author | xdono |
Mon, 15 Dec 2008 16:55:11 -0800 | |
changeset 1623 | a0dd9009e992 |
parent 1436 | 6869d58f4f58 |
child 2022 | 28ce8115a91d |
permissions | -rw-r--r-- |
1 | 1 |
/* |
670 | 2 |
* Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved. |
1 | 3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 |
* |
|
5 |
* This code is free software; you can redistribute it and/or modify it |
|
6 |
* under the terms of the GNU General Public License version 2 only, as |
|
7 |
* published by the Free Software Foundation. |
|
8 |
* |
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT |
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that |
|
13 |
* accompanied this code). |
|
14 |
* |
|
15 |
* You should have received a copy of the GNU General Public License version |
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation, |
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 |
* |
|
19 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, |
|
20 |
* CA 95054 USA or visit www.sun.com if you need additional information or |
|
21 |
* have any questions. |
|
22 |
* |
|
23 |
*/ |
|
24 |
||
25 |
// Portions of code courtesy of Clifford Click |
|
26 |
||
27 |
#include "incls/_precompiled.incl" |
|
28 |
#include "incls/_mulnode.cpp.incl" |
|
29 |
||
30 |
||
31 |
//============================================================================= |
|
32 |
//------------------------------hash------------------------------------------- |
|
33 |
// Hash function over MulNodes. Needs to be commutative; i.e., I swap |
|
34 |
// (commute) inputs to MulNodes willy-nilly so the hash function must return |
|
35 |
// the same value in the presence of edge swapping. |
|
36 |
uint MulNode::hash() const { |
|
37 |
return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode(); |
|
38 |
} |
|
39 |
||
40 |
//------------------------------Identity--------------------------------------- |
|
41 |
// Multiplying a one preserves the other argument |
|
42 |
Node *MulNode::Identity( PhaseTransform *phase ) { |
|
43 |
register const Type *one = mul_id(); // The multiplicative identity |
|
44 |
if( phase->type( in(1) )->higher_equal( one ) ) return in(2); |
|
45 |
if( phase->type( in(2) )->higher_equal( one ) ) return in(1); |
|
46 |
||
47 |
return this; |
|
48 |
} |
|
49 |
||
50 |
//------------------------------Ideal------------------------------------------ |
|
51 |
// We also canonicalize the Node, moving constants to the right input, |
|
52 |
// and flatten expressions (so that 1+x+2 becomes x+3). |
|
53 |
Node *MulNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
|
54 |
const Type *t1 = phase->type( in(1) ); |
|
55 |
const Type *t2 = phase->type( in(2) ); |
|
56 |
Node *progress = NULL; // Progress flag |
|
57 |
// We are OK if right is a constant, or right is a load and |
|
58 |
// left is a non-constant. |
|
59 |
if( !(t2->singleton() || |
|
60 |
(in(2)->is_Load() && !(t1->singleton() || in(1)->is_Load())) ) ) { |
|
61 |
if( t1->singleton() || // Left input is a constant? |
|
62 |
// Otherwise, sort inputs (commutativity) to help value numbering. |
|
63 |
(in(1)->_idx > in(2)->_idx) ) { |
|
64 |
swap_edges(1, 2); |
|
65 |
const Type *t = t1; |
|
66 |
t1 = t2; |
|
67 |
t2 = t; |
|
68 |
progress = this; // Made progress |
|
69 |
} |
|
70 |
} |
|
71 |
||
72 |
// If the right input is a constant, and the left input is a product of a |
|
73 |
// constant, flatten the expression tree. |
|
74 |
uint op = Opcode(); |
|
75 |
if( t2->singleton() && // Right input is a constant? |
|
76 |
op != Op_MulF && // Float & double cannot reassociate |
|
77 |
op != Op_MulD ) { |
|
78 |
if( t2 == Type::TOP ) return NULL; |
|
79 |
Node *mul1 = in(1); |
|
80 |
#ifdef ASSERT |
|
81 |
// Check for dead loop |
|
82 |
int op1 = mul1->Opcode(); |
|
83 |
if( phase->eqv( mul1, this ) || phase->eqv( in(2), this ) || |
|
84 |
( op1 == mul_opcode() || op1 == add_opcode() ) && |
|
85 |
( phase->eqv( mul1->in(1), this ) || phase->eqv( mul1->in(2), this ) || |
|
86 |
phase->eqv( mul1->in(1), mul1 ) || phase->eqv( mul1->in(2), mul1 ) ) ) |
|
87 |
assert(false, "dead loop in MulNode::Ideal"); |
|
88 |
#endif |
|
89 |
||
90 |
if( mul1->Opcode() == mul_opcode() ) { // Left input is a multiply? |
|
91 |
// Mul of a constant? |
|
92 |
const Type *t12 = phase->type( mul1->in(2) ); |
|
93 |
if( t12->singleton() && t12 != Type::TOP) { // Left input is an add of a constant? |
|
94 |
// Compute new constant; check for overflow |
|
95 |
const Type *tcon01 = mul1->as_Mul()->mul_ring(t2,t12); |
|
96 |
if( tcon01->singleton() ) { |
|
97 |
// The Mul of the flattened expression |
|
98 |
set_req(1, mul1->in(1)); |
|
99 |
set_req(2, phase->makecon( tcon01 )); |
|
100 |
t2 = tcon01; |
|
101 |
progress = this; // Made progress |
|
102 |
} |
|
103 |
} |
|
104 |
} |
|
105 |
// If the right input is a constant, and the left input is an add of a |
|
106 |
// constant, flatten the tree: (X+con1)*con0 ==> X*con0 + con1*con0 |
|
107 |
const Node *add1 = in(1); |
|
108 |
if( add1->Opcode() == add_opcode() ) { // Left input is an add? |
|
109 |
// Add of a constant? |
|
110 |
const Type *t12 = phase->type( add1->in(2) ); |
|
111 |
if( t12->singleton() && t12 != Type::TOP ) { // Left input is an add of a constant? |
|
112 |
assert( add1->in(1) != add1, "dead loop in MulNode::Ideal" ); |
|
113 |
// Compute new constant; check for overflow |
|
114 |
const Type *tcon01 = mul_ring(t2,t12); |
|
115 |
if( tcon01->singleton() ) { |
|
116 |
||
117 |
// Convert (X+con1)*con0 into X*con0 |
|
118 |
Node *mul = clone(); // mul = ()*con0 |
|
119 |
mul->set_req(1,add1->in(1)); // mul = X*con0 |
|
120 |
mul = phase->transform(mul); |
|
121 |
||
122 |
Node *add2 = add1->clone(); |
|
123 |
add2->set_req(1, mul); // X*con0 + con0*con1 |
|
124 |
add2->set_req(2, phase->makecon(tcon01) ); |
|
125 |
progress = add2; |
|
126 |
} |
|
127 |
} |
|
128 |
} // End of is left input an add |
|
129 |
} // End of is right input a Mul |
|
130 |
||
131 |
return progress; |
|
132 |
} |
|
133 |
||
134 |
//------------------------------Value----------------------------------------- |
|
135 |
const Type *MulNode::Value( PhaseTransform *phase ) const { |
|
136 |
const Type *t1 = phase->type( in(1) ); |
|
137 |
const Type *t2 = phase->type( in(2) ); |
|
138 |
// Either input is TOP ==> the result is TOP |
|
139 |
if( t1 == Type::TOP ) return Type::TOP; |
|
140 |
if( t2 == Type::TOP ) return Type::TOP; |
|
141 |
||
142 |
// Either input is ZERO ==> the result is ZERO. |
|
143 |
// Not valid for floats or doubles since +0.0 * -0.0 --> +0.0 |
|
144 |
int op = Opcode(); |
|
145 |
if( op == Op_MulI || op == Op_AndI || op == Op_MulL || op == Op_AndL ) { |
|
146 |
const Type *zero = add_id(); // The multiplicative zero |
|
147 |
if( t1->higher_equal( zero ) ) return zero; |
|
148 |
if( t2->higher_equal( zero ) ) return zero; |
|
149 |
} |
|
150 |
||
151 |
// Either input is BOTTOM ==> the result is the local BOTTOM |
|
152 |
if( t1 == Type::BOTTOM || t2 == Type::BOTTOM ) |
|
153 |
return bottom_type(); |
|
154 |
||
1436
6869d58f4f58
6717150: improper constant folding of subnormal strictfp multiplications and divides
rasbold
parents:
670
diff
changeset
|
155 |
#if defined(IA32) |
6869d58f4f58
6717150: improper constant folding of subnormal strictfp multiplications and divides
rasbold
parents:
670
diff
changeset
|
156 |
// Can't trust native compilers to properly fold strict double |
6869d58f4f58
6717150: improper constant folding of subnormal strictfp multiplications and divides
rasbold
parents:
670
diff
changeset
|
157 |
// multiplication with round-to-zero on this platform. |
6869d58f4f58
6717150: improper constant folding of subnormal strictfp multiplications and divides
rasbold
parents:
670
diff
changeset
|
158 |
if (op == Op_MulD && phase->C->method()->is_strict()) { |
6869d58f4f58
6717150: improper constant folding of subnormal strictfp multiplications and divides
rasbold
parents:
670
diff
changeset
|
159 |
return TypeD::DOUBLE; |
