack_state = block->fpu_stack_state();
|
|
125 |
|
|
126 |
#ifndef PRODUCT
|
|
127 |
if (TraceFPUStack) {
|
|
128 |
tty->cr();
|
|
129 |
tty->print_cr("------- Begin of new Block %d -------", block->block_id());
|
|
130 |
}
|
|
131 |
#endif
|
|
132 |
|
|
133 |
assert(fpu_stack_state != NULL ||
|
|
134 |
block->end()->as_Base() != NULL ||
|
|
135 |
block->is_set(BlockBegin::exception_entry_flag),
|
|
136 |
"FPU stack state must be present due to linear-scan order for FPU stack allocation");
|
|
137 |
// note: exception handler entries always start with an empty fpu stack
|
|
138 |
// because stack merging would be too complicated
|
|
139 |
|
|
140 |
if (fpu_stack_state != NULL) {
|
|
141 |
sim()->read_state(fpu_stack_state);
|
|
142 |
} else {
|
|
143 |
sim()->clear();
|
|
144 |
}
|
|
145 |
|
|
146 |
#ifndef PRODUCT
|
|
147 |
if (TraceFPUStack) {
|
|
148 |
tty->print("Reading FPU state for block %d:", block->block_id());
|
|
149 |
sim()->print();
|
|
150 |
tty->cr();
|
|
151 |
}
|
|
152 |
#endif
|
|
153 |
|
|
154 |
allocate_block(block);
|
|
155 |
CHECK_BAILOUT();
|
|
156 |
}
|
|
157 |
}
|
|
158 |
|
|
159 |
void FpuStackAllocator::allocate_block(BlockBegin* block) {
|
|
160 |
bool processed_merge = false;
|
|
161 |
LIR_OpList* insts = block->lir()->instructions_list();
|
|
162 |
set_lir(block->lir());
|
|
163 |
set_pos(0);
|
|
164 |
|
|
165 |
|
|
166 |
// Note: insts->length() may change during loop
|
|
167 |
while (pos() < insts->length()) {
|
|
168 |
LIR_Op* op = insts->at(pos());
|
|
169 |
_debug_information_computed = false;
|
|
170 |
|
|
171 |
#ifndef PRODUCT
|
|
172 |
if (TraceFPUStack) {
|
|
173 |
op->print();
|
|
174 |
}
|
|
175 |
check_invalid_lir_op(op);
|
|
176 |
#endif
|
|
177 |
|
|
178 |
LIR_OpBranch* branch = op->as_OpBranch();
|
|
179 |
LIR_Op1* op1 = op->as_Op1();
|
|
180 |
LIR_Op2* op2 = op->as_Op2();
|
|
181 |
LIR_OpCall* opCall = op->as_OpCall();
|
|
182 |
|
|
183 |
if (branch != NULL && branch->block() != NULL) {
|
|
184 |
if (!processed_merge) {
|
|
185 |
// propagate stack at first branch to a successor
|
|
186 |
processed_merge = true;
|
|
187 |
bool required_merge = merge_fpu_stack_with_successors(block);
|
|
188 |
|
|
189 |
assert(!required_merge || branch->cond() == lir_cond_always, "splitting of critical edges should prevent FPU stack mismatches at cond branches");
|
|
190 |
}
|
|
191 |
|
|
192 |
} else if (op1 != NULL) {
|
|
193 |
handle_op1(op1);
|
|
194 |
} else if (op2 != NULL) {
|
|
195 |
handle_op2(op2);
|
|
196 |
} else if (opCall != NULL) {
|
|
197 |
handle_opCall(opCall);
|
|
198 |
}
|
|
199 |
|
|
200 |
compute_debug_information(op);
|
|
201 |
|
|
202 |
set_pos(1 + pos());
|
|
203 |
}
|
|
204 |
|
|
205 |
// Propagate stack when block does not end with branch
|
|
206 |
if (!processed_merge) {
|
|
207 |
merge_fpu_stack_with_successors(block);
|
|
208 |
}
|
|
209 |
}
|
|
210 |
|
|
211 |
|
|
212 |
void FpuStackAllocator::compute_debug_information(LIR_Op* op) {
|
|
213 |
if (!_debug_information_computed && op->id() != -1 && allocator()->has_info(op->id())) {
|
|
214 |
visitor.visit(op);
|
|
215 |
|
|
216 |
// exception handling
|
|
217 |
if (allocator()->compilation()->has_exception_handlers()) {
|
|
218 |
XHandlers* xhandlers = visitor.all_xhandler();
|
|
219 |
int n = xhandlers->length();
|
|
220 |
for (int k = 0; k < n; k++) {
|
|
221 |
allocate_exception_handler(xhandlers->handler_at(k));
|
|
222 |
}
|
|
223 |
} else {
|
|
224 |
assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
|
|
225 |
}
|
|
226 |
|
|
227 |
// compute debug information
|
|
228 |
int n = visitor.info_count();
|
|
229 |
assert(n > 0, "should not visit operation otherwise");
|
|
230 |
|
|
231 |
for (int j = 0; j < n; j++) {
|
|
232 |
CodeEmitInfo* info = visitor.info_at(j);
|
|
233 |
// Compute debug information
|
|
234 |
allocator()->compute_debug_info(info, op->id());
|
|
235 |
}
|
|
236 |
}
|
|
237 |
_debug_information_computed = true;
|
|
238 |
}
|
|
239 |
|
|
240 |
void FpuStackAllocator::allocate_exception_handler(XHandler* xhandler) {
|
|
241 |
if (!sim()->is_empty()) {
|
|
242 |
LIR_List* old_lir = lir();
|
|
243 |
int old_pos = pos();
|
|
244 |
intArray* old_state = sim()->write_state();
|
|
245 |
|
|
246 |
#ifndef PRODUCT
|
|
247 |
if (TraceFPUStack) {
|
|
248 |
tty->cr();
|
|
249 |
tty->print_cr("------- begin of exception handler -------");
|
|
250 |
}
|
|
251 |
#endif
|
|
252 |
|
|
253 |
if (xhandler->entry_code() == NULL) {
|
|
254 |
// need entry code to clear FPU stack
|
|
255 |
LIR_List* entry_code = new LIR_List(_compilation);
|
|
256 |
entry_code->jump(xhandler->entry_block());
|
|
257 |
xhandler->set_entry_code(entry_code);
|
|
258 |
}
|
|
259 |
|
|
260 |
LIR_OpList* insts = xhandler->entry_code()->instructions_list();
|
|
261 |
set_lir(xhandler->entry_code());
|
|
262 |
set_pos(0);
|
|
263 |
|
|
264 |
