author | xdono |
Mon, 15 Dec 2008 16:55:11 -0800 | |
changeset 1623 | a0dd9009e992 |
parent 1217 | 5eb97f366a6a |
child 2131 | 98f9cef66a34 |
permissions | -rw-r--r-- |
1 | 1 |
/* |
1217 | 2 |
* Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved. |
1 | 3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 |
* |
|
5 |
* This code is free software; you can redistribute it and/or modify it |
|
6 |
* under the terms of the GNU General Public License version 2 only, as |
|
7 |
* published by the Free Software Foundation. |
|
8 |
* |
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT |
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that |
|
13 |
* accompanied this code). |
|
14 |
* |
|
15 |
* You should have received a copy of the GNU General Public License version |
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation, |
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 |
* |
|
19 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, |
|
20 |
* CA 95054 USA or visit www.sun.com if you need additional information or |
|
21 |
* have any questions. |
|
22 |
* |
|
23 |
*/ |
|
24 |
||
25 |
#include "incls/_precompiled.incl" |
|
26 |
#include "incls/_coalesce.cpp.incl" |
|
27 |
||
28 |
//============================================================================= |
|
29 |
//------------------------------reset_uf_map----------------------------------- |
|
30 |
void PhaseChaitin::reset_uf_map( uint maxlrg ) { |
|
31 |
_maxlrg = maxlrg; |
|
32 |
// Force the Union-Find mapping to be at least this large |
|
33 |
_uf_map.extend(_maxlrg,0); |
|
34 |
// Initialize it to be the ID mapping. |
|
35 |
for( uint i=0; i<_maxlrg; i++ ) |
|
36 |
_uf_map.map(i,i); |
|
37 |
} |
|
38 |
||
39 |
//------------------------------compress_uf_map-------------------------------- |
|
40 |
// Make all Nodes map directly to their final live range; no need for |
|
41 |
// the Union-Find mapping after this call. |
|
42 |
void PhaseChaitin::compress_uf_map_for_nodes( ) { |
|
43 |
// For all Nodes, compress mapping |
|
44 |
uint unique = _names.Size(); |
|
45 |
for( uint i=0; i<unique; i++ ) { |
|
46 |
uint lrg = _names[i]; |
|
47 |
uint compressed_lrg = Find(lrg); |
|
48 |
if( lrg != compressed_lrg ) |
|
49 |
_names.map(i,compressed_lrg); |
|
50 |
} |
|
51 |
} |
|
52 |
||
53 |
//------------------------------Find------------------------------------------- |
|
54 |
// Straight out of Tarjan's union-find algorithm |
|
55 |
uint PhaseChaitin::Find_compress( uint lrg ) { |
|
56 |
uint cur = lrg; |
|
57 |
uint next = _uf_map[cur]; |
|
58 |
while( next != cur ) { // Scan chain of equivalences |
|
59 |
assert( next < cur, "always union smaller" ); |
|
60 |
cur = next; // until find a fixed-point |
|
61 |
next = _uf_map[cur]; |
|
62 |
} |
|
63 |
// Core of union-find algorithm: update chain of |
|
64 |
// equivalences to be equal to the root. |
|
65 |
while( lrg != next ) { |
|
66 |
uint tmp = _uf_map[lrg]; |
|
67 |
_uf_map.map(lrg, next); |
|
68 |
lrg = tmp; |
|
69 |
} |
|
70 |
return lrg; |
|
71 |
} |
|
72 |
||
73 |
//------------------------------Find------------------------------------------- |
|
74 |
// Straight out of Tarjan's union-find algorithm |
|
75 |
uint PhaseChaitin::Find_compress( const Node *n ) { |
|
76 |
uint lrg = Find_compress(_names[n->_idx]); |
|
77 |
_names.map(n->_idx,lrg); |
|
78 |
return lrg; |
|
79 |
} |
|
80 |
||
81 |
//------------------------------Find_const------------------------------------- |
|
82 |
// Like Find above, but no path compress, so bad asymptotic behavior |
|
83 |
uint PhaseChaitin::Find_const( uint lrg ) const { |
|
84 |
if( !lrg ) return lrg; // Ignore the zero LRG |
|
85 |
// Off the end? This happens during debugging dumps when you got |
|
86 |
// brand new live ranges but have not told the allocator yet. |
|
87 |
if( lrg >= _maxlrg ) return lrg; |
|
88 |
uint next = _uf_map[lrg]; |
|
89 |
while( next != lrg ) { // Scan chain of equivalences |
|
90 |
assert( next < lrg, "always union smaller" ); |
|
91 |
lrg = next; // until find a fixed-point |
|
92 |
next = _uf_map[lrg]; |
|
93 |
} |
|
94 |
return next; |
|
95 |
} |
|
96 |
||
97 |
//------------------------------Find------------------------------------------- |
|
98 |
// Like Find above, but no path compress, so bad asymptotic behavior |
|
99 |
uint PhaseChaitin::Find_const( const Node *n ) const { |
|
100 |
if( n->_idx >= _names.Size() ) return 0; // not mapped, usual for debug dump |
|
101 |
return Find_const( _names[n->_idx] ); |
|
102 |
} |
|
103 |
||
104 |
//------------------------------Union------------------------------------------ |
|
105 |
// union 2 sets together. |
|
106 |
void PhaseChaitin::Union( const Node *src_n, const Node *dst_n ) { |
|
107 |
uint src = Find(src_n); |
|
108 |
uint dst = Find(dst_n); |
|
109 |
assert( src, "" ); |
|
110 |
assert( dst, "" ); |
|
111 |
assert( src < _maxlrg, "oob" ); |
|
112 |
assert( dst < _maxlrg, "oob" ); |
|
113 |
assert( src < dst, "always union smaller" ); |
|
114 |
_uf_map.map(dst,src); |
|
115 |
} |
|
116 |
||
117 |
//------------------------------new_lrg---------------------------------------- |
|
118 |
void PhaseChaitin::new_lrg( const Node *x, uint lrg ) { |
|
119 |
// Make the Node->LRG mapping |
|
120 |
_names.extend(x->_idx,lrg); |
