author | weijun |
Wed, 01 Aug 2018 13:35:08 +0800 | |
changeset 51272 | 9d92ff04a29c |
parent 47216 | 71c04702a3d5 |
child 51293 | 53c3b460503c |
permissions | -rw-r--r-- |
2 | 1 |
/* |
44534 | 2 |
* Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved. |
2 | 3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 |
* |
|
5 |
* This code is free software; you can redistribute it and/or modify it |
|
6 |
* under the terms of the GNU General Public License version 2 only, as |
|
5506 | 7 |
* published by the Free Software Foundation. Oracle designates this |
2 | 8 |
* particular file as subject to the "Classpath" exception as provided |
5506 | 9 |
* by Oracle in the LICENSE file that accompanied this code. |
2 | 10 |
* |
11 |
* This code is distributed in the hope that it will be useful, but WITHOUT |
|
12 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
13 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
14 |
* version 2 for more details (a copy is included in the LICENSE file that |
|
15 |
* accompanied this code). |
|
16 |
* |
|
17 |
* You should have received a copy of the GNU General Public License version |
|
18 |
* 2 along with this work; if not, write to the Free Software Foundation, |
|
19 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
20 |
* |
|
5506 | 21 |
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
22 |
* or visit www.oracle.com if you need additional information or have any |
|
23 |
* questions. |
|
2 | 24 |
*/ |
25 |
||
26 |
package sun.security.provider; |
|
27 |
||
28 |
import java.io.IOException; |
|
29 |
import java.io.UnsupportedEncodingException; |
|
30 |
import java.security.Key; |
|
31 |
import java.security.KeyStoreException; |
|
32 |
import java.security.MessageDigest; |
|
33 |
import java.security.NoSuchAlgorithmException; |
|
34 |
import java.security.SecureRandom; |
|
35 |
import java.security.UnrecoverableKeyException; |
|
36 |
import java.util.*; |
|
37 |
||
46097
22316369c9b0
8184744: Replace finalizer in crypto classes with Cleaner
rriggs
parents:
44534
diff
changeset
|
38 |
import jdk.internal.ref.CleanerFactory; |
2 | 39 |
import sun.security.pkcs.PKCS8Key; |
40 |
import sun.security.pkcs.EncryptedPrivateKeyInfo; |
|
41 |
import sun.security.x509.AlgorithmId; |
|
42 |
import sun.security.util.ObjectIdentifier; |
|
43 |
import sun.security.util.DerValue; |
|
44 |
||
45 |
/** |
|
46 |
* This is an implementation of a Sun proprietary, exportable algorithm |
|
47 |
* intended for use when protecting (or recovering the cleartext version of) |
|
48 |
* sensitive keys. |
|
49 |
* This algorithm is not intended as a general purpose cipher. |
|
50 |
* |
|
51 |
* This is how the algorithm works for key protection: |
|
52 |
* |
|
53 |
* p - user password |
|
54 |
* s - random salt |
|
55 |
* X - xor key |
|
56 |
* P - to-be-protected key |
|
57 |
* Y - protected key |
|
58 |
* R - what gets stored in the keystore |
|
59 |
* |
|
60 |
* Step 1: |
|
61 |
* Take the user's password, append a random salt (of fixed size) to it, |
|
62 |
* and hash it: d1 = digest(p, s) |
|
63 |
* Store d1 in X. |
|
64 |
* |
|
65 |
* Step 2: |
|
66 |
* Take the user's password, append the digest result from the previous step, |
|
67 |
* and hash it: dn = digest(p, dn-1). |
|
68 |
* Store dn in X (append it to the previously stored digests). |
|
69 |
* Repeat this step until the length of X matches the length of the private key |
|
70 |
* P. |
|
71 |
* |
|
72 |
* Step 3: |
|
73 |
* XOR X and P, and store the result in Y: Y = X XOR P. |
|
74 |
* |
|
75 |
* Step 4: |
|
76 |