// Note: insts->length() may change during loop
|
|
265 |
while (pos() < insts->length()) {
|
|
266 |
LIR_Op* op = insts->at(pos());
|
|
267 |
|
|
268 |
#ifndef PRODUCT
|
|
269 |
if (TraceFPUStack) {
|
|
270 |
op->print();
|
|
271 |
}
|
|
272 |
check_invalid_lir_op(op);
|
|
273 |
#endif
|
|
274 |
|
|
275 |
switch (op->code()) {
|
|
276 |
case lir_move:
|
|
277 |
assert(op->as_Op1() != NULL, "must be LIR_Op1");
|
|
278 |
assert(pos() != insts->length() - 1, "must not be last operation");
|
|
279 |
|
|
280 |
handle_op1((LIR_Op1*)op);
|
|
281 |
break;
|
|
282 |
|
|
283 |
case lir_branch:
|
|
284 |
assert(op->as_OpBranch()->cond() == lir_cond_always, "must be unconditional branch");
|
|
285 |
assert(pos() == insts->length() - 1, "must be last operation");
|
|
286 |
|
|
287 |
// remove all remaining dead registers from FPU stack
|
|
288 |
clear_fpu_stack(LIR_OprFact::illegalOpr);
|
|
289 |
break;
|
|
290 |
|
|
291 |
default:
|
|
292 |
// other operations not allowed in exception entry code
|
|
293 |
ShouldNotReachHere();
|
|
294 |
}
|
|
295 |
|
|
296 |
set_pos(pos() + 1);
|
|
297 |
}
|
|
298 |
|
|
299 |
#ifndef PRODUCT
|
|
300 |
if (TraceFPUStack) {
|
|
301 |
tty->cr();
|
|
302 |
tty->print_cr("------- end of exception handler -------");
|
|
303 |
}
|
|
304 |
#endif
|
|
305 |
|
|
306 |
set_lir(old_lir);
|
|
307 |
set_pos(old_pos);
|
|
308 |
sim()->read_state(old_state);
|
|
309 |
}
|
|
310 |
}
|
|
311 |
|
|
312 |
|
|
313 |
int FpuStackAllocator::fpu_num(LIR_Opr opr) {
|
|
314 |
assert(opr->is_fpu_register() && !opr->is_xmm_register(), "shouldn't call this otherwise");
|
|
315 |
return opr->is_single_fpu() ? opr->fpu_regnr() : opr->fpu_regnrLo();
|
|
316 |
}
|
|
317 |
|
|
318 |
int FpuStackAllocator::tos_offset(LIR_Opr opr) {
|
|
319 |
return sim()->offset_from_tos(fpu_num(opr));
|
|
320 |
}
|
|
321 |
|
|
322 |
|
|
323 |
LIR_Opr FpuStackAllocator::to_fpu_stack(LIR_Opr opr) {
|
|
324 |
assert(opr->is_fpu_register() && !opr->is_xmm_register(), "shouldn't call this otherwise");
|
|
325 |
|
|
326 |
int stack_offset = tos_offset(opr);
|
|
327 |
if (opr->is_single_fpu()) {
|
|
328 |
return LIR_OprFact::single_fpu(stack_offset)->make_fpu_stack_offset();
|
|
329 |
} else {
|
|
330 |
assert(opr->is_double_fpu(), "shouldn't call this otherwise");
|
|
331 |
return LIR_OprFact::double_fpu(stack_offset)->make_fpu_stack_offset();
|
|
332 |
}
|
|
333 |
}
|
|
334 |
|
|
335 |
LIR_Opr FpuStackAllocator::to_fpu_stack_top(LIR_Opr opr, bool dont_check_offset) {
|
|
336 |
assert(opr->is_fpu_register() && !opr->is_xmm_register(), "shouldn't call this otherwise");
|
|
337 |
assert(dont_check_offset || tos_offset(opr) == 0, "operand is not on stack top");
|
|
338 |
|
|
339 |
int stack_offset = 0;
|
|
340 |
if (opr->is_single_fpu()) {
|
|
341 |
return LIR_OprFact::single_fpu(stack_offset)->make_fpu_stack_offset();
|
|
342 |
} else {
|
|
343 |
assert(opr->is_double_fpu(), "shouldn't call this otherwise");
|
|
344 |
return LIR_OprFact::double_fpu(stack_offset)->make_fpu_stack_offset();
|
|
345 |
}
|
|
346 |
}
|
|
347 |
|
|
348 |
|
|
349 |
|
|
350 |
void FpuStackAllocator::insert_op(LIR_Op* op) {
|
|
351 |
lir()->insert_before(pos(), op);
|
|
352 |
set_pos(1 + pos());
|
|
353 |
}
|
|
354 |
|
|
355 |
|
|
356 |
void FpuStackAllocator::insert_exchange(int offset) {
|
|
357 |
if (offset > 0) {
|
|
358 |
LIR_Op1* fxch_op = new LIR_Op1(lir_fxch, LIR_OprFact::intConst(offset), LIR_OprFact::illegalOpr);
|
|
359 |
insert_op(fxch_op);
|
|
360 |
sim()->swap(offset);
|
|
361 |
|
|
362 |
#ifndef PRODUCT
|
|
363 |
if (TraceFPUStack) {
|
|
364 |
tty->print("Exchanged register: %d New state: ", sim()->get_slot(0)); sim()->print(); tty->cr();
|
|
365 |
}
|
|
366 |
#endif
|
|
367 |
|
|
368 |
}
|
|
369 |
}
|
|
370 |
|
|
371 |
void FpuStackAllocator::insert_exchange(LIR_Opr opr) {
|
|
372 |
insert_exchange(tos_offset(opr));
|
|
373 |
}
|
|
374 |
|
|
375 |
|
|
376 |
void FpuStackAllocator::insert_free(int offset) {
|
|
377 |
// move stack slot to the top of stack and then pop it
|
|
378 |
insert_exchange(offset);
|
|
379 |
|
|
380 |
LIR_Op* fpop = new LIR_Op0(lir_fpop_raw);
|
|
381 |
insert_op(fpop);
|
|
382 |
sim()->pop();
|
|
383 |
|
|
384 |
#ifndef PRODUCT
|
|
385 |
if (TraceFPUStack) {
|
|
386 |
tty->print("Inserted pop New state: "); sim()->print(); tty->cr();
|
|
387 |
}
|
|
388 |
#endif
|
|
389 |
}
|
|
390 |
|
|
391 |
|
|
392 |
void FpuStackAllocator::insert_free_if_dead(LIR_Opr opr) {
|
|
393 |
if (sim()->contains(fpu_num(opr))) {
|
|
394 |
int res_slot = tos_offset(opr);
|
|
395 |
insert_free(res_slot);
|
|
396 |
}
|
|
397 |
}
|
|
398 |
|
|
399 |
void FpuStackAllocator::insert_free_if_dead(LIR_Opr opr, LIR_Opr ignore) {
|
|
400 |
if (fpu_num(opr) != fpu_num(ignore) && sim()->contains(fpu_num(opr))) {
|
|
401 |
int res_slot = tos_offset(opr);
|
|
402 |
insert_free(res_slot);
|
|
403 |
}
|
|
404 |
}
|
|