|
121 |
// Make the Union-Find mapping an identity function |
|
122 |
_uf_map.extend(lrg,lrg); |
|
123 |
} |
|
124 |
||
125 |
//------------------------------clone_projs------------------------------------ |
|
126 |
// After cloning some rematierialized instruction, clone any MachProj's that |
|
127 |
// follow it. Example: Intel zero is XOR, kills flags. Sparc FP constants |
|
128 |
// use G3 as an address temp. |
|
129 |
int PhaseChaitin::clone_projs( Block *b, uint idx, Node *con, Node *copy, uint &maxlrg ) { |
|
130 |
Block *bcon = _cfg._bbs[con->_idx]; |
|
131 |
uint cindex = bcon->find_node(con); |
|
132 |
Node *con_next = bcon->_nodes[cindex+1]; |
|
133 |
if( con_next->in(0) != con || con_next->Opcode() != Op_MachProj ) |
|
134 |
return false; // No MachProj's follow |
|
135 |
||
136 |
// Copy kills after the cloned constant |
|
137 |
Node *kills = con_next->clone(); |
|
138 |
kills->set_req( 0, copy ); |
|
139 |
b->_nodes.insert( idx, kills ); |
|
140 |
_cfg._bbs.map( kills->_idx, b ); |
|
141 |
new_lrg( kills, maxlrg++ ); |
|
142 |
return true; |
|
143 |
} |
|
144 |
||
145 |
//------------------------------compact---------------------------------------- |
|
146 |
// Renumber the live ranges to compact them. Makes the IFG smaller. |
|
147 |
void PhaseChaitin::compact() { |
|
148 |
// Current the _uf_map contains a series of short chains which are headed |
|
149 |
// by a self-cycle. All the chains run from big numbers to little numbers. |
|
150 |
// The Find() call chases the chains & shortens them for the next Find call. |
|
151 |
// We are going to change this structure slightly. Numbers above a moving |
|
152 |
// wave 'i' are unchanged. Numbers below 'j' point directly to their |
|
153 |
// compacted live range with no further chaining. There are no chains or |
|
154 |
// cycles below 'i', so the Find call no longer works. |
|
155 |
uint j=1; |
|
156 |
uint i; |
|
157 |
for( i=1; i < _maxlrg; i++ ) { |
|
158 |
uint lr = _uf_map[i]; |
|
159 |
// Ignore unallocated live ranges |
|
160 |
if( !lr ) continue; |
|
161 |
assert( lr <= i, "" ); |
|
162 |
_uf_map.map(i, ( lr == i ) ? j++ : _uf_map[lr]); |
|
163 |
} |
|
164 |
if( false ) // PrintOptoCompactLiveRanges |
|
165 |
printf("Compacted %d LRs from %d\n",i-j,i); |
|
166 |
// Now change the Node->LR mapping to reflect the compacted names |
|
167 |
uint unique = _names.Size(); |
|
168 |
for( i=0; i<unique; i++ ) |
|
169 |
_names.map(i,_uf_map[_names[i]]); |
|
170 |
||
171 |
// Reset the Union-Find mapping |
|
172 |
reset_uf_map(j); |
|
173 |
||
174 |
} |
|
175 |
||
176 |
//============================================================================= |
|
177 |
//------------------------------Dump------------------------------------------- |
|
178 |
#ifndef PRODUCT |
|
179 |
void PhaseCoalesce::dump( Node *n ) const { |
|
180 |
// Being a const function means I cannot use 'Find' |
|
181 |
uint r = _phc.Find(n); |
|
182 |
tty->print("L%d/N%d ",r,n->_idx); |
|
183 |
} |
|
184 |
||
185 |
//------------------------------dump------------------------------------------- |
|
186 |
void PhaseCoalesce::dump() const { |
|
187 |
// I know I have a block layout now, so I can print blocks in a loop |
|
188 |
for( uint i=0; i<_phc._cfg._num_blocks; i++ ) { |
|
189 |
uint j; |
|
190 |
Block *b = _phc._cfg._blocks[i]; |
|
191 |
// Print a nice block header |
|
192 |
tty->print("B%d: ",b->_pre_order); |
|
193 |
for( j=1; j<b->num_preds(); j++ ) |
|
194 |
tty->print("B%d ", _phc._cfg._bbs[b->pred(j)->_idx]->_pre_order); |
|
195 |
tty->print("-> "); |
|
196 |
for( j=0; j<b->_num_succs; j++ ) |
|
197 |
tty->print("B%d ",b->_succs[j]->_pre_order); |
|
198 |
tty->print(" IDom: B%d/#%d\n", b->_idom ? b->_idom->_pre_order : 0, b->_dom_depth); |
|
199 |
uint cnt = b->_nodes.size(); |
|
200 |
for( j=0; j<cnt; j++ ) { |
|
201 |
Node *n = b->_nodes[j]; |
|
202 |
dump( n ); |
|
203 |
tty->print("\t%s\t",n->Name()); |
|
204 |
||
205 |
// Dump the inputs |
|
206 |
uint k; // Exit value of loop |
|
207 |
for( k=0; k<n->req(); k++ ) // For all required inputs |
|
208 |
if( n->in(k) ) dump( n->in(k) ); |
|
209 |
else tty->print("_ "); |
|
210 |
int any_prec = 0; |
|
211 |
for( ; k<n->len(); k++ ) // For all precedence inputs |
|
212 |
if( n->in(k) ) { |
|
213 |
if( !any_prec++ ) tty->print(" |"); |
|
214 |
dump( n->in(k) ); |
|
215 |
} |
|
216 |
||
217 |
// Dump node-specific info |
|
218 |
n->dump_spec(tty); |
|
219 |
tty->print("\n"); |
|
220 |
||
221 |
} |
|
222 |
tty->print("\n"); |
|
223 |
} |
|
224 |
} |
|
225 |
#endif |
|
226 |
||
227 |
//------------------------------combine_these_two------------------------------ |
|
228 |
// Combine the live ranges def'd by these 2 Nodes. N2 is an input to N1. |
|
229 |
void PhaseCoalesce::combine_these_two( Node *n1, Node *n2 ) { |
|
230 |
uint lr1 = _phc.Find(n1); |
|
231 |
uint lr2 = _phc.Find(n2); |
|
232 |
if( lr1 != lr2 && // Different live ranges already AND |
|
233 |
!_phc._ifg->test_edge_sq( lr1, lr2 ) ) { // Do not interfere |
|
234 |
LRG *lrg1 = &_phc.lrgs(lr1); |
|
235 |
LRG *lrg2 = &_phc.lrgs(lr2); |
|
236 |
// Not an oop->int cast; oop->oop, int->int, AND int->oop are OK. |
|
237 |
||
238 |
// Now, why is int->oop OK? We end up declaring a raw-pointer as an oop |
|
239 |