* Store s, Y, and digest(p, P) in the result buffer R: |
|
77 |
* R = s + Y + digest(p, P), where "+" denotes concatenation. |
|
78 |
* (NOTE: digest(p, P) is stored in the result buffer, so that when the key is |
|
79 |
* recovered, we can check if the recovered key indeed matches the original |
|
80 |
* key.) R is stored in the keystore. |
|
81 |
* |
|
82 |
* The protected key is recovered as follows: |
|
83 |
* |
|
84 |
* Step1 and Step2 are the same as above, except that the salt is not randomly |
|
85 |
* generated, but taken from the result R of step 4 (the first length(s) |
|
86 |
* bytes). |
|
87 |
* |
|
88 |
* Step 3 (XOR operation) yields the plaintext key. |
|
89 |
* |
|
90 |
* Then concatenate the password with the recovered key, and compare with the |
|
91 |
* last length(digest(p, P)) bytes of R. If they match, the recovered key is |
|
92 |
* indeed the same key as the original key. |
|
93 |
* |
|
94 |
* @author Jan Luehe |
|
95 |
* |
|
96 |
* |
|
97 |
* @see java.security.KeyStore |
|
98 |
* @see JavaKeyStore |
|
99 |
* @see KeyTool |
|
100 |
* |
|
101 |
* @since 1.2 |
|
102 |
*/ |
|
103 |
||
104 |
final class KeyProtector { |
|
105 |
||
106 |
private static final int SALT_LEN = 20; // the salt length |
|
107 |
private static final String DIGEST_ALG = "SHA"; |
|
108 |
private static final int DIGEST_LEN = 20; |
|
109 |
||
110 |
// defined by JavaSoft |
|
111 |
private static final String KEY_PROTECTOR_OID = "1.3.6.1.4.1.42.2.17.1.1"; |
|
112 |
||
113 |
// The password used for protecting/recovering keys passed through this |
|
114 |
// key protector. We store it as a byte array, so that we can digest it. |
|
115 |
private byte[] passwdBytes; |
|
116 |
||
117 |
private MessageDigest md; |
|
118 |
||
119 |
||
120 |
/** |
|
121 |
* Creates an instance of this class, and initializes it with the given |
|
122 |
* password. |
|
123 |
* |
|
124 |
* <p>The password is expected to be in printable ASCII. |
|
125 |
* Normal rules for good password selection apply: at least |
|
126 |
* seven characters, mixed case, with punctuation encouraged. |
|
127 |
* Phrases or words which are easily guessed, for example by |
|
128 |
* being found in dictionaries, are bad. |
|
129 |
*/ |
|
130 |
public KeyProtector(char[] password) |
|
131 |
throws NoSuchAlgorithmException |
|
132 |
{ |
|
133 |
int i, j; |
|
134 |
||
135 |
if (password == null) { |
|
136 |
throw new IllegalArgumentException("password can't be null"); |
|
137 |
} |
|
138 |
md = MessageDigest.getInstance(DIGEST_ALG); |
|
139 |
// Convert password to byte array, so that it can be digested |
|
140 |
passwdBytes = new byte[password.length * 2]; |
|
141 |
for (i=0, j=0; i<password.length; i++) { |
|
142 |
passwdBytes[j++] = (byte)(password[i] >> 8); |
|
143 |
passwdBytes[j++] = (byte)password[i]; |
|
144 |
} |
|
46097
22316369c9b0
8184744: Replace finalizer in crypto classes with Cleaner
rriggs
parents:
44534
diff
changeset
|
145 |
// Use the cleaner to zero the password when no longer referenced |
22316369c9b0
8184744: Replace finalizer in crypto classes with Cleaner
rriggs
parents:
44534
diff
changeset
|
146 |
final byte[] k = this.passwdBytes; |
22316369c9b0
8184744: Replace finalizer in crypto classes with Cleaner
rriggs
parents:
44534
diff
changeset
|
147 |
CleanerFactory.cleaner().register(this, |
22316369c9b0
8184744: Replace finalizer in crypto classes with Cleaner
rriggs
parents:
44534
diff
changeset
|
148 |
() -> java.util.Arrays.fill(k, (byte)0x00)); |
2 | 149 |
} |
150 |
||
151 |
/* |
|
152 |
* Protects the given plaintext key, using the password provided at |