6869d58f4f58
6717150: improper constant folding of subnormal strictfp multiplications and divides
rasbold
parents:
670
diff
changeset
|
160 |
} |
6869d58f4f58
6717150: improper constant folding of subnormal strictfp multiplications and divides
rasbold
parents:
670
diff
changeset
|
161 |
#endif |
6869d58f4f58
6717150: improper constant folding of subnormal strictfp multiplications and divides
rasbold
parents:
670
diff
changeset
|
162 |
|
1 | 163 |
return mul_ring(t1,t2); // Local flavor of type multiplication |
164 |
} |
|
165 |
||
166 |
||
167 |
//============================================================================= |
|
168 |
//------------------------------Ideal------------------------------------------ |
|
169 |
// Check for power-of-2 multiply, then try the regular MulNode::Ideal |
|
170 |
Node *MulINode::Ideal(PhaseGVN *phase, bool can_reshape) { |
|
171 |
// Swap constant to right |
|
172 |
jint con; |
|
173 |
if ((con = in(1)->find_int_con(0)) != 0) { |
|
174 |
swap_edges(1, 2); |
|
175 |
// Finish rest of method to use info in 'con' |
|
176 |
} else if ((con = in(2)->find_int_con(0)) == 0) { |
|
177 |
return MulNode::Ideal(phase, can_reshape); |
|
178 |
} |
|
179 |
||
180 |
// Now we have a constant Node on the right and the constant in con |
|
181 |
if( con == 0 ) return NULL; // By zero is handled by Value call |
|
182 |
if( con == 1 ) return NULL; // By one is handled by Identity call |
|
183 |
||
184 |
// Check for negative constant; if so negate the final result |
|
185 |
bool sign_flip = false; |
|
186 |
if( con < 0 ) { |
|
187 |
con = -con; |
|
188 |
sign_flip = true; |
|
189 |
} |
|
190 |
||
191 |
// Get low bit; check for being the only bit |
|
192 |
Node *res = NULL; |
|
193 |
jint bit1 = con & -con; // Extract low bit |
|
194 |
if( bit1 == con ) { // Found a power of 2? |
|
195 |
res = new (phase->C, 3) LShiftINode( in(1), phase->intcon(log2_intptr(bit1)) ); |
|
196 |
} else { |
|
197 |
||
198 |
// Check for constant with 2 bits set |
|
199 |
jint bit2 = con-bit1; |
|
200 |
bit2 = bit2 & -bit2; // Extract 2nd bit |
|
201 |
if( bit2 + bit1 == con ) { // Found all bits in con? |
|
202 |
Node *n1 = phase->transform( new (phase->C, 3) LShiftINode( in(1), phase->intcon(log2_intptr(bit1)) ) ); |
|
203 |
Node *n2 = phase->transform( new (phase->C, 3) LShiftINode( in(1), phase->intcon(log2_intptr(bit2)) ) ); |
|
204 |
res = new (phase->C, 3) AddINode( n2, n1 ); |
|
205 |
||
206 |
} else if (is_power_of_2(con+1)) { |
|
207 |
// Sleezy: power-of-2 -1. Next time be generic. |
|
208 |
jint temp = (jint) (con + 1); |
|
209 |
Node *n1 = phase->transform( new (phase->C, 3) LShiftINode( in(1), phase->intcon(log2_intptr(temp)) ) ); |
|
210 |
res = new (phase->C, 3) SubINode( n1, in(1) ); |
|
211 |
} else { |
|
212 |
return MulNode::Ideal(phase, can_reshape); |
|
213 |
} |
|
214 |
} |
|
215 |
||
216 |
if( sign_flip ) { // Need to negate result? |
|
217 |
res = phase->transform(res);// Transform, before making the zero con |
|
218 |
res = new (phase->C, 3) SubINode(phase->intcon(0),res); |
|
219 |
} |
|
220 |
||
221 |
return res; // Return final result |
|
222 |
} |
|
223 |
||
224 |
//------------------------------mul_ring--------------------------------------- |
|
225 |
// Compute the product type of two integer ranges into this node. |
|
226 |
const Type *MulINode::mul_ring(const Type *t0, const Type *t1) const { |
|
227 |
const TypeInt *r0 = t0->is_int(); // Handy access |
|
228 |
const TypeInt *r1 = t1->is_int(); |
|
229 |
||
230 |
// Fetch endpoints of all ranges |
|
231 |
int32 lo0 = r0->_lo; |
|
232 |
double a = (double)lo0; |
|
233 |
int32 hi0 = r0->_hi; |
|
234 |
double b = (double)hi0; |
|
235 |
int32 lo1 = r1->_lo; |
|
236 |
double c = (double)lo1; |
|
237 |
int32 hi1 = r1->_hi; |
|
238 |
double d = (double)hi1; |
|
239 |
||
240 |
// Compute all endpoints & check for overflow |
|
241 |
int32 A = lo0*lo1; |
|
242 |
if( (double)A != a*c ) return TypeInt::INT; // Overflow? |
|
243 |
int32 B = lo0*hi1; |
|
244 |
if( (double)B != a*d ) return TypeInt::INT; // Overflow? |
|
245 |
int32 C = hi0*lo1; |
|
246 |
if( (double)C != b*c ) return TypeInt::INT; // Overflow? |
|
247 |
int32 D = hi0*hi1; |
|
248 |
if( (double)D != b*d ) return TypeInt::INT; // Overflow? |
|
249 |
||
250 |
if( A < B ) { lo0 = A; hi0 = B; } // Sort range endpoints |
|
251 |
else { lo0 = B; hi0 = A; } |
|
252 |
if( C < D ) { |
|
253 |
if( C < lo0 ) lo0 = C; |
|
254 |
if( D > hi0 ) hi0 = D; |
|
255 |
} else { |
|
256 |
if( D < lo0 ) lo0 = D; |
|
257 |
if( C > hi0 ) hi0 = C; |
|
258 |
} |
|
259 |
return TypeInt::make(lo0, hi0, MAX2(r0->_widen,r1->_widen)); |
|
260 |
} |
|
261 |
||
262 |
||
263 |
//============================================================================= |
|
264 |
//------------------------------Ideal------------------------------------------ |
|
265 |
// Check for power-of-2 multiply, then try the regular MulNode::Ideal |
|
266 |
Node *MulLNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
|
267 |
// Swap constant to right |
|
268 |
jlong con; |
|
269 |
if ((con = in(1)->find_long_con(0)) != 0) { |
|
270 |
swap_edges(1, 2); |
|
271 |
// Finish rest of method to use info in 'con' |
|
272 |
} else if ((con = in(2)->find_long_con(0)) == 0) { |
|
273 |
return MulNode::Ideal(phase, can_reshape); |
|
274 |
} |
|
275 |
||
276 |
// Now we have a constant Node on the right and the constant in con |
|
277 |
if( con == CONST64(0) ) return NULL; // By zero is handled by Value call |
|
278 |
if( con == CONST64(1) ) return NULL; // By one is handled by Identity call |
|
279 |
||
280 |
// Check for negative constant; if so negate the final result |
|
281 |
bool sign_flip = false; |
|
282 |
if( con < 0 ) { |
|
283 |
con = -con; |
|
284 |
sign_flip = true; |
|
285 |
} |
|
286 |
||
287 |
// Get low bit; check for being the only bit |
|
288 |
Node *res = NULL; |
|
289 |
jlong bit1 = con & -con; // Extract low bit |
|
290 |
if( bit1 == con ) { // Found a power of 2? |
|
291 |
res = new (phase->C, 3) LShiftLNode( in(1), phase->intcon(log2_long(bit1)) ); |
|
292 |
} else { |
|
293 |
||
294 |
// Check for constant with 2 bits set |
|
295 |
jlong bit2 = con-bit1; |
|
296 |
bit2 = bit2 & -bit2; // Extract 2nd bit |
|
297 |
if( bit2 + bit1 == con ) { // Found all bits in con? |
|
298 |
Node *n1 = phase->transform( new (phase->C, 3) LShiftLNode( in(1), phase->intcon(log2_long(bit1)) ) ); |
|
299 |
Node *n2 = phase->transform( new (phase->C, 3) LShiftLNode( in(1), phase->intcon(log2_long(bit2)) ) ); |
|
300 |
res = new (phase->C, 3) AddLNode( n2, n1 ); |
|
301 |
||
302 |
} else if (is_power_of_2_long(con+1)) { |
|
303 |
// Sleezy: power-of-2 -1. Next time be generic. |
|
304 |
jlong temp = (jlong) (con + 1); |
|
305 |
Node *n1 = phase->transform( new (phase->C, 3) LShiftLNode( in(1), phase->intcon(log2_long(temp)) ) ); |
|
306 |
res = new (phase->C, 3) SubLNode( n1, in(1) ); |
|
307 |
} else { |
|
308 |
return MulNode::Ideal(phase, can_reshape); |
|
309 |
} |
|
310 |
} |
|
311 |
||
312 |
if( sign_flip ) { // Need to negate result? |
|
313 |
res = phase->transform(res);// Transform, before making the zero con |
|
314 |
res = new (phase->C, 3) SubLNode(phase->longcon(0),res); |
|
315 |
} |
|
316 |
||
317 |
return res; // Return final result |
|
318 |
} |
|
319 |
||
320 |
//------------------------------mul_ring--------------------------------------- |
|
321 |
// Compute the product type of two integer ranges into this node. |
|
322 |
const Type *MulLNode::mul_ring(const Type *t0, const Type *t1) const { |
|
323 |
const TypeLong *r0 = t0->is_long(); // Handy access |
|
324 |
const TypeLong *r1 = t1->is_long(); |
|
325 |
||
326 |
// Fetch endpoints of all ranges |
|
327 |
jlong lo0 = r0->_lo; |
|
328 |
double a = (double)lo0; |
|
329 |
jlong hi0 = r0->_hi; |
|
330 |
double b = (double)hi0; |
|
331 |
jlong lo1 = r1->_lo; |
|
332 |
double c = (double)lo1; |
|
333 |
jlong hi1 = r1->_hi; |
|
334 |
double d = (double)hi1; |
|
335 |
||
336 |