// and in general that's a bad thing. However, int->oop conversions only |
|
240 |
// happen at GC points, so the lifetime of the misclassified raw-pointer |
|
241 |
// is from the CheckCastPP (that converts it to an oop) backwards up |
|
242 |
// through a merge point and into the slow-path call, and around the |
|
243 |
// diamond up to the heap-top check and back down into the slow-path call. |
|
244 |
// The misclassified raw pointer is NOT live across the slow-path call, |
|
245 |
// and so does not appear in any GC info, so the fact that it is |
|
246 |
// misclassified is OK. |
|
247 |
||
248 |
if( (lrg1->_is_oop || !lrg2->_is_oop) && // not an oop->int cast AND |
|
249 |
// Compatible final mask |
|
250 |
lrg1->mask().overlap( lrg2->mask() ) ) { |
|
251 |
// Merge larger into smaller. |
|
252 |
if( lr1 > lr2 ) { |
|
253 |
uint tmp = lr1; lr1 = lr2; lr2 = tmp; |
|
254 |
Node *n = n1; n1 = n2; n2 = n; |
|
255 |
LRG *ltmp = lrg1; lrg1 = lrg2; lrg2 = ltmp; |
|
256 |
} |
|
257 |
// Union lr2 into lr1 |
|
258 |
_phc.Union( n1, n2 ); |
|
259 |
if (lrg1->_maxfreq < lrg2->_maxfreq) |
|
260 |
lrg1->_maxfreq = lrg2->_maxfreq; |
|
261 |
// Merge in the IFG |
|
262 |
_phc._ifg->Union( lr1, lr2 ); |
|
263 |
// Combine register restrictions |
|
264 |
lrg1->AND(lrg2->mask()); |
|
265 |
} |
|
266 |
} |
|
267 |
} |
|
268 |
||
269 |
//------------------------------coalesce_driver-------------------------------- |
|
270 |
// Copy coalescing |
|
271 |
void PhaseCoalesce::coalesce_driver( ) { |
|
272 |
||
273 |
verify(); |
|
274 |
// Coalesce from high frequency to low |
|
275 |
for( uint i=0; i<_phc._cfg._num_blocks; i++ ) |
|
276 |
coalesce( _phc._blks[i] ); |
|
277 |
||
278 |
} |
|
279 |
||
280 |
//------------------------------insert_copy_with_overlap----------------------- |
|
281 |
// I am inserting copies to come out of SSA form. In the general case, I am |
|
282 |
// doing a parallel renaming. I'm in the Named world now, so I can't do a |
|
283 |
// general parallel renaming. All the copies now use "names" (live-ranges) |
|
284 |
// to carry values instead of the explicit use-def chains. Suppose I need to |
|
285 |
// insert 2 copies into the same block. They copy L161->L128 and L128->L132. |
|
286 |
// If I insert them in the wrong order then L128 will get clobbered before it |
|
287 |
// can get used by the second copy. This cannot happen in the SSA model; |
|
288 |
// direct use-def chains get me the right value. It DOES happen in the named |
|
289 |
// model so I have to handle the reordering of copies. |
|
290 |
// |
|
291 |
// In general, I need to topo-sort the placed copies to avoid conflicts. |
|
292 |
// Its possible to have a closed cycle of copies (e.g., recirculating the same |
|
293 |
// values around a loop). In this case I need a temp to break the cycle. |
|
294 |
void PhaseAggressiveCoalesce::insert_copy_with_overlap( Block *b, Node *copy, uint dst_name, uint src_name ) { |
|
295 |
||
296 |
// Scan backwards for the locations of the last use of the dst_name. |
|
297 |
// I am about to clobber the dst_name, so the copy must be inserted |
|
298 |
// after the last use. Last use is really first-use on a backwards scan. |
|
299 |
uint i = b->end_idx()-1; |
|
300 |
while( 1 ) { |
|
301 |
Node *n = b->_nodes[i]; |
|
302 |
// Check for end of virtual copies; this is also the end of the |
|
303 |
// parallel renaming effort. |
|
304 |
if( n->_idx < _unique ) break; |
|
305 |
uint idx = n->is_Copy(); |
|
306 |
assert( idx || n->is_Con() || n->Opcode() == Op_MachProj, "Only copies during parallel renaming" ); |
|
307 |
if( idx && _phc.Find(n->in(idx)) == dst_name ) break; |
|
308 |
i--; |
|
309 |
} |
|
310 |
uint last_use_idx = i; |
|
311 |
||
312 |
// Also search for any kill of src_name that exits the block. |
|
313 |
// Since the copy uses src_name, I have to come before any kill. |
|
314 |
uint kill_src_idx = b->end_idx(); |
|
315 |
// There can be only 1 kill that exits any block and that is |
|
316 |
// the last kill. Thus it is the first kill on a backwards scan. |
|
317 |
i = b->end_idx()-1; |
|
318 |
while( 1 ) { |
|
319 |
Node *n = b->_nodes[i]; |
|
320 |
// Check for end of virtual copies; this is also the end of the |
|
321 |
// parallel renaming effort. |
|
322 |
if( n->_idx < _unique ) break; |
|
323 |
assert( n->is_Copy() || n->is_Con() || n->Opcode() == Op_MachProj, "Only copies during parallel renaming" ); |
|
324 |
if( _phc.Find(n) == src_name ) { |
|
325 |
kill_src_idx = i; |
|
326 |
break; |
|
327 |
} |
|
328 |
i--; |
|
329 |
} |
|
330 |
// Need a temp? Last use of dst comes after the kill of src? |
|
331 |
if( last_use_idx >= kill_src_idx ) { |
|
332 |
// Need to break a cycle with a temp |
|
333 |
uint idx = copy->is_Copy(); |
|
334 |
Node *tmp = copy->clone(); |
|
335 |
_phc.new_lrg(tmp,_phc._maxlrg++); |
|
336 |
// Insert new temp between copy and source |
|
337 |
tmp ->set_req(idx,copy->in(idx)); |
|
338 |
copy->set_req(idx,tmp); |
|
339 |
// Save source in temp early, before source is killed |
|
340 |
b->_nodes.insert(kill_src_idx,tmp); |
|
341 |
_phc._cfg._bbs.map( tmp->_idx, b ); |
|
342 |
last_use_idx++; |
|
343 |
} |
|
344 |
||
345 |
// Insert just after last use |
|
346 |
b->_nodes.insert(last_use_idx+1,copy); |
|
347 |
} |
|
348 |
||
349 |