|
153 |
* construction time. |
|
154 |
*/ |
|
155 |
public byte[] protect(Key key) throws KeyStoreException |
|
156 |
{ |
|
157 |
int i; |
|
158 |
int numRounds; |
|
159 |
byte[] digest; |
|
160 |
int xorOffset; // offset in xorKey where next digest will be stored |
|
161 |
int encrKeyOffset = 0; |
|
162 |
||
163 |
if (key == null) { |
|
164 |
throw new IllegalArgumentException("plaintext key can't be null"); |
|
165 |
} |
|
166 |
||
167 |
if (!"PKCS#8".equalsIgnoreCase(key.getFormat())) { |
|
168 |
throw new KeyStoreException( |
|
169 |
"Cannot get key bytes, not PKCS#8 encoded"); |
|
170 |
} |
|
171 |
||
172 |
byte[] plainKey = key.getEncoded(); |
|
173 |
if (plainKey == null) { |
|
174 |
throw new KeyStoreException( |
|
175 |
"Cannot get key bytes, encoding not supported"); |
|
176 |
} |
|
177 |
||
178 |
// Determine the number of digest rounds |
|
179 |
numRounds = plainKey.length / DIGEST_LEN; |
|
180 |
if ((plainKey.length % DIGEST_LEN) != 0) |
|
181 |
numRounds++; |
|
182 |
||
183 |
// Create a random salt |
|
184 |
byte[] salt = new byte[SALT_LEN]; |
|
185 |
SecureRandom random = new SecureRandom(); |
|
186 |
random.nextBytes(salt); |
|
187 |
||
188 |
// Set up the byte array which will be XORed with "plainKey" |
|
189 |
byte[] xorKey = new byte[plainKey.length]; |
|
190 |
||
191 |
// Compute the digests, and store them in "xorKey" |
|
192 |
for (i = 0, xorOffset = 0, digest = salt; |
|
193 |
i < numRounds; |
|
194 |
i++, xorOffset += DIGEST_LEN) { |
|
195 |
md.update(passwdBytes); |
|
196 |
md.update(digest); |
|
197 |
digest = md.digest(); |
|
198 |
md.reset(); |
|
199 |
// Copy the digest into "xorKey" |
|
200 |
if (i < numRounds - 1) { |
|
201 |
System.arraycopy(digest, 0, xorKey, xorOffset, |
|
202 |
digest.length); |
|
203 |
} else { |
|
204 |
System.arraycopy(digest, 0, xorKey, xorOffset, |
|
205 |
xorKey.length - xorOffset); |
|
206 |
} |
|
207 |
} |
|
208 |
||
209 |
// XOR "plainKey" with "xorKey", and store the result in "tmpKey" |
|
210 |
byte[] tmpKey = new byte[plainKey.length]; |
|
211 |
for (i = 0; i < tmpKey.length; i++) { |
|
212 |
tmpKey[i] = (byte)(plainKey[i] ^ xorKey[i]); |
|
213 |
} |
|
214 |
||
215 |
// Store salt and "tmpKey" in "encrKey" |
|
216 |
byte[] encrKey = new byte[salt.length + tmpKey.length + DIGEST_LEN]; |
|
217 |
System.arraycopy(salt, 0, encrKey, encrKeyOffset, salt.length); |
|
218 |
encrKeyOffset += salt.length; |
|
219 |
System.arraycopy(tmpKey, 0, encrKey, encrKeyOffset, tmpKey.length); |
|
220 |
encrKeyOffset += tmpKey.length; |
|
221 |
||
222 |
// Append digest(password, plainKey) as an integrity check to "encrKey" |
|
223 |
md.update(passwdBytes); |
|
224 |
Arrays.fill(passwdBytes, (byte)0x00); |
|
225 |
passwdBytes = null; |
|
226 |
md.update(plainKey); |
|
227 |
digest = md.digest(); |
|
228 |
md.reset(); |
|
229 |
System.arraycopy(digest, 0, encrKey, encrKeyOffset, digest.length); |
|
230 |
||
231 |
// wrap the protected private key in a PKCS#8-style |
|
232 |
// EncryptedPrivateKeyInfo, and returns its encoding |
|
233 |
AlgorithmId encrAlg; |
|
234 |
try { |
|
235 |
encrAlg = new AlgorithmId(new ObjectIdentifier(KEY_PROTECTOR_OID)); |
|
236 |
return new EncryptedPrivateKeyInfo(encrAlg,encrKey).getEncoded(); |
|
237 |
} catch (IOException ioe) { |
|
238 |
throw new KeyStoreException(ioe.getMessage()); |
|
239 |
} |
|
240 |
} |
|
241 |
||
242 |
/* |
|
243 |
* Recovers the plaintext version of the given key (in protected format), |
|
244 |
* using the password provided at construction time. |
|
245 |
*/ |
|
246 |