405 |
|
|
406 |
void FpuStackAllocator::insert_copy(LIR_Opr from, LIR_Opr to) {
|
|
407 |
int offset = tos_offset(from);
|
|
408 |
LIR_Op1* fld = new LIR_Op1(lir_fld, LIR_OprFact::intConst(offset), LIR_OprFact::illegalOpr);
|
|
409 |
insert_op(fld);
|
|
410 |
|
|
411 |
sim()->push(fpu_num(to));
|
|
412 |
|
|
413 |
#ifndef PRODUCT
|
|
414 |
if (TraceFPUStack) {
|
|
415 |
tty->print("Inserted copy (%d -> %d) New state: ", fpu_num(from), fpu_num(to)); sim()->print(); tty->cr();
|
|
416 |
}
|
|
417 |
#endif
|
|
418 |
}
|
|
419 |
|
|
420 |
void FpuStackAllocator::do_rename(LIR_Opr from, LIR_Opr to) {
|
|
421 |
sim()->rename(fpu_num(from), fpu_num(to));
|
|
422 |
}
|
|
423 |
|
|
424 |
void FpuStackAllocator::do_push(LIR_Opr opr) {
|
|
425 |
sim()->push(fpu_num(opr));
|
|
426 |
}
|
|
427 |
|
|
428 |
void FpuStackAllocator::pop_if_last_use(LIR_Op* op, LIR_Opr opr) {
|
|
429 |
assert(op->fpu_pop_count() == 0, "fpu_pop_count alredy set");
|
|
430 |
assert(tos_offset(opr) == 0, "can only pop stack top");
|
|
431 |
|
|
432 |
if (opr->is_last_use()) {
|
|
433 |
op->set_fpu_pop_count(1);
|
|
434 |
sim()->pop();
|
|
435 |
}
|
|
436 |
}
|
|
437 |
|
|
438 |
void FpuStackAllocator::pop_always(LIR_Op* op, LIR_Opr opr) {
|
|
439 |
assert(op->fpu_pop_count() == 0, "fpu_pop_count alredy set");
|
|
440 |
assert(tos_offset(opr) == 0, "can only pop stack top");
|
|
441 |
|
|
442 |
op->set_fpu_pop_count(1);
|
|
443 |
sim()->pop();
|
|
444 |
}
|
|
445 |
|
|
446 |
void FpuStackAllocator::clear_fpu_stack(LIR_Opr preserve) {
|
|
447 |
int result_stack_size = (preserve->is_fpu_register() && !preserve->is_xmm_register() ? 1 : 0);
|
|
448 |
while (sim()->stack_size() > result_stack_size) {
|
|
449 |
assert(!sim()->slot_is_empty(0), "not allowed");
|
|
450 |
|
|
451 |
if (result_stack_size == 0 || sim()->get_slot(0) != fpu_num(preserve)) {
|
|
452 |
insert_free(0);
|
|
453 |
} else {
|
|
454 |
// move "preserve" to bottom of stack so that all other stack slots can be popped
|
|
455 |
insert_exchange(sim()->stack_size() - 1);
|
|
456 |
}
|
|
457 |
}
|
|
458 |
}
|
|
459 |
|
|
460 |
|
|
461 |
void FpuStackAllocator::handle_op1(LIR_Op1* op1) {
|
|
462 |
LIR_Opr in = op1->in_opr();
|
|
463 |
LIR_Opr res = op1->result_opr();
|
|
464 |
|
|
465 |
LIR_Opr new_in = in; // new operands relative to the actual fpu stack top
|
|
466 |
LIR_Opr new_res = res;
|
|
467 |
|
|
468 |
// Note: this switch is processed for all LIR_Op1, regardless if they have FPU-arguments,
|
|
469 |
// so checks for is_float_kind() are necessary inside the cases
|
|
470 |
switch (op1->code()) {
|
|
471 |
|
|
472 |
case lir_return: {
|
|
473 |
// FPU-Stack must only contain the (optional) fpu return value.
|
|
474 |
// All remaining dead values are popped from the stack
|
|
475 |
// If the input operand is a fpu-register, it is exchanged to the bottom of the stack
|
|
476 |
|
|
477 |
clear_fpu_stack(in);
|
|
478 |
if (in->is_fpu_register() && !in->is_xmm_register()) {
|
|
479 |
new_in = to_fpu_stack_top(in);
|
|
480 |
}
|
|
481 |
|
|
482 |
break;
|
|
483 |
}
|
|
484 |
|
|
485 |
case lir_move: {
|
|
486 |
if (in->is_fpu_register() && !in->is_xmm_register()) {
|
|
487 |
if (res->is_xmm_register()) {
|
|
488 |
// move from fpu register to xmm register (necessary for operations that
|
|
489 |
// are not available in the SSE instruction set)
|
|
490 |
insert_exchange(in);
|
|
491 |
new_in = to_fpu_stack_top(in);
|
|
492 |
pop_always(op1, in);
|
|
493 |
|
|
494 |
} else if (res->is_fpu_register() && !res->is_xmm_register()) {
|
|
495 |
// move from fpu-register to fpu-register:
|
|
496 |
// * input and result register equal:
|
|
497 |
// nothing to do
|
|
498 |
// * input register is last use:
|
|
499 |
// rename the input register to result register -> input register
|
|
500 |
// not present on fpu-stack afterwards
|
|
501 |
// * input register not last use:
|
|
502 |
// duplicate input register to result register to preserve input
|
|
503 |
//
|
|
504 |
// Note: The LIR-Assembler does not produce any code for fpu register moves,
|
|
505 |
// so input and result stack index must be equal
|
|
506 |
|
|
507 |
if (fpu_num(in) == fpu_num(res)) {
|
|
508 |
// nothing to do
|
|
509 |
} else if (in->is_last_use()) {
|
|
510 |
insert_free_if_dead(res);//, in);
|
|
511 |
do_rename(in, res);
|
|
512 |
} else {
|
|
513 |
insert_free_if_dead(res);
|
|
514 |
insert_copy(in, res);
|
|
515 |
}
|
|
516 |
new_in = to_fpu_stack(res);
|
|
517 |
new_res = new_in;
|
|
518 |
|
|
519 |
} else {
|
|
520 |
// move from fpu-register to memory
|
|
521 |
// input operand must be on top of stack
|
|
522 |
|
|
523 |
insert_exchange(in);
|
|
524 |
|
|
525 |
// create debug information here because afterwards the register may have been popped
|
|
526 |
compute_debug_information(op1);
|
|
527 |
|
|
528 |
new_in = to_fpu_stack_top(in);
|
|
529 |