//------------------------------insert_copies---------------------------------- |
|
350 |
void PhaseAggressiveCoalesce::insert_copies( Matcher &matcher ) { |
|
351 |
// We do LRGs compressing and fix a liveout data only here since the other |
|
352 |
// place in Split() is guarded by the assert which we never hit. |
|
353 |
_phc.compress_uf_map_for_nodes(); |
|
354 |
// Fix block's liveout data for compressed live ranges. |
|
355 |
for(uint lrg = 1; lrg < _phc._maxlrg; lrg++ ) { |
|
356 |
uint compressed_lrg = _phc.Find(lrg); |
|
357 |
if( lrg != compressed_lrg ) { |
|
358 |
for( uint bidx = 0; bidx < _phc._cfg._num_blocks; bidx++ ) { |
|
359 |
IndexSet *liveout = _phc._live->live(_phc._cfg._blocks[bidx]); |
|
360 |
if( liveout->member(lrg) ) { |
|
361 |
liveout->remove(lrg); |
|
362 |
liveout->insert(compressed_lrg); |
|
363 |
} |
|
364 |
} |
|
365 |
} |
|
366 |
} |
|
367 |
||
368 |
// All new nodes added are actual copies to replace virtual copies. |
|
369 |
// Nodes with index less than '_unique' are original, non-virtual Nodes. |
|
370 |
_unique = C->unique(); |
|
371 |
||
372 |
for( uint i=0; i<_phc._cfg._num_blocks; i++ ) { |
|
373 |
Block *b = _phc._cfg._blocks[i]; |
|
374 |
uint cnt = b->num_preds(); // Number of inputs to the Phi |
|
375 |
||
376 |
for( uint l = 1; l<b->_nodes.size(); l++ ) { |
|
377 |
Node *n = b->_nodes[l]; |
|
378 |
||
379 |
// Do not use removed-copies, use copied value instead |
|
380 |
uint ncnt = n->req(); |
|
381 |
for( uint k = 1; k<ncnt; k++ ) { |
|
382 |
Node *copy = n->in(k); |
|
383 |
uint cidx = copy->is_Copy(); |
|
384 |
if( cidx ) { |
|
385 |
Node *def = copy->in(cidx); |
|
386 |
if( _phc.Find(copy) == _phc.Find(def) ) |
|
387 |
n->set_req(k,def); |
|
388 |
} |
|
389 |
} |
|
390 |
||
391 |
// Remove any explicit copies that get coalesced. |
|
392 |
uint cidx = n->is_Copy(); |
|
393 |
if( cidx ) { |
|
394 |
Node *def = n->in(cidx); |
|
395 |
if( _phc.Find(n) == _phc.Find(def) ) { |
|
396 |
n->replace_by(def); |
|
397 |
n->set_req(cidx,NULL); |
|
398 |
b->_nodes.remove(l); |
|
399 |
l--; |
|
400 |
continue; |
|
401 |
} |
|
402 |
} |
|
403 |
||
404 |
if( n->is_Phi() ) { |
|
405 |
// Get the chosen name for the Phi |
|
406 |
uint phi_name = _phc.Find( n ); |
|
407 |
// Ignore the pre-allocated specials |
|
408 |
if( !phi_name ) continue; |
|
409 |
// Check for mismatch inputs to Phi |
|
410 |
for( uint j = 1; j<cnt; j++ ) { |
|
411 |
Node *m = n->in(j); |
|
412 |
uint src_name = _phc.Find(m); |
|
413 |
if( src_name != phi_name ) { |
|
414 |
Block *pred = _phc._cfg._bbs[b->pred(j)->_idx]; |
|
415 |
Node *copy; |
|
416 |
assert(!m->is_Con() || m->is_Mach(), "all Con must be Mach"); |
|
417 |
// Rematerialize constants instead of copying them |
|
418 |
if( m->is_Mach() && m->as_Mach()->is_Con() && |
|
419 |
m->as_Mach()->rematerialize() ) { |
|
420 |
copy = m->clone(); |
|
421 |
// Insert the copy in the predecessor basic block |
|
422 |
pred->add_inst(copy); |
|
423 |
// Copy any flags as well |
|
424 |
_phc.clone_projs( pred, pred->end_idx(), m, copy, _phc._maxlrg ); |
|
425 |
} else { |
|
426 |
const RegMask *rm = C->matcher()->idealreg2spillmask[m->ideal_reg()]; |
|
427 |
copy = new (C) MachSpillCopyNode(m,*rm,*rm); |
|
428 |
// Find a good place to insert. Kinda tricky, use a subroutine |
|
429 |
insert_copy_with_overlap(pred,copy,phi_name,src_name); |
|
430 |
} |
|
431 |
// Insert the copy in the use-def chain |
|
432 |
n->set_req( j, copy ); |
|
433 |
_phc._cfg._bbs.map( copy->_idx, pred ); |
|
434 |
// Extend ("register allocate") the names array for the copy. |
|
435 |
_phc._names.extend( copy->_idx, phi_name ); |
|
436 |
} // End of if Phi names do not match |
|
437 |
} // End of for all inputs to Phi |
|
438 |
} else { // End of if Phi |
|
439 |
||
440 |
// Now check for 2-address instructions |
|
441 |
uint idx; |
|
442 |
if( n->is_Mach() && (idx=n->as_Mach()->two_adr()) ) { |
|
443 |
// Get the chosen name for the Node |
|
444 |
uint name = _phc.Find( n ); |
|
445 |
assert( name, "no 2-address specials" ); |
|
446 |
// Check for name mis-match on the 2-address input |
|
447 |
Node *m = n->in(idx); |
|
448 |
if( _phc.Find(m) != name ) { |
|
449 |
Node *copy; |
|
450 |
assert(!m->is_Con() || m->is_Mach(), "all Con must be Mach"); |
|
451 |
// At this point it is unsafe to extend live ranges (6550579). |
|
452 |
// Rematerialize only constants as we do for Phi above. |
|
453 |
if( m->is_Mach() && m->as_Mach()->is_Con() && |
|
454 |
m->as_Mach()->rematerialize() ) { |
|
455 |
copy = m->clone(); |
|
456 |
// Insert the copy in the basic block, just before us |
|
457 |
b->_nodes.insert( l++, copy ); |
|
458 |
if( _phc.clone_projs( b, l, m, copy, _phc._maxlrg ) ) |
|
459 |
l++; |
|
460 |
} else { |
|
461 |
const RegMask *rm = C->matcher()->idealreg2spillmask[m->ideal_reg()]; |
|
462 |
copy = new (C) MachSpillCopyNode( m, *rm, *rm ); |
|
463 |
// Insert the copy in the basic block, just before us |
|
464 |
b->_nodes.insert( l++, copy ); |
|
465 |
} |
|
466 |
// Insert the copy in the use-def chain |
|
467 |
n->set_req(idx, copy ); |
|
468 |
// Extend ("register allocate") the names array for the copy. |
|
469 |
_phc._names.extend( copy->_idx, name ); |
|
470 |
_phc._cfg._bbs.map( copy->_idx, b ); |
|
471 |
} |
|
472 |
||
473 |