public Key recover(EncryptedPrivateKeyInfo encrInfo) |
|
247 |
throws UnrecoverableKeyException |
|
248 |
{ |
|
249 |
int i; |
|
250 |
byte[] digest; |
|
251 |
int numRounds; |
|
252 |
int xorOffset; // offset in xorKey where next digest will be stored |
|
253 |
int encrKeyLen; // the length of the encrpyted key |
|
254 |
||
255 |
// do we support the algorithm? |
|
256 |
AlgorithmId encrAlg = encrInfo.getAlgorithm(); |
|
257 |
if (!(encrAlg.getOID().toString().equals(KEY_PROTECTOR_OID))) { |
|
258 |
throw new UnrecoverableKeyException("Unsupported key protection " |
|
259 |
+ "algorithm"); |
|
260 |
} |
|
261 |
||
262 |
byte[] protectedKey = encrInfo.getEncryptedData(); |
|
263 |
||
264 |
/* |
|
265 |
* Get the salt associated with this key (the first SALT_LEN bytes of |
|
266 |
* <code>protectedKey</code>) |
|
267 |
*/ |
|
268 |
byte[] salt = new byte[SALT_LEN]; |
|
269 |
System.arraycopy(protectedKey, 0, salt, 0, SALT_LEN); |
|
270 |
||
271 |
// Determine the number of digest rounds |
|
272 |
encrKeyLen = protectedKey.length - SALT_LEN - DIGEST_LEN; |
|
273 |
numRounds = encrKeyLen / DIGEST_LEN; |
|
274 |
if ((encrKeyLen % DIGEST_LEN) != 0) numRounds++; |
|
275 |
||
276 |
// Get the encrypted key portion and store it in "encrKey" |
|
277 |
byte[] encrKey = new byte[encrKeyLen]; |
|
278 |
System.arraycopy(protectedKey, SALT_LEN, encrKey, 0, encrKeyLen); |
|
279 |
||
280 |
// Set up the byte array which will be XORed with "encrKey" |
|
281 |
byte[] xorKey = new byte[encrKey.length]; |
|
282 |
||
283 |
// Compute the digests, and store them in "xorKey" |
|
284 |
for (i = 0, xorOffset = 0, digest = salt; |
|
285 |
i < numRounds; |
|
286 |
i++, xorOffset += DIGEST_LEN) { |
|
287 |
md.update(passwdBytes); |
|
288 |
md.update(digest); |
|
289 |
digest = md.digest(); |
|
290 |
md.reset(); |
|
291 |
// Copy the digest into "xorKey" |
|
292 |
if (i < numRounds - 1) { |
|
293 |
System.arraycopy(digest, 0, xorKey, xorOffset, |
|
294 |
digest.length); |
|
295 |
} else { |
|
296 |
System.arraycopy(digest, 0, xorKey, xorOffset, |
|
297 |
xorKey.length - xorOffset); |
|
298 |
} |
|
299 |
} |
|
300 |
||
301 |
// XOR "encrKey" with "xorKey", and store the result in "plainKey" |
|
302 |
byte[] plainKey = new byte[encrKey.length]; |
|
303 |
for (i = 0; i < plainKey.length; i++) { |
|
304 |
plainKey[i] = (byte)(encrKey[i] ^ xorKey[i]); |
|
305 |
} |
|
306 |
||
307 |
/* |
|
308 |
* Check the integrity of the recovered key by concatenating it with |
|
309 |
* the password, digesting the concatenation, and comparing the |
|
310 |
* result of the digest operation with the digest provided at the end |
|
311 |
* of <code>protectedKey</code>. If the two digest values are |
|
312 |
* different, throw an exception. |
|
313 |
*/ |
|
314 |
md.update(passwdBytes); |
|
315 |
Arrays.fill(passwdBytes, (byte)0x00); |
|
316 |
passwdBytes = null; |
|
317 |
md.update(plainKey); |
|
318 |
digest = md.digest(); |
|
319 |
md.reset(); |
|
320 |
for (i = 0; i < digest.length; i++) { |
|
321 |
if (digest[i] != protectedKey[SALT_LEN + encrKeyLen + i]) { |
|
322 |
throw new UnrecoverableKeyException("Cannot recover key"); |
|
323 |
} |
|
324 |
} |
|
325 |
||
326 |
// The parseKey() method of PKCS8Key parses the key |
|
327 |
// algorithm and instantiates the appropriate key factory, |
|
328 |
// which in turn parses the key material. |
|
329 |
try { |
|
330 |
return PKCS8Key.parseKey(new DerValue(plainKey)); |
|
331 |
} catch (IOException ioe) { |
|
332 |
throw new UnrecoverableKeyException(ioe.getMessage()); |
|
333 |
} |
|
334 |
} |
|
335 |
} |