pop_if_last_use(op1, in);
|
|
530 |
}
|
|
531 |
|
|
532 |
} else if (res->is_fpu_register() && !res->is_xmm_register()) {
|
|
533 |
// move from memory/constant to fpu register
|
|
534 |
// result is pushed on the stack
|
|
535 |
|
|
536 |
insert_free_if_dead(res);
|
|
537 |
|
|
538 |
// create debug information before register is pushed
|
|
539 |
compute_debug_information(op1);
|
|
540 |
|
|
541 |
do_push(res);
|
|
542 |
new_res = to_fpu_stack_top(res);
|
|
543 |
}
|
|
544 |
break;
|
|
545 |
}
|
|
546 |
|
|
547 |
case lir_neg: {
|
|
548 |
if (in->is_fpu_register() && !in->is_xmm_register()) {
|
|
549 |
assert(res->is_fpu_register() && !res->is_xmm_register(), "must be");
|
|
550 |
assert(in->is_last_use(), "old value gets destroyed");
|
|
551 |
|
|
552 |
insert_free_if_dead(res, in);
|
|
553 |
insert_exchange(in);
|
|
554 |
new_in = to_fpu_stack_top(in);
|
|
555 |
|
|
556 |
do_rename(in, res);
|
|
557 |
new_res = to_fpu_stack_top(res);
|
|
558 |
}
|
|
559 |
break;
|
|
560 |
}
|
|
561 |
|
|
562 |
case lir_convert: {
|
|
563 |
Bytecodes::Code bc = op1->as_OpConvert()->bytecode();
|
|
564 |
switch (bc) {
|
|
565 |
case Bytecodes::_d2f:
|
|
566 |
case Bytecodes::_f2d:
|
|
567 |
assert(res->is_fpu_register(), "must be");
|
|
568 |
assert(in->is_fpu_register(), "must be");
|
|
569 |
|
|
570 |
if (!in->is_xmm_register() && !res->is_xmm_register()) {
|
|
571 |
// this is quite the same as a move from fpu-register to fpu-register
|
|
572 |
// Note: input and result operands must have different types
|
|
573 |
if (fpu_num(in) == fpu_num(res)) {
|
|
574 |
// nothing to do
|
|
575 |
new_in = to_fpu_stack(in);
|
|
576 |
} else if (in->is_last_use()) {
|
|
577 |
insert_free_if_dead(res);//, in);
|
|
578 |
new_in = to_fpu_stack(in);
|
|
579 |
do_rename(in, res);
|
|
580 |
} else {
|
|
581 |
insert_free_if_dead(res);
|
|
582 |
insert_copy(in, res);
|
|
583 |
new_in = to_fpu_stack_top(in, true);
|
|
584 |
}
|
|
585 |
new_res = to_fpu_stack(res);
|
|
586 |
}
|
|
587 |
|
|
588 |
break;
|
|
589 |
|
|
590 |
case Bytecodes::_i2f:
|
|
591 |
case Bytecodes::_l2f:
|
|
592 |
case Bytecodes::_i2d:
|
|
593 |
case Bytecodes::_l2d:
|
|
594 |
assert(res->is_fpu_register(), "must be");
|
|
595 |
if (!res->is_xmm_register()) {
|
|
596 |
insert_free_if_dead(res);
|
|
597 |
do_push(res);
|
|
598 |
new_res = to_fpu_stack_top(res);
|
|
599 |
}
|
|
600 |
break;
|
|
601 |
|
|
602 |
case Bytecodes::_f2i:
|
|
603 |
case Bytecodes::_d2i:
|
|
604 |
assert(in->is_fpu_register(), "must be");
|
|
605 |
if (!in->is_xmm_register()) {
|
|
606 |
insert_exchange(in);
|
|
607 |
new_in = to_fpu_stack_top(in);
|
|
608 |
|
|
609 |
// TODO: update registes of stub
|
|
610 |
}
|
|
611 |
break;
|
|
612 |
|
|
613 |
case Bytecodes::_f2l:
|
|
614 |
case Bytecodes::_d2l:
|
|
615 |
assert(in->is_fpu_register(), "must be");
|
|
616 |
if (!in->is_xmm_register()) {
|
|
617 |
insert_exchange(in);
|
|
618 |
new_in = to_fpu_stack_top(in);
|
|
619 |
pop_always(op1, in);
|
|
620 |
}
|
|
621 |
break;
|
|
622 |
|
|
623 |
case Bytecodes::_i2l:
|
|
624 |
case Bytecodes::_l2i:
|
|
625 |
case Bytecodes::_i2b:
|
|
626 |
case Bytecodes::_i2c:
|
|
627 |
case Bytecodes::_i2s:
|
|
628 |
// no fpu operands
|
|
629 |
break;
|
|
630 |
|
|
631 |
default:
|
|
632 |
ShouldNotReachHere();
|
|
633 |
}
|
|
634 |
break;
|
|
635 |
}
|
|
636 |
|
|
637 |
case lir_roundfp: {
|
|
638 |
assert(in->is_fpu_register() && !in->is_xmm_register(), "input must be in register");
|
|
639 |
assert(res->is_stack(), "result must be on stack");
|
|
640 |
|
|
641 |
insert_exchange(in);
|
|
642 |
new_in = to_fpu_stack_top(in);
|
|
643 |
pop_if_last_use(op1, in);
|
|
644 |
break;
|
|
645 |
}
|
|
646 |
|
|
647 |
default: {
|
|
648 |
assert(!in->is_float_kind() && !res->is_float_kind(), "missed a fpu-operation");
|
|
649 |
}
|
|
650 |
}
|
|
651 |
|
|
652 |
op1->set_in_opr(new_in);
|
|
653 |
op1->set_result_opr(new_res);
|
|
654 |
}
|
|
655 |
|
|
656 |
void FpuStackAllocator::handle_op2(LIR_Op2* op2) {
|
|
657 |
LIR_Opr left = op2->in_opr1();
|
|
658 |
if (!left->is_float_kind()) {
|
|
659 |
return;
|
|
660 |
}
|
|
661 |
if (left->is_xmm_register()) {
|
|
662 |
return;
|
|
663 |
}
|
|
664 |
|
|
665 |
LIR_Opr right = op2->in_opr2();
|
|
666 |
LIR_Opr res = op2->result_opr();
|
|
667 |
LIR_Opr new_left = left; // new operands relative to the actual fpu stack top
|
|
668 |
LIR_Opr new_right = right;
|
|
669 |
LIR_Opr new_res = res;
|
|
670 |
|
|
671 |
assert(!left->is_xmm_register() && !right->is_xmm_register() && !res->is_xmm_register(), "not for xmm registers");
|
|
672 |
|
|
673 |
switch (op2->code()) {
|
|
674 |
case lir_cmp:
|
|
675 |
case lir_cmp_fd2i:
|
|
676 |
case lir_ucmp_fd2i: {
|
|
677 |
assert(left->is_fpu_register(), "invalid LIR");
|
|
678 |
assert(right->is_fpu_register(), "invalid LIR");
|
|
679 |
|
|
680 |
// the left-hand side must be on top of stack.