} // End of is two-adr |
|
474 |
||
475 |
// Insert a copy at a debug use for a lrg which has high frequency |
|
476 |
if( (b->_freq < OPTO_DEBUG_SPLIT_FREQ) && n->is_MachSafePoint() ) { |
|
477 |
// Walk the debug inputs to the node and check for lrg freq |
|
478 |
JVMState* jvms = n->jvms(); |
|
479 |
uint debug_start = jvms ? jvms->debug_start() : 999999; |
|
480 |
uint debug_end = jvms ? jvms->debug_end() : 999999; |
|
481 |
for(uint inpidx = debug_start; inpidx < debug_end; inpidx++) { |
|
482 |
// Do not split monitors; they are only needed for debug table |
|
483 |
// entries and need no code. |
|
484 |
if( jvms->is_monitor_use(inpidx) ) continue; |
|
485 |
Node *inp = n->in(inpidx); |
|
486 |
uint nidx = _phc.n2lidx(inp); |
|
487 |
LRG &lrg = lrgs(nidx); |
|
488 |
||
489 |
// If this lrg has a high frequency use/def |
|
490 |
if( lrg._maxfreq >= OPTO_LRG_HIGH_FREQ ) { |
|
491 |
// If the live range is also live out of this block (like it |
|
492 |
// would be for a fast/slow idiom), the normal spill mechanism |
|
493 |
// does an excellent job. If it is not live out of this block |
|
494 |
// (like it would be for debug info to uncommon trap) splitting |
|
495 |
// the live range now allows a better allocation in the high |
|
496 |
// frequency blocks. |
|
497 |
// Build_IFG_virtual has converted the live sets to |
|
498 |
// live-IN info, not live-OUT info. |
|
499 |
uint k; |
|
500 |
for( k=0; k < b->_num_succs; k++ ) |
|
501 |
if( _phc._live->live(b->_succs[k])->member( nidx ) ) |
|
502 |
break; // Live in to some successor block? |
|
503 |
if( k < b->_num_succs ) |
|
504 |
continue; // Live out; do not pre-split |
|
505 |
// Split the lrg at this use |
|
506 |
const RegMask *rm = C->matcher()->idealreg2spillmask[inp->ideal_reg()]; |
|
507 |
Node *copy = new (C) MachSpillCopyNode( inp, *rm, *rm ); |
|
508 |
// Insert the copy in the use-def chain |
|
509 |
n->set_req(inpidx, copy ); |
|
510 |
// Insert the copy in the basic block, just before us |
|
511 |
b->_nodes.insert( l++, copy ); |
|
512 |
// Extend ("register allocate") the names array for the copy. |
|
513 |
_phc.new_lrg( copy, _phc._maxlrg++ ); |
|
514 |
_phc._cfg._bbs.map( copy->_idx, b ); |
|
515 |
//tty->print_cr("Split a debug use in Aggressive Coalesce"); |
|
516 |
} // End of if high frequency use/def |
|
517 |
} // End of for all debug inputs |
|
518 |
} // End of if low frequency safepoint |
|
519 |
||
520 |
} // End of if Phi |
|
521 |
||
522 |
} // End of for all instructions |
|
523 |
} // End of for all blocks |
|
524 |
} |
|
525 |
||
526 |
//============================================================================= |
|
527 |
//------------------------------coalesce--------------------------------------- |
|
528 |
// Aggressive (but pessimistic) copy coalescing of a single block |
|
529 |
||
530 |
// The following coalesce pass represents a single round of aggressive |
|
531 |
// pessimistic coalesce. "Aggressive" means no attempt to preserve |
|
532 |
// colorability when coalescing. This occasionally means more spills, but |
|
533 |
// it also means fewer rounds of coalescing for better code - and that means |
|
534 |
// faster compiles. |
|
535 |
||
536 |
// "Pessimistic" means we do not hit the fixed point in one pass (and we are |
|
537 |
// reaching for the least fixed point to boot). This is typically solved |
|
538 |
// with a few more rounds of coalescing, but the compiler must run fast. We |
|
539 |
// could optimistically coalescing everything touching PhiNodes together |
|
540 |
// into one big live range, then check for self-interference. Everywhere |
|
541 |
// the live range interferes with self it would have to be split. Finding |
|
542 |
// the right split points can be done with some heuristics (based on |
|
543 |
// expected frequency of edges in the live range). In short, it's a real |
|
544 |
// research problem and the timeline is too short to allow such research. |
|
545 |
// Further thoughts: (1) build the LR in a pass, (2) find self-interference |
|
546 |
// in another pass, (3) per each self-conflict, split, (4) split by finding |
|
547 |
// the low-cost cut (min-cut) of the LR, (5) edges in the LR are weighted |
|
548 |
// according to the GCM algorithm (or just exec freq on CFG edges). |
|
549 |
||
550 |
void PhaseAggressiveCoalesce::coalesce( Block *b ) { |
|
551 |
// Copies are still "virtual" - meaning we have not made them explicitly |
|
552 |
// copies. Instead, Phi functions of successor blocks have mis-matched |
|
553 |
// live-ranges. If I fail to coalesce, I'll have to insert a copy to line |
|
554 |
// up the live-ranges. Check for Phis in successor blocks. |
|
555 |
uint i; |
|
556 |
for( i=0; i<b->_num_succs; i++ ) { |
|
557 |
Block *bs = b->_succs[i]; |
|
558 |
// Find index of 'b' in 'bs' predecessors |
|
559 |
uint j=1; |
|
560 |
while( _phc._cfg._bbs[bs->pred(j)->_idx] != b ) j++; |
|
561 |
// Visit all the Phis in successor block |
|
562 |
for( uint k = 1; k<bs->_nodes.size(); k++ ) { |
|
563 |
Node *n = bs->_nodes[k]; |
|
564 |
if( !n->is_Phi() ) break; |
|
565 |
combine_these_two( n, n->in(j) ); |
|
566 |
} |
|
567 |
} // End of for all successor blocks |
|
568 |
||
569 |
||
570 |
// Check _this_ block for 2-address instructions and copies. |
|