// Compute all endpoints & check for overflow |
|
337 |
jlong A = lo0*lo1; |
|
338 |
if( (double)A != a*c ) return TypeLong::LONG; // Overflow? |
|
339 |
jlong B = lo0*hi1; |
|
340 |
if( (double)B != a*d ) return TypeLong::LONG; // Overflow? |
|
341 |
jlong C = hi0*lo1; |
|
342 |
if( (double)C != b*c ) return TypeLong::LONG; // Overflow? |
|
343 |
jlong D = hi0*hi1; |
|
344 |
if( (double)D != b*d ) return TypeLong::LONG; // Overflow? |
|
345 |
||
346 |
if( A < B ) { lo0 = A; hi0 = B; } // Sort range endpoints |
|
347 |
else { lo0 = B; hi0 = A; } |
|
348 |
if( C < D ) { |
|
349 |
if( C < lo0 ) lo0 = C; |
|
350 |
if( D > hi0 ) hi0 = D; |
|
351 |
} else { |
|
352 |
if( D < lo0 ) lo0 = D; |
|
353 |
if( C > hi0 ) hi0 = C; |
|
354 |
} |
|
355 |
return TypeLong::make(lo0, hi0, MAX2(r0->_widen,r1->_widen)); |
|
356 |
} |
|
357 |
||
358 |
//============================================================================= |
|
359 |
//------------------------------mul_ring--------------------------------------- |
|
360 |
// Compute the product type of two double ranges into this node. |
|
361 |
const Type *MulFNode::mul_ring(const Type *t0, const Type *t1) const { |
|
362 |
if( t0 == Type::FLOAT || t1 == Type::FLOAT ) return Type::FLOAT; |
|
363 |
return TypeF::make( t0->getf() * t1->getf() ); |
|
364 |
} |
|
365 |
||
366 |
//============================================================================= |
|
367 |
//------------------------------mul_ring--------------------------------------- |
|
368 |
// Compute the product type of two double ranges into this node. |
|
369 |
const Type *MulDNode::mul_ring(const Type *t0, const Type *t1) const { |
|
370 |
if( t0 == Type::DOUBLE || t1 == Type::DOUBLE ) return Type::DOUBLE; |
|
1436
6869d58f4f58
6717150: improper constant folding of subnormal strictfp multiplications and divides
rasbold
parents:
670
diff
changeset
|
371 |
// We must be multiplying 2 double constants. |
1 | 372 |
return TypeD::make( t0->getd() * t1->getd() ); |
373 |
} |
|
374 |
||
375 |
//============================================================================= |
|
392 | 376 |
//------------------------------Value------------------------------------------ |
377 |
const Type *MulHiLNode::Value( PhaseTransform *phase ) const { |
|
378 |
// Either input is TOP ==> the result is TOP |
|
379 |
const Type *t1 = phase->type( in(1) ); |
|
380 |
const Type *t2 = phase->type( in(2) ); |
|
381 |
if( t1 == Type::TOP ) return Type::TOP; |
|
382 |
if( t2 == Type::TOP ) return Type::TOP; |
|
383 |
||
384 |
// Either input is BOTTOM ==> the result is the local BOTTOM |
|
385 |
const Type *bot = bottom_type(); |
|
386 |
if( (t1 == bot) || (t2 == bot) || |
|
387 |
(t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) ) |
|
388 |
return bot; |
|
389 |
||
390 |
// It is not worth trying to constant fold this stuff! |
|
391 |
return TypeLong::LONG; |
|
392 |
} |
|
393 |
||
394 |
//============================================================================= |
|
1 | 395 |
//------------------------------mul_ring--------------------------------------- |
396 |
// Supplied function returns the product of the inputs IN THE CURRENT RING. |
|
397 |
// For the logical operations the ring's MUL is really a logical AND function. |
|
398 |
// This also type-checks the inputs for sanity. Guaranteed never to |
|
399 |
// be passed a TOP or BOTTOM type, these are filtered out by pre-check. |
|
400 |
const Type *AndINode::mul_ring( const Type *t0, const Type *t1 ) const { |
|
401 |
const TypeInt *r0 = t0->is_int(); // Handy access |
|
402 |
const TypeInt *r1 = t1->is_int(); |
|
403 |
int widen = MAX2(r0->_widen,r1->_widen); |
|
404 |
||
405 |
// If either input is a constant, might be able to trim cases |
|
406 |
if( !r0->is_con() && !r1->is_con() ) |
|
407 |
return TypeInt::INT; // No constants to be had |
|
408 |
||
409 |
// Both constants? Return bits |
|
410 |
if( r0->is_con() && r1->is_con() ) |
|
411 |
return TypeInt::make( r0->get_con() & r1->get_con() ); |
|
412 |
||
413 |
if( r0->is_con() && r0->get_con() > 0 ) |
|
414 |
return TypeInt::make(0, r0->get_con(), widen); |
|
415 |
||
416 |
if( r1->is_con() && r1->get_con() > 0 ) |
|
417 |
return TypeInt::make(0, r1->get_con(), widen); |
|
418 |
||
419 |
if( r0 == TypeInt::BOOL || r1 == TypeInt::BOOL ) { |
|
420 |
return TypeInt::BOOL; |
|
421 |
} |
|
422 |
||
423 |
return TypeInt::INT; // No constants to be had |
|
424 |
} |
|
425 |
||
426 |
//------------------------------Identity--------------------------------------- |
|
427 |
// Masking off the high bits of an unsigned load is not required |
|
428 |
Node *AndINode::Identity( PhaseTransform *phase ) { |
|
429 |
||
430 |
// x & x => x |
|
431 |
if (phase->eqv(in(1), in(2))) return in(1); |
|
432 |
||
433 |
Node *load = in(1); |
|
434 |
const TypeInt *t2 = phase->type( in(2) )->isa_int(); |
|
435 |
if( t2 && t2->is_con() ) { |
|
436 |
int con = t2->get_con(); |
|
437 |
// Masking off high bits which are always zero is useless. |
|
438 |
const TypeInt* t1 = phase->type( in(1) )->isa_int(); |
|
439 |
if (t1 != NULL && t1->_lo >= 0) { |
|
440 |
jint t1_support = ((jint)1 << (1 + log2_intptr(t1->_hi))) - 1; |
|
441 |
if ((t1_support & con) == t1_support) |
|
442 |
return load; |
|
443 |
} |
|
444 |
uint lop = load->Opcode(); |
|
445 |
if( lop == Op_LoadC && |
|
446 |
con == 0x0000FFFF ) // Already zero-extended |
|
447 |
return load; |
|
448 |
// Masking off the high bits of a unsigned-shift-right is not |
|
449 |
// needed either. |
|
450 |
if( lop == Op_URShiftI ) { |
|
451 |
const TypeInt *t12 = phase->type( load->in(2) )->isa_int(); |
|
452 |
if( t12 && t12->is_con() ) { |
|
453 |
int shift_con = t12->get_con(); |
|
454 |
int mask = max_juint >> shift_con; |
|
455 |
if( (mask&con) == mask ) // If AND is useless, skip it |
|
456 |
return load; |
|
457 |
} |
|
458 |
} |
|
459 |
} |
|
460 |
return MulNode::Identity(phase); |
|
461 |
} |
|
462 |
||
463 |
//------------------------------Ideal------------------------------------------ |
|
464 |
Node *AndINode::Ideal(PhaseGVN *phase, bool can_reshape) { |
|
465 |
// Special case constant AND mask |
|
466 |
const TypeInt *t2 = phase->type( in(2) )->isa_int(); |
|
467 |
if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape); |
|
468 |
const int mask = t2->get_con(); |
|
469 |
Node *load = in(1); |
|
470 |
uint lop = load->Opcode(); |
|
471 |
||
472 |
// Masking bits off of a Character? Hi bits are already zero. |
|
473 |
if( lop == Op_LoadC && |
|
474 |
(mask & 0xFFFF0000) ) // Can we make a smaller mask? |
|
475 |
return new (phase->C, 3) AndINode(load,phase->intcon(mask&0xFFFF)); |
|
476 |
||
477 |
// Masking bits off of a Short? Loading a Character does some masking |
|
478 |
if( lop == Op_LoadS && |
|
479 |
(mask & 0xFFFF0000) == 0 ) { |
|
480 |
Node *ldc = new (phase->C, 3) LoadCNode(load->in(MemNode::Control), |
|
481 |
load->in(MemNode::Memory), |
|
482 |
load->in(MemNode::Address), |
|
483 |
load->adr_type()); |
|
484 |
ldc = phase->transform(ldc); |
|
485 |
return new (phase->C, 3) AndINode(ldc,phase->intcon(mask&0xFFFF)); |
|
486 |
} |
|
487 |
||
488 |
// Masking sign bits off of a Byte? Let the matcher use an unsigned load |
|
489 |
if( lop == Op_LoadB && |
|
490 |
(!in(0) && load->in(0)) && |
|
491 |
(mask == 0x000000FF) ) { |
|
492 |
// Associate this node with the LoadB, so the matcher can see them together. |
|
493 |
// If we don't do this, it is common for the LoadB to have one control |
|
494 |
// edge, and the store or call containing this AndI to have a different |
|
495 |
// control edge. This will cause Label_Root to group the AndI with |
|
496 |
// the encoding store or call, so the matcher has no chance to match |
|
497 |
// this AndI together with the LoadB. Setting the control edge here |
|
498 |
// prevents Label_Root from grouping the AndI with the store or call, |
|
499 |
// if it has a control edge that is inconsistent with the LoadB. |
|
500 |
set_req(0, load->in(0)); |
|
501 |