|
|
681 |
// the right-hand side is never popped, even if is_last_use is set
|
|
682 |
insert_exchange(left);
|
|
683 |
new_left = to_fpu_stack_top(left);
|
|
684 |
new_right = to_fpu_stack(right);
|
|
685 |
pop_if_last_use(op2, left);
|
|
686 |
break;
|
|
687 |
}
|
|
688 |
|
|
689 |
case lir_mul_strictfp:
|
|
690 |
case lir_div_strictfp: {
|
|
691 |
assert(op2->tmp_opr()->is_fpu_register(), "strict operations need temporary fpu stack slot");
|
|
692 |
insert_free_if_dead(op2->tmp_opr());
|
|
693 |
assert(sim()->stack_size() <= 7, "at least one stack slot must be free");
|
|
694 |
// fall-through: continue with the normal handling of lir_mul and lir_div
|
|
695 |
}
|
|
696 |
case lir_add:
|
|
697 |
case lir_sub:
|
|
698 |
case lir_mul:
|
|
699 |
case lir_div: {
|
|
700 |
assert(left->is_fpu_register(), "must be");
|
|
701 |
assert(res->is_fpu_register(), "must be");
|
|
702 |
assert(left->is_equal(res), "must be");
|
|
703 |
|
|
704 |
// either the left-hand or the right-hand side must be on top of stack
|
|
705 |
// (if right is not a register, left must be on top)
|
|
706 |
if (!right->is_fpu_register()) {
|
|
707 |
insert_exchange(left);
|
|
708 |
new_left = to_fpu_stack_top(left);
|
|
709 |
} else {
|
|
710 |
// no exchange necessary if right is alredy on top of stack
|
|
711 |
if (tos_offset(right) == 0) {
|
|
712 |
new_left = to_fpu_stack(left);
|
|
713 |
new_right = to_fpu_stack_top(right);
|
|
714 |
} else {
|
|
715 |
insert_exchange(left);
|
|
716 |
new_left = to_fpu_stack_top(left);
|
|
717 |
new_right = to_fpu_stack(right);
|
|
718 |
}
|
|
719 |
|
|
720 |
if (right->is_last_use()) {
|
|
721 |
op2->set_fpu_pop_count(1);
|
|
722 |
|
|
723 |
if (tos_offset(right) == 0) {
|
|
724 |
sim()->pop();
|
|
725 |
} else {
|
|
726 |
// if left is on top of stack, the result is placed in the stack
|
|
727 |
// slot of right, so a renaming from right to res is necessary
|
|
728 |
assert(tos_offset(left) == 0, "must be");
|
|
729 |
sim()->pop();
|
|
730 |
do_rename(right, res);
|
|
731 |
}
|
|
732 |
}
|
|
733 |
}
|
|
734 |
new_res = to_fpu_stack(res);
|
|
735 |
|
|
736 |
break;
|
|
737 |
}
|
|
738 |
|
|
739 |
case lir_rem: {
|
|
740 |
assert(left->is_fpu_register(), "must be");
|
|
741 |
assert(right->is_fpu_register(), "must be");
|
|
742 |
assert(res->is_fpu_register(), "must be");
|
|
743 |
assert(left->is_equal(res), "must be");
|
|
744 |
|
|
745 |
// Must bring both operands to top of stack with following operand ordering:
|
|
746 |
// * fpu stack before rem: ... right left
|
|
747 |
// * fpu stack after rem: ... left
|
|
748 |
if (tos_offset(right) != 1) {
|
|
749 |
insert_exchange(right);
|
|
750 |
insert_exchange(1);
|
|
751 |
}
|
|
752 |
insert_exchange(left);
|
|
753 |
assert(tos_offset(right) == 1, "check");
|
|
754 |
assert(tos_offset(left) == 0, "check");
|
|
755 |
|
|
756 |
new_left = to_fpu_stack_top(left);
|
|
757 |
new_right = to_fpu_stack(right);
|
|
758 |
|
|
759 |
op2->set_fpu_pop_count(1);
|
|
760 |
sim()->pop();
|
|
761 |
do_rename(right, res);
|
|
762 |
|
|
763 |
new_res = to_fpu_stack_top(res);
|
|
764 |
break;
|
|
765 |
}
|
|
766 |
|
|
767 |
case lir_log:
|
|
768 |
case lir_log10:
|
|
769 |
case lir_abs:
|
|
770 |
case lir_sqrt: {
|
|
771 |
// Right argument appears to be unused
|
|
772 |
assert(right->is_illegal(), "must be");
|
|
773 |
assert(left->is_fpu_register(), "must be");
|
|
774 |
assert(res->is_fpu_register(), "must be");
|
|
775 |
assert(left->is_last_use(), "old value gets destroyed");
|
|
776 |
|
|
777 |
insert_free_if_dead(res, left);
|
|
778 |
insert_exchange(left);
|
|
779 |
do_rename(left, res);
|
|
780 |
|
|
781 |
new_left = to_fpu_stack_top(res);
|
|
782 |
new_res = new_left;
|
|
783 |
|
|
784 |
op2->set_fpu_stack_size(sim()->stack_size());
|
|
785 |
break;
|
|
786 |
}
|
|
787 |
|
|
788 |
|
|
789 |
case lir_tan:
|
|
790 |
case lir_sin:
|
|
791 |
case lir_cos: {
|
|
792 |
// sin and cos need two temporary fpu stack slots, so there are two temporary
|
|
793 |
// registers (stored in right and temp of the operation).
|
|
794 |
// the stack allocator must guarantee that the stack slots are really free,
|
|
795 |
// otherwise there might be a stack overflow.