571 |
uint cnt = b->end_idx(); |
|
572 |
for( i = 1; i<cnt; i++ ) { |
|
573 |
Node *n = b->_nodes[i]; |
|
574 |
uint idx; |
|
575 |
// 2-address instructions have a virtual Copy matching their input |
|
576 |
// to their output |
|
577 |
if( n->is_Mach() && (idx = n->as_Mach()->two_adr()) ) { |
|
578 |
MachNode *mach = n->as_Mach(); |
|
579 |
combine_these_two( mach, mach->in(idx) ); |
|
580 |
} |
|
581 |
} // End of for all instructions in block |
|
582 |
} |
|
583 |
||
584 |
//============================================================================= |
|
585 |
//------------------------------PhaseConservativeCoalesce---------------------- |
|
586 |
PhaseConservativeCoalesce::PhaseConservativeCoalesce( PhaseChaitin &chaitin ) : PhaseCoalesce(chaitin) { |
|
587 |
_ulr.initialize(_phc._maxlrg); |
|
588 |
} |
|
589 |
||
590 |
//------------------------------verify----------------------------------------- |
|
591 |
void PhaseConservativeCoalesce::verify() { |
|
592 |
#ifdef ASSERT |
|
593 |
_phc.set_was_low(); |
|
594 |
#endif |
|
595 |
} |
|
596 |
||
597 |
//------------------------------union_helper----------------------------------- |
|
598 |
void PhaseConservativeCoalesce::union_helper( Node *lr1_node, Node *lr2_node, uint lr1, uint lr2, Node *src_def, Node *dst_copy, Node *src_copy, Block *b, uint bindex ) { |
|
599 |
// Join live ranges. Merge larger into smaller. Union lr2 into lr1 in the |
|
600 |
// union-find tree |
|
601 |
_phc.Union( lr1_node, lr2_node ); |
|
602 |
||
603 |
// Single-def live range ONLY if both live ranges are single-def. |
|
604 |
// If both are single def, then src_def powers one live range |
|
605 |
// and def_copy powers the other. After merging, src_def powers |
|
606 |
// the combined live range. |
|
1057
44220ef9a775
6732194: Data corruption dependent on -server/-client/-Xbatch
never
parents:
1
diff
changeset
|
607 |
lrgs(lr1)._def = (lrgs(lr1).is_multidef() || |
44220ef9a775
6732194: Data corruption dependent on -server/-client/-Xbatch
never
parents:
1
diff
changeset
|
608 |
lrgs(lr2).is_multidef() ) |
1 | 609 |
? NodeSentinel : src_def; |
610 |
lrgs(lr2)._def = NULL; // No def for lrg 2 |
|
611 |
lrgs(lr2).Clear(); // Force empty mask for LRG 2 |
|
612 |
//lrgs(lr2)._size = 0; // Live-range 2 goes dead |
|
613 |
lrgs(lr1)._is_oop |= lrgs(lr2)._is_oop; |
|
614 |
lrgs(lr2)._is_oop = 0; // In particular, not an oop for GC info |
|
615 |
||
616 |
if (lrgs(lr1)._maxfreq < lrgs(lr2)._maxfreq) |
|
617 |
lrgs(lr1)._maxfreq = lrgs(lr2)._maxfreq; |
|
618 |
||
619 |
// Copy original value instead. Intermediate copies go dead, and |
|
620 |
// the dst_copy becomes useless. |
|
621 |
int didx = dst_copy->is_Copy(); |
|
622 |
dst_copy->set_req( didx, src_def ); |
|
623 |
// Add copy to free list |
|
624 |
// _phc.free_spillcopy(b->_nodes[bindex]); |
|
625 |
assert( b->_nodes[bindex] == dst_copy, "" ); |
|
626 |
dst_copy->replace_by( dst_copy->in(didx) ); |
|
627 |
dst_copy->set_req( didx, NULL); |
|
628 |
b->_nodes.remove(bindex); |
|
629 |
if( bindex < b->_ihrp_index ) b->_ihrp_index--; |
|
630 |
if( bindex < b->_fhrp_index ) b->_fhrp_index--; |
|
631 |
||
632 |
// Stretched lr1; add it to liveness of intermediate blocks |
|
633 |
Block *b2 = _phc._cfg._bbs[src_copy->_idx]; |
|
634 |
while( b != b2 ) { |
|
635 |
b = _phc._cfg._bbs[b->pred(1)->_idx]; |
|
636 |
_phc._live->live(b)->insert(lr1); |
|
637 |
} |
|
638 |
} |
|
639 |
||
640 |
//------------------------------compute_separating_interferences--------------- |
|
641 |
// Factored code from copy_copy that computes extra interferences from |
|
642 |
// lengthening a live range by double-coalescing. |
|
643 |
uint PhaseConservativeCoalesce::compute_separating_interferences(Node *dst_copy, Node *src_copy, Block *b, uint bindex, RegMask &rm, uint reg_degree, uint rm_size, uint lr1, uint lr2 ) { |
|
644 |
||
645 |
assert(!lrgs(lr1)._fat_proj, "cannot coalesce fat_proj"); |
|
646 |
assert(!lrgs(lr2)._fat_proj, "cannot coalesce fat_proj"); |
|
647 |
Node *prev_copy = dst_copy->in(dst_copy->is_Copy()); |
|
648 |
Block *b2 = b; |
|
649 |
uint bindex2 = bindex; |
|
650 |
while( 1 ) { |
|
651 |
// Find previous instruction |
|
652 |
bindex2--; // Chain backwards 1 instruction |
|
653 |
while( bindex2 == 0 ) { // At block start, find prior block |
|
654 |
assert( b2->num_preds() == 2, "cannot double coalesce across c-flow" ); |
|
655 |
b2 = _phc._cfg._bbs[b2->pred(1)->_idx]; |
|
656 |
bindex2 = b2->end_idx()-1; |
|
657 |
} |
|
658 |
// Get prior instruction |
|
659 |
assert(bindex2 < b2->_nodes.size(), "index out of bounds"); |
|
660 |
Node *x = b2->_nodes[bindex2]; |
|
661 |
if( x == prev_copy ) { // Previous copy in copy chain? |
|
662 |
if( prev_copy == src_copy)// Found end of chain and all interferences |
|
663 |
break; // So break out of loop |
|
664 |
// Else work back one in copy chain |
|
665 |
prev_copy = prev_copy->in(prev_copy->is_Copy()); |
|
666 |
} else { // Else collect interferences |
|
667 |
uint lidx = _phc.Find(x); |
|
668 |
// Found another def of live-range being stretched? |
|
669 |
if( lidx == lr1 ) return max_juint; |
|
670 |
if( lidx == lr2 ) return max_juint; |
|
671 |
||
672 |
// If we attempt to coalesce across a bound def |
|
673 |
if( lrgs(lidx).is_bound() ) { |
|
674 |