return this; |
|
502 |
} |
|
503 |
||
504 |
// Masking off sign bits? Dont make them! |
|
505 |
if( lop == Op_RShiftI ) { |
|
506 |
const TypeInt *t12 = phase->type(load->in(2))->isa_int(); |
|
507 |
if( t12 && t12->is_con() ) { // Shift is by a constant |
|
508 |
int shift = t12->get_con(); |
|
509 |
shift &= BitsPerJavaInteger-1; // semantics of Java shifts |
|
510 |
const int sign_bits_mask = ~right_n_bits(BitsPerJavaInteger - shift); |
|
511 |
// If the AND'ing of the 2 masks has no bits, then only original shifted |
|
512 |
// bits survive. NO sign-extension bits survive the maskings. |
|
513 |
if( (sign_bits_mask & mask) == 0 ) { |
|
514 |
// Use zero-fill shift instead |
|
515 |
Node *zshift = phase->transform(new (phase->C, 3) URShiftINode(load->in(1),load->in(2))); |
|
516 |
return new (phase->C, 3) AndINode( zshift, in(2) ); |
|
517 |
} |
|
518 |
} |
|
519 |
} |
|
520 |
||
521 |
// Check for 'negate/and-1', a pattern emitted when someone asks for |
|
522 |
// 'mod 2'. Negate leaves the low order bit unchanged (think: complement |
|
523 |
// plus 1) and the mask is of the low order bit. Skip the negate. |
|
524 |
if( lop == Op_SubI && mask == 1 && load->in(1) && |
|
525 |
phase->type(load->in(1)) == TypeInt::ZERO ) |
|
526 |
return new (phase->C, 3) AndINode( load->in(2), in(2) ); |
|
527 |
||
528 |
return MulNode::Ideal(phase, can_reshape); |
|
529 |
} |
|
530 |
||
531 |
//============================================================================= |
|
532 |
//------------------------------mul_ring--------------------------------------- |
|
533 |
// Supplied function returns the product of the inputs IN THE CURRENT RING. |
|
534 |
// For the logical operations the ring's MUL is really a logical AND function. |
|
535 |
// This also type-checks the inputs for sanity. Guaranteed never to |
|
536 |
// be passed a TOP or BOTTOM type, these are filtered out by pre-check. |
|
537 |
const Type *AndLNode::mul_ring( const Type *t0, const Type *t1 ) const { |
|
538 |
const TypeLong *r0 = t0->is_long(); // Handy access |
|
539 |
const TypeLong *r1 = t1->is_long(); |
|
540 |
int widen = MAX2(r0->_widen,r1->_widen); |
|
541 |
||
542 |
// If either input is a constant, might be able to trim cases |
|
543 |
if( !r0->is_con() && !r1->is_con() ) |
|
544 |
return TypeLong::LONG; // No constants to be had |
|
545 |
||
546 |
// Both constants? Return bits |
|
547 |
if( r0->is_con() && r1->is_con() ) |
|
548 |
return TypeLong::make( r0->get_con() & r1->get_con() ); |
|
549 |
||
550 |
if( r0->is_con() && r0->get_con() > 0 ) |
|
551 |
return TypeLong::make(CONST64(0), r0->get_con(), widen); |
|
552 |
||
553 |
if( r1->is_con() && r1->get_con() > 0 ) |
|
554 |
return TypeLong::make(CONST64(0), r1->get_con(), widen); |
|
555 |
||
556 |
return TypeLong::LONG; // No constants to be had |
|
557 |
} |
|
558 |
||
559 |
//------------------------------Identity--------------------------------------- |
|
560 |
// Masking off the high bits of an unsigned load is not required |
|
561 |
Node *AndLNode::Identity( PhaseTransform *phase ) { |
|
562 |
||
563 |
// x & x => x |
|
564 |
if (phase->eqv(in(1), in(2))) return in(1); |
|
565 |
||
566 |
Node *usr = in(1); |
|
567 |
const TypeLong *t2 = phase->type( in(2) )->isa_long(); |
|
568 |
if( t2 && t2->is_con() ) { |
|
569 |
jlong con = t2->get_con(); |
|
570 |
// Masking off high bits which are always zero is useless. |
|
571 |
const TypeLong* t1 = phase->type( in(1) )->isa_long(); |
|
572 |
if (t1 != NULL && t1->_lo >= 0) { |
|
573 |
jlong t1_support = ((jlong)1 << (1 + log2_long(t1->_hi))) - 1; |
|
574 |
if ((t1_support & con) == t1_support) |
|
575 |
return usr; |
|
576 |
} |
|
577 |
uint lop = usr->Opcode(); |
|
578 |
// Masking off the high bits of a unsigned-shift-right is not |
|
579 |
// needed either. |
|
580 |
if( lop == Op_URShiftL ) { |
|
581 |
const TypeInt *t12 = phase->type( usr->in(2) )->isa_int(); |
|
582 |
if( t12 && t12->is_con() ) { |
|
583 |
int shift_con = t12->get_con(); |
|
584 |
jlong mask = max_julong >> shift_con; |
|
585 |
if( (mask&con) == mask ) // If AND is useless, skip it |
|
586 |
return usr; |
|
587 |
} |
|
588 |
} |
|
589 |
} |
|
590 |
return MulNode::Identity(phase); |
|
591 |
} |
|
592 |
||
593 |
//------------------------------Ideal------------------------------------------ |
|
594 |
Node *AndLNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
|
595 |
// Special case constant AND mask |
|
596 |
const TypeLong *t2 = phase->type( in(2) )->isa_long(); |
|
597 |
if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape); |
|
598 |
const jlong mask = t2->get_con(); |
|
599 |
||
600 |
Node *rsh = in(1); |
|
601 |
uint rop = rsh->Opcode(); |
|
602 |
||
603 |
// Masking off sign bits? Dont make them! |
|
604 |
if( rop == Op_RShiftL ) { |
|
605 |
const TypeInt *t12 = phase->type(rsh->in(2))->isa_int(); |
|
606 |
if( t12 && t12->is_con() ) { // Shift is by a constant |
|
607 |
int shift = t12->get_con(); |
|
608 |
shift &= (BitsPerJavaInteger*2)-1; // semantics of Java shifts |
|
609 |
const jlong sign_bits_mask = ~(((jlong)CONST64(1) << (jlong)(BitsPerJavaInteger*2 - shift)) -1); |
|
610 |
// If the AND'ing of the 2 masks has no bits, then only original shifted |
|
611 |
// bits survive. NO sign-extension bits survive the maskings. |
|
612 |
if( (sign_bits_mask & mask) == 0 ) { |
|
613 |
// Use zero-fill shift instead |
|
614 |
Node *zshift = phase->transform(new (phase->C, 3) URShiftLNode(rsh->in(1),rsh->in(2))); |
|
615 |
return new (phase->C, 3) AndLNode( zshift, in(2) ); |
|
616 |
} |
|
617 |
} |
|
618 |
} |
|
619 |
||
620 |
return MulNode::Ideal(phase, can_reshape); |
|
621 |
} |
|
622 |
||
623 |
//============================================================================= |
|
624 |
//------------------------------Identity--------------------------------------- |
|
625 |
Node *LShiftINode::Identity( PhaseTransform *phase ) { |
|
626 |
const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int |
|
627 |
return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerInt - 1 ) ) == 0 ) ? in(1) : this; |
|
628 |
} |
|
629 |
||
630 |
//------------------------------Ideal------------------------------------------ |
|
631 |
// If the right input is a constant, and the left input is an add of a |
|
632 |
// constant, flatten the tree: (X+con1)<<con0 ==> X<<con0 + con1<<con0 |
|
633 |
Node *LShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) { |
|
634 |
const Type *t = phase->type( in(2) ); |
|
635 |
if( t == Type::TOP ) return NULL; // Right input is dead |
|
636 |
const TypeInt *t2 = t->isa_int(); |
|
637 |
if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant |
|
638 |
const int con = t2->get_con() & ( BitsPerInt - 1 ); // masked shift count |
|
639 |
||
640 |
if ( con == 0 ) return NULL; // let Identity() handle 0 shift count |
|
641 |
||
642 |
// Left input is an add of a constant? |
|
643 |
Node *add1 = in(1); |
|
644 |
int add1_op = add1->Opcode(); |
|
645 |
if( add1_op == Op_AddI ) { // Left input is an add? |
|
646 |
assert( add1 != add1->in(1), "dead loop in LShiftINode::Ideal" ); |
|
647 |
const TypeInt *t12 = phase->type(add1->in(2))->isa_int(); |
|
648 |
if( t12 && t12->is_con() ){ // Left input is an add of a con? |
|
649 |
// Transform is legal, but check for profit. Avoid breaking 'i2s' |
|
650 |
// and 'i2b' patterns which typically fold into 'StoreC/StoreB'. |
|
651 |
if( con < 16 ) { |
|
652 |
// Compute X << con0 |
|
653 |
Node *lsh = phase->transform( new (phase->C, 3) LShiftINode( add1->in(1), in(2) ) ); |
|
654 |
// Compute X<<con0 + (con1<<con0) |
|
655 |
return new (phase->C, 3) AddINode( lsh, phase->intcon(t12->get_con() << con)); |
|
656 |
} |
|
657 |
} |
|
658 |
} |
|
659 |
||
660 |
// Check for "(x>>c0)<<c0" which just masks off low bits |
|
661 |
if( (add1_op == Op_RShiftI || add1_op == Op_URShiftI ) && |
|
662 |
add1->in(2) == in(2) ) |
|
663 |
// Convert to "(x & -(1<<c0))" |
|
664 |
