29183
|
1 |
/*
|
|
2 |
* Copyright (c) 2014, Red Hat Inc. All rights reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation.
|
|
8 |
*
|
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
13 |
* accompanied this code).
|
|
14 |
*
|
|
15 |
* You should have received a copy of the GNU General Public License version
|
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
18 |
*
|
|
19 |
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
20 |
* or visit www.oracle.com if you need additional information or have any
|
|
21 |
* questions.
|
|
22 |
*
|
|
23 |
*/
|
|
24 |
|
|
25 |
#include <stdlib.h>
|
|
26 |
#include "decode_aarch64.hpp"
|
|
27 |
#include "immediate_aarch64.hpp"
|
|
28 |
|
|
29 |
// there are at most 2^13 possible logical immediate encodings
|
|
30 |
// however, some combinations of immr and imms are invalid
|
|
31 |
static const unsigned LI_TABLE_SIZE = (1 << 13);
|
|
32 |
|
|
33 |
static int li_table_entry_count;
|
|
34 |
|
|
35 |
// for forward lookup we just use a direct array lookup
|
|
36 |
// and assume that the cient has supplied a valid encoding
|
|
37 |
// table[encoding] = immediate
|
|
38 |
static u_int64_t LITable[LI_TABLE_SIZE];
|
|
39 |
|
|
40 |
// for reverse lookup we need a sparse map so we store a table of
|
|
41 |
// immediate and encoding pairs sorted by immediate value
|
|
42 |
|
|
43 |
struct li_pair {
|
|
44 |
u_int64_t immediate;
|
|
45 |
u_int32_t encoding;
|
|
46 |
};
|
|
47 |
|
|
48 |
static struct li_pair InverseLITable[LI_TABLE_SIZE];
|
|
49 |
|
|
50 |
// comparator to sort entries in the inverse table
|
|
51 |
int compare_immediate_pair(const void *i1, const void *i2)
|
|
52 |
{
|
|
53 |
struct li_pair *li1 = (struct li_pair *)i1;
|
|
54 |
struct li_pair *li2 = (struct li_pair *)i2;
|
|
55 |
if (li1->immediate < li2->immediate) {
|
|
56 |
return -1;
|
|
57 |
}
|
|
58 |
if (li1->immediate > li2->immediate) {
|
|
59 |
return 1;
|
|
60 |
}
|
|
61 |
return 0;
|
|
62 |
}
|
|
63 |
|
|
64 |
// helper functions used by expandLogicalImmediate
|
|
65 |
|
|
66 |
// for i = 1, ... N result<i-1> = 1 other bits are zero
|
|
67 |
static inline u_int64_t ones(int N)
|
|
68 |
{
|
|
69 |
return (N == 64 ? (u_int64_t)-1UL : ((1UL << N) - 1));
|
|
70 |
}
|
|
71 |
|
|
72 |
// result<0> to val<N>
|
|
73 |
static inline u_int64_t pickbit(u_int64_t val, int N)
|
|
74 |
{
|
|
75 |
return pickbits64(val, N, N);
|
|
76 |
}
|
|
77 |
|
|
78 |
|
|
79 |
// SPEC bits(M*N) Replicate(bits(M) x, integer N);
|
|
80 |
// this is just an educated guess
|
|
81 |
|
|
82 |
u_int64_t replicate(u_int64_t bits, int nbits, int count)
|
|
83 |
{
|
|
84 |
u_int64_t result = 0;
|
|
85 |
// nbits may be 64 in which case we want mask to be -1
|
|
86 |
u_int64_t mask = ones(nbits);
|
|
87 |
for (int i = 0; i < count ; i++) {
|
|
88 |
result <<= nbits;
|
|
89 |
result |= (bits & mask);
|
|
90 |
}
|
|
91 |
return result;
|
|
92 |
}
|
|
93 |
|
|
94 |
// this function writes the supplied bimm reference and returns a
|
|
95 |
// boolean to indicate success (1) or fail (0) because an illegal
|
|
96 |
// encoding must be treated as an UNALLOC instruction
|
|
97 |
|
|
98 |
// construct a 32 bit immediate value for a logical immediate operation
|
|
99 |
int expandLogicalImmediate(u_int32_t immN, u_int32_t immr,
|
|
100 |
u_int32_t imms, u_int64_t &bimm)
|
|
101 |
{
|
|
102 |
int len; // ought to be <= 6
|
|
103 |
u_int32_t levels; // 6 bits
|
|
104 |
u_int32_t tmask_and; // 6 bits
|
|
105 |
u_int32_t wmask_and; // 6 bits
|
|
106 |
u_int32_t tmask_or; // 6 bits
|
|
107 |
u_int32_t wmask_or; // 6 bits
|
|
108 |
u_int64_t imm64; // 64 bits
|
|
109 |
u_int64_t tmask, wmask; // 64 bits
|
|
110 |
u_int32_t S, R, diff; // 6 bits?