|
|
796 |
assert(left->is_fpu_register(), "must be");
|
|
797 |
assert(res->is_fpu_register(), "must be");
|
|
798 |
// assert(left->is_last_use(), "old value gets destroyed");
|
|
799 |
assert(right->is_fpu_register(), "right is used as the first temporary register");
|
|
800 |
assert(op2->tmp_opr()->is_fpu_register(), "temp is used as the second temporary register");
|
|
801 |
assert(fpu_num(left) != fpu_num(right) && fpu_num(right) != fpu_num(op2->tmp_opr()) && fpu_num(op2->tmp_opr()) != fpu_num(res), "need distinct temp registers");
|
|
802 |
|
|
803 |
insert_free_if_dead(right);
|
|
804 |
insert_free_if_dead(op2->tmp_opr());
|
|
805 |
|
|
806 |
insert_free_if_dead(res, left);
|
|
807 |
insert_exchange(left);
|
|
808 |
do_rename(left, res);
|
|
809 |
|
|
810 |
new_left = to_fpu_stack_top(res);
|
|
811 |
new_res = new_left;
|
|
812 |
|
|
813 |
op2->set_fpu_stack_size(sim()->stack_size());
|
|
814 |
assert(sim()->stack_size() <= 6, "at least two stack slots must be free");
|
|
815 |
break;
|
|
816 |
}
|
|
817 |
|
|
818 |
default: {
|
|
819 |
assert(false, "missed a fpu-operation");
|
|
820 |
}
|
|
821 |
}
|
|
822 |
|
|
823 |
op2->set_in_opr1(new_left);
|
|
824 |
op2->set_in_opr2(new_right);
|
|
825 |
op2->set_result_opr(new_res);
|
|
826 |
}
|
|
827 |
|
|
828 |
void FpuStackAllocator::handle_opCall(LIR_OpCall* opCall) {
|
|
829 |
LIR_Opr res = opCall->result_opr();
|
|
830 |
|
|
831 |
// clear fpu-stack before call
|
|
832 |
// it may contain dead values that could not have been remved by previous operations
|
|
833 |
clear_fpu_stack(LIR_OprFact::illegalOpr);
|
|
834 |
assert(sim()->is_empty(), "fpu stack must be empty now");
|
|
835 |
|
|
836 |
// compute debug information before (possible) fpu result is pushed
|
|
837 |
compute_debug_information(opCall);
|
|
838 |
|
|
839 |
if (res->is_fpu_register() && !res->is_xmm_register()) {
|
|
840 |
do_push(res);
|
|
841 |
opCall->set_result_opr(to_fpu_stack_top(res));
|
|
842 |
}
|
|
843 |
}
|
|
844 |
|
|
845 |
#ifndef PRODUCT
|
|
846 |
void FpuStackAllocator::check_invalid_lir_op(LIR_Op* op) {
|
|
847 |
switch (op->code()) {
|
|
848 |
case lir_24bit_FPU:
|
|
849 |
case lir_reset_FPU:
|
|
850 |
case lir_ffree:
|
|
851 |
assert(false, "operations not allowed in lir. If one of these operations is needed, check if they have fpu operands");
|
|
852 |
break;
|
|
853 |
|
|
854 |
case lir_fpop_raw:
|
|
855 |
case lir_fxch:
|
|
856 |
case lir_fld:
|
|
857 |
assert(false, "operations only inserted by FpuStackAllocator");
|
|
858 |
break;
|
|
859 |
}
|
|
860 |
}
|
|
861 |
#endif
|
|
862 |
|
|
863 |
|
|
864 |
void FpuStackAllocator::merge_insert_add(LIR_List* instrs, FpuStackSim* cur_sim, int reg) {
|
|
865 |
LIR_Op1* move = new LIR_Op1(lir_move, LIR_OprFact::doubleConst(0), LIR_OprFact::double_fpu(reg)->make_fpu_stack_offset());
|
|
866 |
|
|
867 |
instrs->instructions_list()->push(move);
|
|
868 |
|
|
869 |
cur_sim->push(reg);
|
|
870 |
move->set_result_opr(to_fpu_stack(move->result_opr()));
|
|
871 |
|
|
872 |
#ifndef PRODUCT
|
|
873 |
if (TraceFPUStack) {
|
|
874 |
tty->print("Added new register: %d New state: ", reg); cur_sim->print(); tty->cr();
|
|
875 |
}
|
|
876 |
#endif
|
|
877 |
}
|
|
878 |
|
|
879 |
void FpuStackAllocator::merge_insert_xchg(LIR_List* instrs, FpuStackSim* cur_sim, int slot) {
|
|
880 |
assert(slot > 0, "no exchange necessary");
|
|
881 |
|
|
882 |
LIR_Op1* fxch = new LIR_Op1(lir_fxch, LIR_OprFact::intConst(slot));
|
|
883 |
instrs->instructions_list()->push(fxch);
|
|
884 |
cur_sim->swap(slot);
|
|
885 |
|
|
886 |
#ifndef PRODUCT
|
|
887 |
if (TraceFPUStack) {
|
|
888 |
tty->print("Exchanged register: %d New state: ", cur_sim->get_slot(slot)); cur_sim->print(); tty->cr();
|
|
889 |
}
|
|
890 |
#endif
|
|
891 |
}
|
|
892 |
|
|
893 |
void FpuStackAllocator::merge_insert_pop(LIR_List* instrs, FpuStackSim* cur_sim) {
|
|
894 |
int reg = cur_sim->get_slot(0);
|
|
895 |
|
|
896 |
LIR_Op* fpop = new LIR_Op0(lir_fpop_raw);
|
|
897 |
instrs->instructions_list()->push(fpop);
|
|
898 |
cur_sim->pop(reg);
|
|
899 |
|
|
900 |
#ifndef PRODUCT
|
|
901 |
if (TraceFPUStack) {
|
|
902 |
tty->print("Removed register: %d New state: ", reg); cur_sim->print(); tty->cr();
|
|
903 |
}
|
|
904 |
#endif
|
|
905 |
}
|
|
906 |
|
|
907 |
bool FpuStackAllocator::merge_rename(FpuStackSim* cur_sim, FpuStackSim* sux_sim, int start_slot, int change_slot) {
|
|
908 |
int reg = cur_sim->get_slot(change_slot);
|
|
909 |
|
|
910 |
for (int slot = start_slot; slot >= 0; slot--) {
|
|
911 |
int new_reg = sux_sim->get_slot(slot);
|
|
912 |
|
|
913 |
if (!cur_sim->contains(new_reg)) {
|
|
914 |
cur_sim->set_slot(change_slot, new_reg);
|
|
915 |
|
|
916 |
#ifndef PRODUCT
|
|
917 |
if (TraceFPUStack) {
|
|
918 |
tty->print("Renamed register %d to %d New state: ", reg, new_reg); cur_sim->print(); tty->cr();
|
|
919 |
}
|
|
920 |
#endif
|
|
921 |
|
|
922 |
return true;
|
|
923 |
}
|
|
924 |
}
|
|
925 |
return false;
|
|
926 |
}
|
|
927 |
|
|
928 |
|
|
929 |