return new (phase->C, 3) AndINode(add1->in(1),phase->intcon( -(1<<con))); |
|
665 |
||
666 |
// Check for "((x>>c0) & Y)<<c0" which just masks off more low bits |
|
667 |
if( add1_op == Op_AndI ) { |
|
668 |
Node *add2 = add1->in(1); |
|
669 |
int add2_op = add2->Opcode(); |
|
670 |
if( (add2_op == Op_RShiftI || add2_op == Op_URShiftI ) && |
|
671 |
add2->in(2) == in(2) ) { |
|
672 |
// Convert to "(x & (Y<<c0))" |
|
673 |
Node *y_sh = phase->transform( new (phase->C, 3) LShiftINode( add1->in(2), in(2) ) ); |
|
674 |
return new (phase->C, 3) AndINode( add2->in(1), y_sh ); |
|
675 |
} |
|
676 |
} |
|
677 |
||
678 |
// Check for ((x & ((1<<(32-c0))-1)) << c0) which ANDs off high bits |
|
679 |
// before shifting them away. |
|
680 |
const jint bits_mask = right_n_bits(BitsPerJavaInteger-con); |
|
681 |
if( add1_op == Op_AndI && |
|
682 |
phase->type(add1->in(2)) == TypeInt::make( bits_mask ) ) |
|
683 |
return new (phase->C, 3) LShiftINode( add1->in(1), in(2) ); |
|
684 |
||
685 |
return NULL; |
|
686 |
} |
|
687 |
||
688 |
//------------------------------Value------------------------------------------ |
|
689 |
// A LShiftINode shifts its input2 left by input1 amount. |
|
690 |
const Type *LShiftINode::Value( PhaseTransform *phase ) const { |
|
691 |
const Type *t1 = phase->type( in(1) ); |
|
692 |
const Type *t2 = phase->type( in(2) ); |
|
693 |
// Either input is TOP ==> the result is TOP |
|
694 |
if( t1 == Type::TOP ) return Type::TOP; |
|
695 |
if( t2 == Type::TOP ) return Type::TOP; |
|
696 |
||
697 |
// Left input is ZERO ==> the result is ZERO. |
|
698 |
if( t1 == TypeInt::ZERO ) return TypeInt::ZERO; |
|
699 |
// Shift by zero does nothing |
|
700 |
if( t2 == TypeInt::ZERO ) return t1; |
|
701 |
||
702 |
// Either input is BOTTOM ==> the result is BOTTOM |
|
703 |
if( (t1 == TypeInt::INT) || (t2 == TypeInt::INT) || |
|
704 |
(t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) ) |
|
705 |
return TypeInt::INT; |
|
706 |
||
707 |
const TypeInt *r1 = t1->is_int(); // Handy access |
|
708 |
const TypeInt *r2 = t2->is_int(); // Handy access |
|
709 |
||
710 |
if (!r2->is_con()) |
|
711 |
return TypeInt::INT; |
|
712 |
||
713 |
uint shift = r2->get_con(); |
|
714 |
shift &= BitsPerJavaInteger-1; // semantics of Java shifts |
|
715 |
// Shift by a multiple of 32 does nothing: |
|
716 |
if (shift == 0) return t1; |
|
717 |
||
718 |
// If the shift is a constant, shift the bounds of the type, |
|
719 |
// unless this could lead to an overflow. |
|
720 |
if (!r1->is_con()) { |
|
721 |
jint lo = r1->_lo, hi = r1->_hi; |
|
722 |
if (((lo << shift) >> shift) == lo && |
|
723 |
((hi << shift) >> shift) == hi) { |
|
724 |
// No overflow. The range shifts up cleanly. |
|
725 |
return TypeInt::make((jint)lo << (jint)shift, |
|
726 |
(jint)hi << (jint)shift, |
|
727 |
MAX2(r1->_widen,r2->_widen)); |
|
728 |
} |
|
729 |
return TypeInt::INT; |
|
730 |
} |
|
731 |
||
732 |
return TypeInt::make( (jint)r1->get_con() << (jint)shift ); |
|
733 |
} |
|
734 |
||
735 |
//============================================================================= |
|
736 |
//------------------------------Identity--------------------------------------- |
|
737 |
Node *LShiftLNode::Identity( PhaseTransform *phase ) { |
|
738 |
const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int |
|
739 |
return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerLong - 1 ) ) == 0 ) ? in(1) : this; |
|
740 |
} |
|
741 |
||
742 |
//------------------------------Ideal------------------------------------------ |
|
743 |
// If the right input is a constant, and the left input is an add of a |
|
744 |
// constant, flatten the tree: (X+con1)<<con0 ==> X<<con0 + con1<<con0 |
|
745 |
Node *LShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
|
746 |
const Type *t = phase->type( in(2) ); |
|
747 |
if( t == Type::TOP ) return NULL; // Right input is dead |
|
748 |
const TypeInt *t2 = t->isa_int(); |
|
749 |
if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant |
|
750 |
const int con = t2->get_con() & ( BitsPerLong - 1 ); // masked shift count |
|
751 |
||
752 |
if ( con == 0 ) return NULL; // let Identity() handle 0 shift count |
|
753 |
||
754 |
// Left input is an add of a constant? |
|
755 |
Node *add1 = in(1); |
|
756 |
int add1_op = add1->Opcode(); |
|
757 |
if( add1_op == Op_AddL ) { // Left input is an add? |
|
758 |
// Avoid dead data cycles from dead loops |
|
759 |
assert( add1 != add1->in(1), "dead loop in LShiftLNode::Ideal" ); |
|
760 |
const TypeLong *t12 = phase->type(add1->in(2))->isa_long(); |
|
761 |
if( t12 && t12->is_con() ){ // Left input is an add of a con? |
|
762 |
// Compute X << con0 |
|
763 |
Node *lsh = phase->transform( new (phase->C, 3) LShiftLNode( add1->in(1), in(2) ) ); |
|
764 |
// Compute X<<con0 + (con1<<con0) |
|
765 |
return new (phase->C, 3) AddLNode( lsh, phase->longcon(t12->get_con() << con)); |
|
766 |
} |
|
767 |
} |
|
768 |
||
769 |
// Check for "(x>>c0)<<c0" which just masks off low bits |
|
770 |
if( (add1_op == Op_RShiftL || add1_op == Op_URShiftL ) && |
|
771 |
add1->in(2) == in(2) ) |
|
772 |
// Convert to "(x & -(1<<c0))" |
|
773 |
return new (phase->C, 3) AndLNode(add1->in(1),phase->longcon( -(CONST64(1)<<con))); |
|
774 |
||
775 |
// Check for "((x>>c0) & Y)<<c0" which just masks off more low bits |
|
776 |
if( add1_op == Op_AndL ) { |
|
777 |
Node *add2 = add1->in(1); |
|
778 |
int add2_op = add2->Opcode(); |
|
779 |
if( (add2_op == Op_RShiftL || add2_op == Op_URShiftL ) && |
|
780 |
add2->in(2) == in(2) ) { |
|
781 |
// Convert to "(x & (Y<<c0))" |
|
782 |
Node *y_sh = phase->transform( new (phase->C, 3) LShiftLNode( add1->in(2), in(2) ) ); |
|
783 |
return new (phase->C, 3) AndLNode( add2->in(1), y_sh ); |
|
784 |
} |
|
785 |
} |
|
786 |
||
787 |
// Check for ((x & ((CONST64(1)<<(64-c0))-1)) << c0) which ANDs off high bits |
|
788 |
// before shifting them away. |
|
789 |
const jlong bits_mask = ((jlong)CONST64(1) << (jlong)(BitsPerJavaInteger*2 - con)) - CONST64(1); |
|
790 |
if( add1_op == Op_AndL && |
|
791 |
phase->type(add1->in(2)) == TypeLong::make( bits_mask ) ) |
|
792 |
return new (phase->C, 3) LShiftLNode( add1->in(1), in(2) ); |
|
793 |
||
794 |
return NULL; |
|
795 |
} |
|
796 |
||
797 |
//------------------------------Value------------------------------------------ |
|
798 |
// A LShiftLNode shifts its input2 left by input1 amount. |
|
799 |
const Type *LShiftLNode::Value( PhaseTransform *phase ) const { |
|
800 |
const Type *t1 = phase->type( in(1) ); |
|
801 |
const Type *t2 = phase->type( in(2) ); |
|
802 |
// Either input is TOP ==> the result is TOP |
|
803 |
if( t1 == Type::TOP ) return Type::TOP; |
|
804 |
if( t2 == Type::TOP ) return Type::TOP; |
|
805 |
||
806 |
// Left input is ZERO ==> the result is ZERO. |
|
807 |
if( t1 == TypeLong::ZERO ) return TypeLong::ZERO; |
|
808 |
// Shift by zero does nothing |
|
809 |
if( t2 == TypeInt::ZERO ) return t1; |
|
810 |
||
811 |
// Either input is BOTTOM ==> the result is BOTTOM |
|
812 |
if( (t1 == TypeLong::LONG) || (t2 == TypeInt::INT) || |
|
813 |
(t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) ) |
|
814 |
return TypeLong::LONG; |
|
815 |
||
816 |
const TypeLong *r1 = t1->is_long(); // Handy access |
|
817 |
const TypeInt *r2 = t2->is_int(); // Handy access |
|
818 |
||
819 |
if (!r2->is_con()) |
|
820 |
return TypeLong::LONG; |
|
821 |
||
822 |
uint shift = r2->get_con(); |
|
823 |
shift &= (BitsPerJavaInteger*2)-1; // semantics of Java shifts |
|
824 |
// Shift by a multiple of 64 does nothing: |
|
825 |
if (shift == 0) return t1; |
|
826 |
||
827 |
// If the shift is a constant, shift the bounds of the type, |
|
828 |
// unless this could lead to an overflow. |
|
829 |
if (!r1->is_con()) { |
|
830 |
jlong lo = r1->_lo, hi = r1->_hi; |
|
831 |
if (((lo << shift) >> shift) == lo && |
|
832 |
((hi << shift) >> shift) == hi) { |
|
833 |
// No overflow. The range shifts up cleanly. |
|
834 |
return TypeLong::make((jlong)lo << (jint)shift, |
|
835 |
(jlong)hi << (jint)shift, |