// Do not let the coalesced LRG expect to get the bound color |
|
675 |
rm.SUBTRACT( lrgs(lidx).mask() ); |
|
676 |
// Recompute rm_size |
|
677 |
rm_size = rm.Size(); |
|
678 |
//if( rm._flags ) rm_size += 1000000; |
|
679 |
if( reg_degree >= rm_size ) return max_juint; |
|
680 |
} |
|
681 |
if( rm.overlap(lrgs(lidx).mask()) ) { |
|
682 |
// Insert lidx into union LRG; returns TRUE if actually inserted |
|
683 |
if( _ulr.insert(lidx) ) { |
|
684 |
// Infinite-stack neighbors do not alter colorability, as they |
|
685 |
// can always color to some other color. |
|
686 |
if( !lrgs(lidx).mask().is_AllStack() ) { |
|
687 |
// If this coalesce will make any new neighbor uncolorable, |
|
688 |
// do not coalesce. |
|
689 |
if( lrgs(lidx).just_lo_degree() ) |
|
690 |
return max_juint; |
|
691 |
// Bump our degree |
|
692 |
if( ++reg_degree >= rm_size ) |
|
693 |
return max_juint; |
|
694 |
} // End of if not infinite-stack neighbor |
|
695 |
} // End of if actually inserted |
|
696 |
} // End of if live range overlaps |
|
697 |
} // End of else collect intereferences for 1 node |
|
698 |
} // End of while forever, scan back for intereferences |
|
699 |
return reg_degree; |
|
700 |
} |
|
701 |
||
702 |
//------------------------------update_ifg------------------------------------- |
|
703 |
void PhaseConservativeCoalesce::update_ifg(uint lr1, uint lr2, IndexSet *n_lr1, IndexSet *n_lr2) { |
|
704 |
// Some original neighbors of lr1 might have gone away |
|
705 |
// because the constrained register mask prevented them. |
|
706 |
// Remove lr1 from such neighbors. |
|
707 |
IndexSetIterator one(n_lr1); |
|
708 |
uint neighbor; |
|
709 |
LRG &lrg1 = lrgs(lr1); |
|
710 |
while ((neighbor = one.next()) != 0) |
|
711 |
if( !_ulr.member(neighbor) ) |
|
712 |
if( _phc._ifg->neighbors(neighbor)->remove(lr1) ) |
|
713 |
lrgs(neighbor).inc_degree( -lrg1.compute_degree(lrgs(neighbor)) ); |
|
714 |
||
715 |
||
716 |
// lr2 is now called (coalesced into) lr1. |
|
717 |
// Remove lr2 from the IFG. |
|
718 |
IndexSetIterator two(n_lr2); |
|
719 |
LRG &lrg2 = lrgs(lr2); |
|
720 |
while ((neighbor = two.next()) != 0) |
|
721 |
if( _phc._ifg->neighbors(neighbor)->remove(lr2) ) |
|
722 |
lrgs(neighbor).inc_degree( -lrg2.compute_degree(lrgs(neighbor)) ); |
|
723 |
||
724 |
// Some neighbors of intermediate copies now interfere with the |
|
725 |
// combined live range. |
|
726 |
IndexSetIterator three(&_ulr); |
|
727 |
while ((neighbor = three.next()) != 0) |
|
728 |
if( _phc._ifg->neighbors(neighbor)->insert(lr1) ) |
|
729 |
lrgs(neighbor).inc_degree( lrg1.compute_degree(lrgs(neighbor)) ); |
|
730 |
} |
|
731 |
||
732 |
//------------------------------record_bias------------------------------------ |
|
733 |
static void record_bias( const PhaseIFG *ifg, int lr1, int lr2 ) { |
|
734 |
// Tag copy bias here |
|
735 |
if( !ifg->lrgs(lr1)._copy_bias ) |
|
736 |
ifg->lrgs(lr1)._copy_bias = lr2; |
|
737 |
if( !ifg->lrgs(lr2)._copy_bias ) |
|
738 |
ifg->lrgs(lr2)._copy_bias = lr1; |
|
739 |
} |
|
740 |
||
741 |
//------------------------------copy_copy-------------------------------------- |
|
742 |
// See if I can coalesce a series of multiple copies together. I need the |
|
743 |
// final dest copy and the original src copy. They can be the same Node. |
|
744 |
// Compute the compatible register masks. |
|
745 |
bool PhaseConservativeCoalesce::copy_copy( Node *dst_copy, Node *src_copy, Block *b, uint bindex ) { |
|
746 |
||
747 |
if( !dst_copy->is_SpillCopy() ) return false; |
|
748 |
if( !src_copy->is_SpillCopy() ) return false; |
|
749 |
Node *src_def = src_copy->in(src_copy->is_Copy()); |
|
750 |
uint lr1 = _phc.Find(dst_copy); |
|
751 |
uint lr2 = _phc.Find(src_def ); |
|
752 |
||
753 |
// Same live ranges already? |
|
754 |
if( lr1 == lr2 ) return false; |
|
755 |
||
756 |
// Interfere? |
|
757 |
if( _phc._ifg->test_edge_sq( lr1, lr2 ) ) return false; |
|
758 |
||
759 |
// Not an oop->int cast; oop->oop, int->int, AND int->oop are OK. |
|
760 |
if( !lrgs(lr1)._is_oop && lrgs(lr2)._is_oop ) // not an oop->int cast |
|
761 |
return false; |
|
762 |
||
763 |
// Coalescing between an aligned live range and a mis-aligned live range? |
|
764 |
// No, no! Alignment changes how we count degree. |
|
765 |
if( lrgs(lr1)._fat_proj != lrgs(lr2)._fat_proj ) |
|
766 |
return false; |
|
767 |
||
768 |
// Sort; use smaller live-range number |
|
769 |
Node *lr1_node = dst_copy; |
|
770 |
Node *lr2_node = src_def; |
|
771 |
if( lr1 > lr2 ) { |
|
772 |
uint tmp = lr1; lr1 = lr2; lr2 = tmp; |
|
773 |
lr1_node = src_def; lr2_node = dst_copy; |
|
774 |
} |
|
775 |
||
776 |
// Check for compatibility of the 2 live ranges by |
|
777 |
// intersecting their allowed register sets. |
|
778 |
RegMask rm = lrgs(lr1).mask(); |
|
779 |
rm.AND(lrgs(lr2).mask()); |
|
780 |
// Number of bits free |
|
781 |
uint rm_size = rm.Size(); |
|
782 |
||
783 |
// If we can use any stack slot, then effective size is infinite |
|
784 |
if( rm.is_AllStack() ) rm_size += 1000000; |
|
785 |
// Incompatible masks, no way to coalesce |
|
786 |
if( rm_size == 0 ) return false; |
|
787 |
||
788 |
// Another early bail-out test is when we are double-coalescing and the |
|
789 |
// 2 copies are seperated by some control flow. |
|
790 |