void FpuStackAllocator::merge_fpu_stack(LIR_List* instrs, FpuStackSim* cur_sim, FpuStackSim* sux_sim) {
|
|
930 |
#ifndef PRODUCT
|
|
931 |
if (TraceFPUStack) {
|
|
932 |
tty->cr();
|
|
933 |
tty->print("before merging: pred: "); cur_sim->print(); tty->cr();
|
|
934 |
tty->print(" sux: "); sux_sim->print(); tty->cr();
|
|
935 |
}
|
|
936 |
|
|
937 |
int slot;
|
|
938 |
for (slot = 0; slot < cur_sim->stack_size(); slot++) {
|
|
939 |
assert(!cur_sim->slot_is_empty(slot), "not handled by algorithm");
|
|
940 |
}
|
|
941 |
for (slot = 0; slot < sux_sim->stack_size(); slot++) {
|
|
942 |
assert(!sux_sim->slot_is_empty(slot), "not handled by algorithm");
|
|
943 |
}
|
|
944 |
#endif
|
|
945 |
|
|
946 |
// size difference between cur and sux that must be resolved by adding or removing values form the stack
|
|
947 |
int size_diff = cur_sim->stack_size() - sux_sim->stack_size();
|
|
948 |
|
|
949 |
if (!ComputeExactFPURegisterUsage) {
|
|
950 |
// add slots that are currently free, but used in successor
|
|
951 |
// When the exact FPU register usage is computed, the stack does
|
|
952 |
// not contain dead values at merging -> no values must be added
|
|
953 |
|
|
954 |
int sux_slot = sux_sim->stack_size() - 1;
|
|
955 |
while (size_diff < 0) {
|
|
956 |
assert(sux_slot >= 0, "slot out of bounds -> error in algorithm");
|
|
957 |
|
|
958 |
int reg = sux_sim->get_slot(sux_slot);
|
|
959 |
if (!cur_sim->contains(reg)) {
|
|
960 |
merge_insert_add(instrs, cur_sim, reg);
|
|
961 |
size_diff++;
|
|
962 |
|
|
963 |
if (sux_slot + size_diff != 0) {
|
|
964 |
merge_insert_xchg(instrs, cur_sim, sux_slot + size_diff);
|
|
965 |
}
|
|
966 |
}
|
|
967 |
sux_slot--;
|
|
968 |
}
|
|
969 |
}
|
|
970 |
|
|
971 |
assert(cur_sim->stack_size() >= sux_sim->stack_size(), "stack size must be equal or greater now");
|
|
972 |
assert(size_diff == cur_sim->stack_size() - sux_sim->stack_size(), "must be");
|
|
973 |
|
|
974 |
// stack merge algorithm:
|
|
975 |
// 1) as long as the current stack top is not in the right location (that meens
|
|
976 |
// it should not be on the stack top), exchange it into the right location
|
|
977 |
// 2) if the stack top is right, but the remaining stack is not ordered correctly,
|
|
978 |
// the stack top is exchanged away to get another value on top ->
|
|
979 |
// now step 1) can be continued
|
|
980 |
// the stack can also contain unused items -> these items are removed from stack
|
|
981 |
|
|
982 |
int finished_slot = sux_sim->stack_size() - 1;
|
|
983 |
while (finished_slot >= 0 || size_diff > 0) {
|
|
984 |
while (size_diff > 0 || (cur_sim->stack_size() > 0 && cur_sim->get_slot(0) != sux_sim->get_slot(0))) {
|
|
985 |
int reg = cur_sim->get_slot(0);
|
|
986 |
if (sux_sim->contains(reg)) {
|
|
987 |
int sux_slot = sux_sim->offset_from_tos(reg);
|
|
988 |
merge_insert_xchg(instrs, cur_sim, sux_slot + size_diff);
|
|
989 |
|
|
990 |
} else if (!merge_rename(cur_sim, sux_sim, finished_slot, 0)) {
|
|
991 |
assert(size_diff > 0, "must be");
|
|
992 |
|
|
993 |
merge_insert_pop(instrs, cur_sim);
|
|
994 |
size_diff--;
|
|
995 |
}
|
|
996 |
assert(cur_sim->stack_size() == 0 || cur_sim->get_slot(0) != reg, "register must have been changed");
|
|
997 |
}
|
|
998 |
|
|
999 |
while (finished_slot >= 0 && cur_sim->get_slot(finished_slot) == sux_sim->get_slot(finished_slot)) {
|
|
1000 |
finished_slot--;
|
|
1001 |
}
|
|
1002 |
|
|
1003 |
if (finished_slot >= 0) {
|
|
1004 |
int reg = cur_sim->get_slot(finished_slot);
|
|
1005 |
|
|
1006 |
if (sux_sim->contains(reg) || !merge_rename(cur_sim, sux_sim, finished_slot, finished_slot)) {
|
|
1007 |
assert(sux_sim->contains(reg) || size_diff > 0, "must be");
|
|
1008 |
merge_insert_xchg(instrs, cur_sim, finished_slot);
|
|
1009 |
}
|
|
1010 |
assert(cur_sim->get_slot(finished_slot) != reg, "register must have been changed");
|
|
1011 |
}
|
|
1012 |
}
|
|
1013 |
|
|
1014 |
#ifndef PRODUCT
|
|
1015 |
if (TraceFPUStack) {
|
|
1016 |
tty->print("after merging: pred: "); cur_sim->print(); tty->cr();
|
|
1017 |
tty->print(" sux: "); sux_sim->print(); tty->cr();
|
|
1018 |
tty->cr();
|
|
1019 |
}
|
|
1020 |
#endif
|
|
1021 |
assert(cur_sim->stack_size() == sux_sim->stack_size(), "stack size must be equal now");
|
|
1022 |
}
|
|
1023 |
|
|
1024 |
|
|
1025 |
void FpuStackAllocator::merge_cleanup_fpu_stack(LIR_List* instrs, FpuStackSim* cur_sim, BitMap& live_fpu_regs) {
|
|
1026 |
#ifndef PRODUCT
|
|
1027 |
if (TraceFPUStack) {
|
|
1028 |
tty->cr();
|
|
1029 |
tty->print("before cleanup: state: "); cur_sim->print(); tty->cr();
|
|
1030 |
tty->print(" live: "); live_fpu_regs.print_on(tty); tty->cr();
|
|
1031 |
}
|
|
1032 |
#endif
|
|
1033 |
|
|
1034 |
int slot = 0;
|
|
1035 |
while (slot < cur_sim->stack_size()) {
|
|
1036 |
int reg = cur_sim->get_slot(slot);
|
|
1037 |
if (!live_fpu_regs.at(reg)) {
|
|
1038 |
if (slot != 0) {
|
|
1039 |
merge_insert_xchg(instrs, cur_sim, slot);
|
|
1040 |
}
|
|
1041 |
merge_insert_pop(instrs, cur_sim);
|
|
1042 |
} else {
|
|
1043 |
slot++;
|
|
1044 |
}
|
|
1045 |
}
|
|