|
836 |
MAX2(r1->_widen,r2->_widen)); |
|
837 |
} |
|
838 |
return TypeLong::LONG; |
|
839 |
} |
|
840 |
||
841 |
return TypeLong::make( (jlong)r1->get_con() << (jint)shift ); |
|
842 |
} |
|
843 |
||
844 |
//============================================================================= |
|
845 |
//------------------------------Identity--------------------------------------- |
|
846 |
Node *RShiftINode::Identity( PhaseTransform *phase ) { |
|
847 |
const TypeInt *t2 = phase->type(in(2))->isa_int(); |
|
848 |
if( !t2 ) return this; |
|
849 |
if ( t2->is_con() && ( t2->get_con() & ( BitsPerInt - 1 ) ) == 0 ) |
|
850 |
return in(1); |
|
851 |
||
852 |
// Check for useless sign-masking |
|
853 |
if( in(1)->Opcode() == Op_LShiftI && |
|
854 |
in(1)->req() == 3 && |
|
855 |
in(1)->in(2) == in(2) && |
|
856 |
t2->is_con() ) { |
|
857 |
uint shift = t2->get_con(); |
|
858 |
shift &= BitsPerJavaInteger-1; // semantics of Java shifts |
|
859 |
// Compute masks for which this shifting doesn't change |
|
860 |
int lo = (-1 << (BitsPerJavaInteger - shift-1)); // FFFF8000 |
|
861 |
int hi = ~lo; // 00007FFF |
|
862 |
const TypeInt *t11 = phase->type(in(1)->in(1))->isa_int(); |
|
863 |
if( !t11 ) return this; |
|
864 |
// Does actual value fit inside of mask? |
|
865 |
if( lo <= t11->_lo && t11->_hi <= hi ) |
|
866 |
return in(1)->in(1); // Then shifting is a nop |
|
867 |
} |
|
868 |
||
869 |
return this; |
|
870 |
} |
|
871 |
||
872 |
//------------------------------Ideal------------------------------------------ |
|
873 |
Node *RShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) { |
|
874 |
// Inputs may be TOP if they are dead. |
|
875 |
const TypeInt *t1 = phase->type( in(1) )->isa_int(); |
|
876 |
if( !t1 ) return NULL; // Left input is an integer |
|
877 |
const TypeInt *t2 = phase->type( in(2) )->isa_int(); |
|
878 |
if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant |
|
879 |
const TypeInt *t3; // type of in(1).in(2) |
|
880 |
int shift = t2->get_con(); |
|
881 |
shift &= BitsPerJavaInteger-1; // semantics of Java shifts |
|
882 |
||
883 |
if ( shift == 0 ) return NULL; // let Identity() handle 0 shift count |
|
884 |
||
885 |
// Check for (x & 0xFF000000) >> 24, whose mask can be made smaller. |
|
886 |
// Such expressions arise normally from shift chains like (byte)(x >> 24). |
|
887 |
const Node *mask = in(1); |
|
888 |
if( mask->Opcode() == Op_AndI && |
|
889 |
(t3 = phase->type(mask->in(2))->isa_int()) && |
|
890 |
t3->is_con() ) { |
|
891 |
Node *x = mask->in(1); |
|
892 |
jint maskbits = t3->get_con(); |
|
893 |
// Convert to "(x >> shift) & (mask >> shift)" |
|
894 |
Node *shr_nomask = phase->transform( new (phase->C, 3) RShiftINode(mask->in(1), in(2)) ); |
|
895 |
return new (phase->C, 3) AndINode(shr_nomask, phase->intcon( maskbits >> shift)); |
|
896 |
} |
|
897 |
||
898 |
// Check for "(short[i] <<16)>>16" which simply sign-extends |
|
899 |
const Node *shl = in(1); |
|
900 |
if( shl->Opcode() != Op_LShiftI ) return NULL; |
|
901 |
||
902 |
if( shift == 16 && |
|
903 |
(t3 = phase->type(shl->in(2))->isa_int()) && |
|
904 |
t3->is_con(16) ) { |
|
905 |
Node *ld = shl->in(1); |
|
906 |
if( ld->Opcode() == Op_LoadS ) { |
|
907 |
// Sign extension is just useless here. Return a RShiftI of zero instead |
|
908 |
// returning 'ld' directly. We cannot return an old Node directly as |
|
909 |
// that is the job of 'Identity' calls and Identity calls only work on |
|
910 |
// direct inputs ('ld' is an extra Node removed from 'this'). The |
|
911 |
// combined optimization requires Identity only return direct inputs. |
|
912 |
set_req(1, ld); |
|
913 |
set_req(2, phase->intcon(0)); |
|
914 |
return this; |
|
915 |
} |
|
916 |
else if( ld->Opcode() == Op_LoadC ) |
|
917 |
// Replace zero-extension-load with sign-extension-load |
|
918 |
return new (phase->C, 3) LoadSNode( ld->in(MemNode::Control), |
|
919 |
ld->in(MemNode::Memory), |
|
920 |
ld->in(MemNode::Address), |
|
921 |
ld->adr_type()); |
|
922 |
} |
|
923 |
||
924 |
// Check for "(byte[i] <<24)>>24" which simply sign-extends |
|
925 |
if( shift == 24 && |
|
926 |
(t3 = phase->type(shl->in(2))->isa_int()) && |
|
927 |
t3->is_con(24) ) { |
|
928 |
Node *ld = shl->in(1); |
|
929 |
if( ld->Opcode() == Op_LoadB ) { |
|
930 |
// Sign extension is just useless here |
|
931 |
set_req(1, ld); |
|
932 |
set_req(2, phase->intcon(0)); |
|
933 |
return this; |
|
934 |
} |
|
935 |
} |
|
936 |
||
937 |
return NULL; |
|
938 |
} |
|
939 |
||
940 |
//------------------------------Value------------------------------------------ |
|
941 |
// A RShiftINode shifts its input2 right by input1 amount. |
|
942 |
const Type *RShiftINode::Value( PhaseTransform *phase ) const { |
|
943 |
const Type *t1 = phase->type( in(1) ); |
|
944 |
const Type *t2 = phase->type( in(2) ); |
|
945 |
// Either input is TOP ==> the result is TOP |
|
946 |
if( t1 == Type::TOP ) return Type::TOP; |
|
947 |
if( t2 == Type::TOP ) return Type::TOP; |
|
948 |
||
949 |
// Left input is ZERO ==> the result is ZERO. |
|
950 |
if( t1 == TypeInt::ZERO ) return TypeInt::ZERO; |
|
951 |
// Shift by zero does nothing |
|
952 |
if( t2 == TypeInt::ZERO ) return t1; |
|
953 |
||
954 |
// Either input is BOTTOM ==> the result is BOTTOM |
|
955 |
if (t1 == Type::BOTTOM || t2 == Type::BOTTOM) |
|
956 |
return TypeInt::INT; |
|
957 |
||
958 |
if (t2 == TypeInt::INT) |
|
959 |
return TypeInt::INT; |
|
960 |
||
961 |
const TypeInt *r1 = t1->is_int(); // Handy access |
|
962 |
const TypeInt *r2 = t2->is_int(); // Handy access |
|
963 |
||
964 |
// If the shift is a constant, just shift the bounds of the type. |
|
965 |
// For example, if the shift is 31, we just propagate sign bits. |
|
966 |
if (r2->is_con()) { |
|
967 |
uint shift = r2->get_con(); |
|
968 |
shift &= BitsPerJavaInteger-1; // semantics of Java shifts |
|
969 |
// Shift by a multiple of 32 does nothing: |
|
970 |
if (shift == 0) return t1; |
|
971 |
// Calculate reasonably aggressive bounds for the result. |
|
972 |
// This is necessary if we are to correctly type things |
|
973 |
// like (x<<24>>24) == ((byte)x). |
|
974 |
jint lo = (jint)r1->_lo >> (jint)shift; |
|
975 |
jint hi = (jint)r1->_hi >> (jint)shift; |
|
976 |
assert(lo <= hi, "must have valid bounds"); |
|
977 |
const TypeInt* ti = TypeInt::make(lo, hi, MAX2(r1->_widen,r2->_widen)); |
|
978 |
#ifdef ASSERT |
|
979 |
// Make sure we get the sign-capture idiom correct. |
|
980 |
if (shift == BitsPerJavaInteger-1) { |
|
981 |
if (r1->_lo >= 0) assert(ti == TypeInt::ZERO, ">>31 of + is 0"); |
|
982 |
if (r1->_hi < 0) assert(ti == TypeInt::MINUS_1, ">>31 of - is -1"); |
|
983 |
} |
|
984 |
#endif |
|
985 |
return ti; |
|
986 |
} |
|
987 |
||
988 |
if( !r1->is_con() || !r2->is_con() ) |
|
989 |
return TypeInt::INT; |
|
990 |
||
991 |
// Signed shift right |
|
992 |
return TypeInt::make( r1->get_con() >> (r2->get_con()&31) ); |
|
993 |
} |
|
994 |
||
995 |
//============================================================================= |
|
996 |
//------------------------------Identity--------------------------------------- |
|
997 |
Node *RShiftLNode::Identity( PhaseTransform *phase ) { |
|
998 |
const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int |
|
999 |
return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerLong - 1 ) ) == 0 ) ? in(1) : this; |
|
1000 |
} |
|
1001 |
||
1002 |
//------------------------------Value------------------------------------------ |
|
1003 |
// A RShiftLNode shifts its input2 right by input1 amount. |
|
1004 |
const Type *RShiftLNode::Value( PhaseTransform *phase ) const { |
|
1005 |
const Type *t1 = phase->type( in(1) ); |
|
1006 |
const Type *t2 = phase->type( in(2) ); |
|
1007 |
// Either input is TOP ==> the result is TOP |
|
1008 |
if( t1 == Type::TOP ) return Type::TOP; |
|
1009 |
if( t2 == Type::TOP ) return Type::TOP; |
|
1010 |
||
1011 |
// Left input is ZERO ==> the result is ZERO. |
|
1012 |
if( t1 == TypeLong::ZERO ) return TypeLong::ZERO; |