if( dst_copy != src_copy ) { |
|
791 |
Block *src_b = _phc._cfg._bbs[src_copy->_idx]; |
|
792 |
Block *b2 = b; |
|
793 |
while( b2 != src_b ) { |
|
794 |
if( b2->num_preds() > 2 ){// Found merge-point |
|
795 |
_phc._lost_opp_cflow_coalesce++; |
|
796 |
// extra record_bias commented out because Chris believes it is not |
|
797 |
// productive. Since we can record only 1 bias, we want to choose one |
|
798 |
// that stands a chance of working and this one probably does not. |
|
799 |
//record_bias( _phc._lrgs, lr1, lr2 ); |
|
800 |
return false; // To hard to find all interferences |
|
801 |
} |
|
802 |
b2 = _phc._cfg._bbs[b2->pred(1)->_idx]; |
|
803 |
} |
|
804 |
} |
|
805 |
||
806 |
// Union the two interference sets together into '_ulr' |
|
807 |
uint reg_degree = _ulr.lrg_union( lr1, lr2, rm_size, _phc._ifg, rm ); |
|
808 |
||
809 |
if( reg_degree >= rm_size ) { |
|
810 |
record_bias( _phc._ifg, lr1, lr2 ); |
|
811 |
return false; |
|
812 |
} |
|
813 |
||
814 |
// Now I need to compute all the interferences between dst_copy and |
|
815 |
// src_copy. I'm not willing visit the entire interference graph, so |
|
816 |
// I limit my search to things in dst_copy's block or in a straight |
|
817 |
// line of previous blocks. I give up at merge points or when I get |
|
818 |
// more interferences than my degree. I can stop when I find src_copy. |
|
819 |
if( dst_copy != src_copy ) { |
|
820 |
reg_degree = compute_separating_interferences(dst_copy, src_copy, b, bindex, rm, rm_size, reg_degree, lr1, lr2 ); |
|
821 |
if( reg_degree == max_juint ) { |
|
822 |
record_bias( _phc._ifg, lr1, lr2 ); |
|
823 |
return false; |
|
824 |
} |
|
825 |
} // End of if dst_copy & src_copy are different |
|
826 |
||
827 |
||
828 |
// ---- THE COMBINED LRG IS COLORABLE ---- |
|
829 |
||
830 |
// YEAH - Now coalesce this copy away |
|
831 |
assert( lrgs(lr1).num_regs() == lrgs(lr2).num_regs(), "" ); |
|
832 |
||
833 |
IndexSet *n_lr1 = _phc._ifg->neighbors(lr1); |
|
834 |
IndexSet *n_lr2 = _phc._ifg->neighbors(lr2); |
|
835 |
||
836 |
// Update the interference graph |
|
837 |
update_ifg(lr1, lr2, n_lr1, n_lr2); |
|
838 |
||
839 |
_ulr.remove(lr1); |
|
840 |
||
841 |
// Uncomment the following code to trace Coalescing in great detail. |
|
842 |
// |
|
843 |
//if (false) { |
|
844 |
// tty->cr(); |
|
845 |
// tty->print_cr("#######################################"); |
|
846 |
// tty->print_cr("union %d and %d", lr1, lr2); |
|
847 |
// n_lr1->dump(); |
|
848 |
// n_lr2->dump(); |
|
849 |
// tty->print_cr("resulting set is"); |
|
850 |
// _ulr.dump(); |
|
851 |
//} |
|
852 |
||
853 |
// Replace n_lr1 with the new combined live range. _ulr will use |
|
854 |
// n_lr1's old memory on the next iteration. n_lr2 is cleared to |
|
855 |
// send its internal memory to the free list. |
|
856 |
_ulr.swap(n_lr1); |
|
857 |
_ulr.clear(); |
|
858 |
n_lr2->clear(); |
|
859 |
||
860 |
lrgs(lr1).set_degree( _phc._ifg->effective_degree(lr1) ); |
|
861 |
lrgs(lr2).set_degree( 0 ); |
|
862 |
||
863 |
// Join live ranges. Merge larger into smaller. Union lr2 into lr1 in the |
|
864 |
// union-find tree |
|
865 |
union_helper( lr1_node, lr2_node, lr1, lr2, src_def, dst_copy, src_copy, b, bindex ); |
|
866 |
// Combine register restrictions |
|
867 |
lrgs(lr1).set_mask(rm); |
|
868 |
lrgs(lr1).compute_set_mask_size(); |
|
869 |
lrgs(lr1)._cost += lrgs(lr2)._cost; |
|
870 |
lrgs(lr1)._area += lrgs(lr2)._area; |
|
871 |
||
872 |
// While its uncommon to successfully coalesce live ranges that started out |
|
873 |
// being not-lo-degree, it can happen. In any case the combined coalesced |
|
874 |
// live range better Simplify nicely. |
|
875 |
lrgs(lr1)._was_lo = 1; |
|
876 |
||
877 |
// kinda expensive to do all the time |
|
878 |
//tty->print_cr("warning: slow verify happening"); |
|
879 |
//_phc._ifg->verify( &_phc ); |
|
880 |
return true; |
|
881 |
} |
|
882 |
||
883 |
//------------------------------coalesce--------------------------------------- |
|
884 |
// Conservative (but pessimistic) copy coalescing of a single block |
|
885 |
void PhaseConservativeCoalesce::coalesce( Block *b ) { |
|
886 |
// Bail out on infrequent blocks |
|
887 |
if( b->is_uncommon(_phc._cfg._bbs) ) |
|
888 |
return; |
|
889 |
// Check this block for copies. |
|
890 |
for( uint i = 1; i<b->end_idx(); i++ ) { |
|
891 |
// Check for actual copies on inputs. Coalesce a copy into its |
|
892 |
// input if use and copy's input are compatible. |
|
893 |
Node *copy1 = b->_nodes[i]; |
|
894 |
uint idx1 = copy1->is_Copy(); |
|
895 |
if( !idx1 ) continue; // Not a copy |
|
896 |
||
897 |
if( copy_copy(copy1,copy1,b,i) ) { |
|
898 |
i--; // Retry, same location in block |
|
899 |
PhaseChaitin::_conserv_coalesce++; // Collect stats on success |
|
900 |
continue; |
|
901 |
} |
|
902 |
||
903 |
/* do not attempt pairs. About 1/2 of all pairs can be removed by |
|
904 |
post-alloc. The other set are too few to bother. |
|
905 |
Node *copy2 = copy1->in(idx1); |
|
906 |
uint idx2 = copy2->is_Copy(); |
|
907 |
if( !idx2 ) continue; |
|
908 |
if( copy_copy(copy1,copy2,b,i) ) { |
|
909 |
i--; // Retry, same location in block |
|
910 |
PhaseChaitin::_conserv_coalesce_pair++; // Collect stats on success |
|
911 |
continue; |
|
912 |
} |
|
913 |
*/ |
|
914 |
} |
|
915 |
} |