1046 |
|
|
1047 |
#ifndef PRODUCT
|
|
1048 |
if (TraceFPUStack) {
|
|
1049 |
tty->print("after cleanup: state: "); cur_sim->print(); tty->cr();
|
|
1050 |
tty->print(" live: "); live_fpu_regs.print_on(tty); tty->cr();
|
|
1051 |
tty->cr();
|
|
1052 |
}
|
|
1053 |
|
|
1054 |
// check if fpu stack only contains live registers
|
|
1055 |
for (unsigned int i = 0; i < live_fpu_regs.size(); i++) {
|
|
1056 |
if (live_fpu_regs.at(i) != cur_sim->contains(i)) {
|
|
1057 |
tty->print_cr("mismatch between required and actual stack content");
|
|
1058 |
break;
|
|
1059 |
}
|
|
1060 |
}
|
|
1061 |
#endif
|
|
1062 |
}
|
|
1063 |
|
|
1064 |
|
|
1065 |
bool FpuStackAllocator::merge_fpu_stack_with_successors(BlockBegin* block) {
|
|
1066 |
#ifndef PRODUCT
|
|
1067 |
if (TraceFPUStack) {
|
|
1068 |
tty->print_cr("Propagating FPU stack state for B%d at LIR_Op position %d to successors:",
|
|
1069 |
block->block_id(), pos());
|
|
1070 |
sim()->print();
|
|
1071 |
tty->cr();
|
|
1072 |
}
|
|
1073 |
#endif
|
|
1074 |
|
|
1075 |
bool changed = false;
|
|
1076 |
int number_of_sux = block->number_of_sux();
|
|
1077 |
|
|
1078 |
if (number_of_sux == 1 && block->sux_at(0)->number_of_preds() > 1) {
|
|
1079 |
// The successor has at least two incoming edges, so a stack merge will be necessary
|
|
1080 |
// If this block is the first predecessor, cleanup the current stack and propagate it
|
|
1081 |
// If this block is not the first predecessor, a stack merge will be necessary
|
|
1082 |
|
|
1083 |
BlockBegin* sux = block->sux_at(0);
|
|
1084 |
intArray* state = sux->fpu_stack_state();
|
|
1085 |
LIR_List* instrs = new LIR_List(_compilation);
|
|
1086 |
|
|
1087 |
if (state != NULL) {
|
|
1088 |
// Merge with a successors that already has a FPU stack state
|
|
1089 |
// the block must only have one successor because critical edges must been split
|
|
1090 |
FpuStackSim* cur_sim = sim();
|
|
1091 |
FpuStackSim* sux_sim = temp_sim();
|
|
1092 |
sux_sim->read_state(state);
|
|
1093 |
|
|
1094 |
merge_fpu_stack(instrs, cur_sim, sux_sim);
|
|
1095 |
|
|
1096 |
} else {
|
|
1097 |
// propagate current FPU stack state to successor without state
|
|
1098 |
// clean up stack first so that there are no dead values on the stack
|
|
1099 |
if (ComputeExactFPURegisterUsage) {
|
|
1100 |
FpuStackSim* cur_sim = sim();
|
|
1101 |
BitMap live_fpu_regs = block->sux_at(0)->fpu_register_usage();
|
|
1102 |
assert(live_fpu_regs.size() == FrameMap::nof_fpu_regs, "missing register usage");
|
|
1103 |
|
|
1104 |
merge_cleanup_fpu_stack(instrs, cur_sim, live_fpu_regs);
|
|
1105 |
}
|
|
1106 |
|
|
1107 |
intArray* state = sim()->write_state();
|
|
1108 |
if (TraceFPUStack) {
|
|
1109 |
tty->print_cr("Setting FPU stack state of B%d (merge path)", sux->block_id());
|
|
1110 |
sim()->print(); tty->cr();
|
|
1111 |
}
|
|
1112 |
sux->set_fpu_stack_state(state);
|
|
1113 |
}
|
|
1114 |
|
|
1115 |
if (instrs->instructions_list()->length() > 0) {
|
|
1116 |
lir()->insert_before(pos(), instrs);
|
|
1117 |
set_pos(instrs->instructions_list()->length() + pos());
|
|
1118 |
changed = true;
|
|
1119 |
}
|
|
1120 |
|
|
1121 |
} else {
|
|
1122 |
// Propagate unmodified Stack to successors where a stack merge is not necessary
|
|
1123 |
intArray* state = sim()->write_state();
|
|
1124 |
for (int i = 0; i < number_of_sux; i++) {
|
|
1125 |
BlockBegin* sux = block->sux_at(i);
|
|
1126 |
|
|
1127 |
#ifdef ASSERT
|
|
1128 |
for (int j = 0; j < sux->number_of_preds(); j++) {
|
|
1129 |
assert(block == sux->pred_at(j), "all critical edges must be broken");
|
|
1130 |
}
|
|
1131 |
|
|
1132 |
// check if new state is same
|
|
1133 |
if (sux->fpu_stack_state() != NULL) {
|
|
1134 |
intArray* sux_state = sux->fpu_stack_state();
|
|
1135 |
assert(state->length() == sux_state->length(), "overwriting existing stack state");
|
|
1136 |
for (int j = 0; j < state->length(); j++) {
|
|
1137 |
assert(state->at(j) == sux_state->at(j), "overwriting existing stack state");
|
|
1138 |
}
|
|
1139 |
}
|
|
1140 |
#endif
|
|
1141 |
#ifndef PRODUCT
|
|
1142 |
if (TraceFPUStack) {
|
|
1143 |
tty->print_cr("Setting FPU stack state of B%d", sux->block_id());
|
|
1144 |
sim()->print(); tty->cr();
|
|
1145 |
}
|
|
1146 |
#endif
|
|
1147 |
|
|
1148 |
sux->set_fpu_stack_state(state);
|
|
1149 |
}
|
|
1150 |
}
|
|
1151 |
|
|
1152 |
#ifndef PRODUCT
|
|
1153 |
// assertions that FPU stack state conforms to all successors' states
|
|
1154 |
intArray* cur_state = sim()->write_state();
|
|
1155 |
for (int i = 0; i < number_of_sux; i++) {
|
|
1156 |
BlockBegin* sux = block->sux_at(i);
|
|
1157 |
intArray* sux_state = sux->fpu_stack_state();
|
|
1158 |
|
|
1159 |
assert(sux_state != NULL, "no fpu state");
|
|
1160 |
assert(cur_state->length() == sux_state->length(), "incorrect length");
|
|
1161 |
for (int i = 0; i < cur_state->length(); i++) {
|
|
1162 |
assert(cur_state->at(i) == sux_state->at(i), "element not equal");
|
|
1163 |
}
|
|
1164 |
}
|
|
1165 |
#endif
|
|
1166 |
|
|
1167 |
return changed;
|
|
1168 |
}
|