|
1013 |
// Shift by zero does nothing |
|
1014 |
if( t2 == TypeInt::ZERO ) return t1; |
|
1015 |
||
1016 |
// Either input is BOTTOM ==> the result is BOTTOM |
|
1017 |
if (t1 == Type::BOTTOM || t2 == Type::BOTTOM) |
|
1018 |
return TypeLong::LONG; |
|
1019 |
||
1020 |
if (t2 == TypeInt::INT) |
|
1021 |
return TypeLong::LONG; |
|
1022 |
||
1023 |
const TypeLong *r1 = t1->is_long(); // Handy access |
|
1024 |
const TypeInt *r2 = t2->is_int (); // Handy access |
|
1025 |
||
1026 |
// If the shift is a constant, just shift the bounds of the type. |
|
1027 |
// For example, if the shift is 63, we just propagate sign bits. |
|
1028 |
if (r2->is_con()) { |
|
1029 |
uint shift = r2->get_con(); |
|
1030 |
shift &= (2*BitsPerJavaInteger)-1; // semantics of Java shifts |
|
1031 |
// Shift by a multiple of 64 does nothing: |
|
1032 |
if (shift == 0) return t1; |
|
1033 |
// Calculate reasonably aggressive bounds for the result. |
|
1034 |
// This is necessary if we are to correctly type things |
|
1035 |
// like (x<<24>>24) == ((byte)x). |
|
1036 |
jlong lo = (jlong)r1->_lo >> (jlong)shift; |
|
1037 |
jlong hi = (jlong)r1->_hi >> (jlong)shift; |
|
1038 |
assert(lo <= hi, "must have valid bounds"); |
|
1039 |
const TypeLong* tl = TypeLong::make(lo, hi, MAX2(r1->_widen,r2->_widen)); |
|
1040 |
#ifdef ASSERT |
|
1041 |
// Make sure we get the sign-capture idiom correct. |
|
1042 |
if (shift == (2*BitsPerJavaInteger)-1) { |
|
1043 |
if (r1->_lo >= 0) assert(tl == TypeLong::ZERO, ">>63 of + is 0"); |
|
1044 |
if (r1->_hi < 0) assert(tl == TypeLong::MINUS_1, ">>63 of - is -1"); |
|
1045 |
} |
|
1046 |
#endif |
|
1047 |
return tl; |
|
1048 |
} |
|
1049 |
||
1050 |
return TypeLong::LONG; // Give up |
|
1051 |
} |
|
1052 |
||
1053 |
//============================================================================= |
|
1054 |
//------------------------------Identity--------------------------------------- |
|
1055 |
Node *URShiftINode::Identity( PhaseTransform *phase ) { |
|
1056 |
const TypeInt *ti = phase->type( in(2) )->isa_int(); |
|
1057 |
if ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerInt - 1 ) ) == 0 ) return in(1); |
|
1058 |
||
1059 |
// Check for "((x << LogBytesPerWord) + (wordSize-1)) >> LogBytesPerWord" which is just "x". |
|
1060 |
// Happens during new-array length computation. |
|
1061 |
// Safe if 'x' is in the range [0..(max_int>>LogBytesPerWord)] |
|
1062 |
Node *add = in(1); |
|
1063 |
if( add->Opcode() == Op_AddI ) { |
|
1064 |
const TypeInt *t2 = phase->type(add->in(2))->isa_int(); |
|
1065 |
if( t2 && t2->is_con(wordSize - 1) && |
|
1066 |
add->in(1)->Opcode() == Op_LShiftI ) { |
|
1067 |
// Check that shift_counts are LogBytesPerWord |
|
1068 |
Node *lshift_count = add->in(1)->in(2); |
|
1069 |
const TypeInt *t_lshift_count = phase->type(lshift_count)->isa_int(); |
|
1070 |
if( t_lshift_count && t_lshift_count->is_con(LogBytesPerWord) && |
|
1071 |
t_lshift_count == phase->type(in(2)) ) { |
|
1072 |
Node *x = add->in(1)->in(1); |
|
1073 |
const TypeInt *t_x = phase->type(x)->isa_int(); |
|
1074 |
if( t_x != NULL && 0 <= t_x->_lo && t_x->_hi <= (max_jint>>LogBytesPerWord) ) { |
|
1075 |
return x; |
|
1076 |
} |
|
1077 |
} |
|
1078 |
} |
|
1079 |
} |
|
1080 |
||
1081 |
return (phase->type(in(2))->higher_equal(TypeInt::ZERO)) ? in(1) : this; |
|
1082 |
} |
|
1083 |
||
1084 |
//------------------------------Ideal------------------------------------------ |
|
1085 |
Node *URShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) { |
|
1086 |
const TypeInt *t2 = phase->type( in(2) )->isa_int(); |
|
1087 |
if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant |
|
1088 |
const int con = t2->get_con() & 31; // Shift count is always masked |
|
1089 |
if ( con == 0 ) return NULL; // let Identity() handle a 0 shift count |
|
1090 |
// We'll be wanting the right-shift amount as a mask of that many bits |
|
1091 |
const int mask = right_n_bits(BitsPerJavaInteger - con); |
|
1092 |
||
1093 |
int in1_op = in(1)->Opcode(); |
|
1094 |
||
1095 |
// Check for ((x>>>a)>>>b) and replace with (x>>>(a+b)) when a+b < 32 |
|
1096 |
if( in1_op == Op_URShiftI ) { |
|
1097 |
const TypeInt *t12 = phase->type( in(1)->in(2) )->isa_int(); |
|
1098 |
if( t12 && t12->is_con() ) { // Right input is a constant |
|
1099 |
assert( in(1) != in(1)->in(1), "dead loop in URShiftINode::Ideal" ); |
|
1100 |
const int con2 = t12->get_con() & 31; // Shift count is always masked |
|
1101 |
const int con3 = con+con2; |
|
1102 |
if( con3 < 32 ) // Only merge shifts if total is < 32 |
|
1103 |
return new (phase->C, 3) URShiftINode( in(1)->in(1), phase->intcon(con3) ); |
|
1104 |
} |
|
1105 |
} |
|
1106 |
||
1107 |
// Check for ((x << z) + Y) >>> z. Replace with x + con>>>z |
|
1108 |
// The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z". |
|
1109 |
// If Q is "X << z" the rounding is useless. Look for patterns like |
|
1110 |
// ((X<<Z) + Y) >>> Z and replace with (X + Y>>>Z) & Z-mask. |
|
1111 |
Node *add = in(1); |
|
1112 |
if( in1_op == Op_AddI ) { |
|
1113 |
Node *lshl = add->in(1); |
|
1114 |
if( lshl->Opcode() == Op_LShiftI && |
|
1115 |
phase->type(lshl->in(2)) == t2 ) { |
|
1116 |
Node *y_z = phase->transform( new (phase->C, 3) URShiftINode(add->in(2),in(2)) ); |
|
1117 |
Node *sum = phase->transform( new (phase->C, 3) AddINode( lshl->in(1), y_z ) ); |
|
1118 |
return new (phase->C, 3) AndINode( sum, phase->intcon(mask) ); |
|
1119 |
} |
|
1120 |
} |
|
1121 |
||
1122 |
// Check for (x & mask) >>> z. Replace with (x >>> z) & (mask >>> z) |
|
1123 |
// This shortens the mask. Also, if we are extracting a high byte and |
|
1124 |
// storing it to a buffer, the mask will be removed completely. |
|
1125 |
Node *andi = in(1); |
|
1126 |
if( in1_op == Op_AndI ) { |
|
1127 |
const TypeInt *t3 = phase->type( andi->in(2) )->isa_int(); |
|
1128 |
if( t3 && t3->is_con() ) { // Right input is a constant |
|
1129 |
jint mask2 = t3->get_con(); |
|
1130 |
mask2 >>= con; // *signed* shift downward (high-order zeroes do not help) |
|
1131 |
Node *newshr = phase->transform( new (phase->C, 3) URShiftINode(andi->in(1), in(2)) ); |
|
1132 |
return new (phase->C, 3) AndINode(newshr, phase->intcon(mask2)); |
|
1133 |
// The negative values are easier to materialize than positive ones. |
|
1134 |
// A typical case from address arithmetic is ((x & ~15) >> 4). |
|
1135 |
// It's better to change that to ((x >> 4) & ~0) versus |
|
1136 |
// ((x >> 4) & 0x0FFFFFFF). The difference is greatest in LP64. |
|
1137 |
} |
|
1138 |
} |
|
1139 |
||
1140 |
// Check for "(X << z ) >>> z" which simply zero-extends |
|
1141 |
Node *shl = in(1); |
|
1142 |
if( in1_op == Op_LShiftI && |
|
1143 |
phase->type(shl->in(2)) == t2 ) |
|
1144 |
return new (phase->C, 3) AndINode( shl->in(1), phase->intcon(mask) ); |
|
1145 |
||
1146 |
return NULL; |
|
1147 |
} |
|
1148 |
||
1149 |
//------------------------------Value------------------------------------------ |
|
1150 |
// A URShiftINode shifts its input2 right by input1 amount. |
|
1151 |
const Type *URShiftINode::Value( PhaseTransform *phase ) const { |
|
1152 |
// (This is a near clone of RShiftINode::Value.) |
|
1153 |
const Type *t1 = phase->type( in(1) ); |
|
1154 |
const Type *t2 = phase->type( in(2) ); |
|
1155 |
// Either input is TOP ==> the result is TOP |
|
1156 |
if( t1 == Type::TOP ) return Type::TOP; |
|
1157 |
if( t2 == Type::TOP ) return Type::TOP; |
|
1158 |
||
1159 |
// Left input is ZERO ==> the result is ZERO. |
|
1160 |
if( t1 == TypeInt::ZERO ) return TypeInt::ZERO; |
|
1161 |
// Shift by zero does nothing |
|
1162 |
if( t2 == TypeInt::ZERO ) return t1; |
|
1163 |
||
1164 |
// Either input is BOTTOM ==> the result is BOTTOM |
|
1165 |
if (t1 == Type::BOTTOM || t2 == Type::BOTTOM) |
|
1166 |
return TypeInt::INT; |
|
1167 |
||
1168 |
if (t2 == TypeInt::INT) |
|
1169 |
return TypeInt::INT; |
|
1170 |
||
1171 |
const TypeInt *r1 = t1->is_int(); // Handy access |
|
1172 |
const TypeInt *r2 = t2->is_int(); // Handy access |
|
1173 |
||
1174 |
if (r2->is_con()) { |
|
1175 |
uint shift = r2->get_con(); |
|
1176 |
shift &= BitsPerJavaInteger-1; // semantics of Java shifts |
|
1177 |
// Shift by a multiple of 32 does nothing: |
|
1178 |
if (shift == 0) return t1; |
|
1179 |
// Calculate reasonably aggressive bounds for the result. |
|
1180 |
jint lo = (juint)r1->_lo >> (juint)shift; |
|
1181 |
jint hi = (juint)r1->_hi >> (juint)shift; |
|
1182 |
if (r1->_hi >= 0 && r1->_lo < 0) { |
|
1183 |
// If the type has both negative and positive values, |
|
1184 |
// there are two separate sub-domains to worry about: |
|
1185 |
// The positive half and the negative half. |
|
1186 |
jint neg_lo = lo; |
|
1187 |
jint neg_hi = (juint)-1 >> (juint)shift; |
|
1188 |
jint pos_lo = (juint) 0 >> (juint)shift; |
|
1189 |
jint pos_hi = hi; |
|
1190 |
lo = MIN2(neg_lo, pos_lo); // == 0 |
|
1191 |
hi = MAX2(neg_hi, pos_hi); // == -1 >>> shift; |
|
1192 |
} |
|
1193 |
assert(lo <= hi, "must have valid bounds"); |
|
1194 |
const TypeInt* ti = TypeInt::make(lo, hi, MAX2(r1->_widen,r2->_widen)); |
|
1195 |
#ifdef ASSERT |
|
1196 |
// Make sure we get the sign-capture idiom correct. |
|
1197 |
if (shift == BitsPerJavaInteger-1) { |
|
1198 |
if (r1->_lo >= 0) assert(ti == TypeInt::ZERO, ">>>31 of + is 0"); |
|
1199 |
if (r1->_hi < 0) assert(ti == TypeInt::ONE, ">>>31 of - is +1"); |
|
1200 |
} |
|
1201 |
#endif |
|
1202 |
return ti; |
|
1203 |
} |
|
1204 |
||
1205 |
// |
|
1206 |
// Do not support shifted oops in info for GC |
|
1207 |
// |
|
1208 |
// else if( t1->base() == Type::InstPtr ) { |
|
1209 |
// |
|
1210 |
// const TypeInstPtr *o = t1->is_instptr(); |
|
1211 |
// if( t1->singleton() ) |
|
1212 |
// return TypeInt::make( ((uint32)o->const_oop() + o->_offset) >> shift ); |
|
1213 |
// } |
|
1214 |
// else if( t1->base() == Type::KlassPtr ) { |
|
1215 |
// const TypeKlassPtr *o = t1->is_klassptr(); |
|
1216 |
// if( t1->singleton() ) |
|
1217 |
// return TypeInt::make( ((uint32)o->const_oop() + o->_offset) >> shift ); |
|
1218 |
// } |
|
1219 |
||
1220 |
return TypeInt::INT; |
|
1221 |
} |
|
1222 |
||
1223 |
//============================================================================= |
|
1224 |
//------------------------------Identity--------------------------------------- |
|
1225 |
Node *URShiftLNode::Identity( PhaseTransform *phase ) { |
|
1226 |
const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int |
|
1227 |
return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerLong - 1 ) ) == 0 ) ? in(1) : this; |
|
1228 |
} |
|
1229 |
||
1230 |
//------------------------------Ideal------------------------------------------ |
|
1231 |
Node *URShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
|
1232 |
const TypeInt *t2 = phase->type( in(2) )->isa_int(); |
|
1233 |
if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant |
|
1234 |
const int con = t2->get_con() & ( BitsPerLong - 1 ); // Shift count is always masked |
|
1235 |
if ( con == 0 ) return NULL; // let Identity() handle a 0 shift count |
|
1236 |
// note: mask computation below does not work for 0 shift count |
|
1237 |
// We'll be wanting the right-shift amount as a mask of that many bits |
|
1238 |
const jlong mask = (((jlong)CONST64(1) << (jlong)(BitsPerJavaInteger*2 - con)) -1); |
|
1239 |
||
1240 |
// Check for ((x << z) + Y) >>> z. Replace with x + con>>>z |
|
1241 |
// The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z". |
|
1242 |
// If Q is "X << z" the rounding is useless. Look for patterns like |
|
1243 |
// ((X<<Z) + Y) >>> Z and replace with (X + Y>>>Z) & Z-mask. |
|
1244 |
Node *add = in(1); |
|
1245 |
if( add->Opcode() == Op_AddL ) { |
|
1246 |
Node *lshl = add->in(1); |
|
1247 |
if( lshl->Opcode() == Op_LShiftL && |
|
1248 |
phase->type(lshl->in(2)) == t2 ) { |
|
1249 |
Node *y_z = phase->transform( new (phase->C, 3) URShiftLNode(add->in(2),in(2)) ); |
|
1250 |
Node *sum = phase->transform( new (phase->C, 3) AddLNode( lshl->in(1), y_z ) ); |
|
1251 |
return new (phase->C, 3) AndLNode( sum, phase->longcon(mask) ); |
|
1252 |
} |
|
1253 |
} |
|
1254 |
||
1255 |
// Check for (x & mask) >>> z. Replace with (x >>> z) & (mask >>> z) |
|
1256 |
// This shortens the mask. Also, if we are extracting a high byte and |
|
1257 |
// storing it to a buffer, the mask will be removed completely. |
|
1258 |
Node *andi = in(1); |
|
1259 |
if( andi->Opcode() == Op_AndL ) { |
|
1260 |
const TypeLong *t3 = phase->type( andi->in(2) )->isa_long(); |
|
1261 |
if( t3 && t3->is_con() ) { // Right input is a constant |
|
1262 |
jlong mask2 = t3->get_con(); |
|
1263 |
mask2 >>= con; // *signed* shift downward (high-order zeroes do not help) |
|
1264 |
Node *newshr = phase->transform( new (phase->C, 3) URShiftLNode(andi->in(1), in(2)) ); |
|
1265 |
return new (phase->C, 3) AndLNode(newshr, phase->longcon(mask2)); |
|
1266 |
} |
|
1267 |
} |
|
1268 |
||
1269 |
// Check for "(X << z ) >>> z" which simply zero-extends |
|
1270 |
Node *shl = in(1); |
|
1271 |
if( shl->Opcode() == Op_LShiftL && |
|
1272 |
phase->type(shl->in(2)) == t2 ) |
|
1273 |
return new (phase->C, 3) AndLNode( shl->in(1), phase->longcon(mask) ); |
|
1274 |
||
1275 |
return NULL; |
|
1276 |
} |
|
1277 |
||
1278 |
//------------------------------Value------------------------------------------ |
|
1279 |
// A URShiftINode shifts its input2 right by input1 amount. |
|
1280 |
const Type *URShiftLNode::Value( PhaseTransform *phase ) const { |
|
1281 |
// (This is a near clone of RShiftLNode::Value.) |
|
1282 |
const Type *t1 = phase->type( in(1) ); |
|
1283 |
const Type *t2 = phase->type( in(2) ); |
|
1284 |
// Either input is TOP ==> the result is TOP |
|
1285 |
if( t1 == Type::TOP ) return Type::TOP; |
|
1286 |
if( t2 == Type::TOP ) return Type::TOP; |
|
1287 |
||
1288 |
// Left input is ZERO ==> the result is ZERO. |
|
1289 |
if( t1 == TypeLong::ZERO ) return TypeLong::ZERO; |
|
1290 |
// Shift by zero does nothing |
|
1291 |
if( t2 == TypeInt::ZERO ) return t1; |
|
1292 |
||
1293 |
// Either input is BOTTOM ==> the result is BOTTOM |
|
1294 |
if (t1 == Type::BOTTOM || t2 == Type::BOTTOM) |
|
1295 |
return TypeLong::LONG; |
|
1296 |
||
1297 |
if (t2 == TypeInt::INT) |
|
1298 |
return TypeLong::LONG; |
|
1299 |
||
1300 |
const TypeLong *r1 = t1->is_long(); // Handy access |
|
1301 |
const TypeInt *r2 = t2->is_int (); // Handy access |
|
1302 |
||
1303 |
if (r2->is_con()) { |
|
1304 |
uint shift = r2->get_con(); |
|
1305 |
shift &= (2*BitsPerJavaInteger)-1; // semantics of Java shifts |
|
1306 |
// Shift by a multiple of 64 does nothing: |
|
1307 |
if (shift == 0) return t1; |
|
1308 |
// Calculate reasonably aggressive bounds for the result. |
|
1309 |
jlong lo = (julong)r1->_lo >> (juint)shift; |
|
1310 |
jlong hi = (julong)r1->_hi >> (juint)shift; |
|
1311 |
if (r1->_hi >= 0 && r1->_lo < 0) { |
|
1312 |
// If the type has both negative and positive values, |
|
1313 |
// there are two separate sub-domains to worry about: |
|
1314 |
// The positive half and the negative half. |
|
1315 |
jlong neg_lo = lo; |
|
1316 |
jlong neg_hi = (julong)-1 >> (juint)shift; |
|
1317 |
jlong pos_lo = (julong) 0 >> (juint)shift; |
|
1318 |
jlong pos_hi = hi; |
|
1319 |
//lo = MIN2(neg_lo, pos_lo); // == 0 |
|
1320 |
lo = neg_lo < pos_lo ? neg_lo : pos_lo; |
|
1321 |
//hi = MAX2(neg_hi, pos_hi); // == -1 >>> shift; |
|
1322 |
hi = neg_hi > pos_hi ? neg_hi : pos_hi; |
|
1323 |
} |
|
1324 |
assert(lo <= hi, "must have valid bounds"); |
|
1325 |
const TypeLong* tl = TypeLong::make(lo, hi, MAX2(r1->_widen,r2->_widen)); |
|
1326 |
#ifdef ASSERT |
|
1327 |
// Make sure we get the sign-capture idiom correct. |
|
1328 |
if (shift == (2*BitsPerJavaInteger)-1) { |
|
1329 |
if (r1->_lo >= 0) assert(tl == TypeLong::ZERO, ">>>63 of + is 0"); |
|
1330 |
if (r1->_hi < 0) assert(tl == TypeLong::ONE, ">>>63 of - is +1"); |
|
1331 |
} |
|
1332 |
#endif |
|
1333 |
return tl; |
|
1334 |
} |
|
1335 |
||
1336 |
return TypeLong::LONG; // Give up |
|
1337 |
} |