|
|
111 |
|
|
112 |
if (immN == 1) {
|
|
113 |
len = 6; // looks like 7 given the spec above but this cannot be!
|
|
114 |
} else {
|
|
115 |
len = 0;
|
|
116 |
u_int32_t val = (~imms & 0x3f);
|
|
117 |
for (int i = 5; i > 0; i--) {
|
|
118 |
if (val & (1 << i)) {
|
|
119 |
len = i;
|
|
120 |
break;
|
|
121 |
}
|
|
122 |
}
|
|
123 |
if (len < 1) {
|
|
124 |
return 0;
|
|
125 |
}
|
|
126 |
// for valid inputs leading 1s in immr must be less than leading
|
|
127 |
// zeros in imms
|
|
128 |
int len2 = 0; // ought to be < len
|
|
129 |
u_int32_t val2 = (~immr & 0x3f);
|
|
130 |
for (int i = 5; i > 0; i--) {
|
|
131 |
if (!(val2 & (1 << i))) {
|
|
132 |
len2 = i;
|
|
133 |
break;
|
|
134 |
}
|
|
135 |
}
|
|
136 |
if (len2 >= len) {
|
|
137 |
return 0;
|
|
138 |
}
|
|
139 |
}
|
|
140 |
|
|
141 |
levels = (1 << len) - 1;
|
|
142 |
|
|
143 |
if ((imms & levels) == levels) {
|
|
144 |
return 0;
|
|
145 |
}
|
|
146 |
|
|
147 |
S = imms & levels;
|
|
148 |
R = immr & levels;
|
|
149 |
|
|
150 |
// 6 bit arithmetic!
|
|
151 |
diff = S - R;
|
|
152 |
tmask_and = (diff | ~levels) & 0x3f;
|
|
153 |
tmask_or = (diff & levels) & 0x3f;
|
|
154 |
tmask = 0xffffffffffffffffULL;
|
|
155 |
|
|
156 |
for (int i = 0; i < 6; i++) {
|
|
157 |
int nbits = 1 << i;
|
|
158 |
u_int64_t and_bit = pickbit(tmask_and, i);
|
|
159 |
u_int64_t or_bit = pickbit(tmask_or, i);
|
|
160 |
u_int64_t and_bits_sub = replicate(and_bit, 1, nbits);
|
|
161 |
u_int64_t or_bits_sub = replicate(or_bit, 1, nbits);
|
|
162 |
u_int64_t and_bits_top = (and_bits_sub << nbits) | ones(nbits);
|
|
163 |
u_int64_t or_bits_top = (0 << nbits) | or_bits_sub;
|
|
164 |
|
|
165 |
tmask = ((tmask
|
|
166 |
& (replicate(and_bits_top, 2 * nbits, 32 / nbits)))
|
|
167 |
| replicate(or_bits_top, 2 * nbits, 32 / nbits));
|
|
168 |
}
|
|
169 |
|
|
170 |
wmask_and = (immr | ~levels) & 0x3f;
|
|
171 |
wmask_or = (immr & levels) & 0x3f;
|
|
172 |
|
|
173 |
wmask = 0;
|
|
174 |
|
|
175 |
for (int i = 0; i < 6; i++) {
|
|
176 |
int nbits = 1 << i;
|
|
177 |
u_int64_t and_bit = pickbit(wmask_and, i);
|
|
178 |
u_int64_t or_bit = pickbit(wmask_or, i);
|
|
179 |
u_int64_t and_bits_sub = replicate(and_bit, 1, nbits);
|
|
180 |
u_int64_t or_bits_sub = replicate(or_bit, 1, nbits);
|
|
181 |
u_int64_t and_bits_top = (ones(nbits) << nbits) | and_bits_sub;
|
|
182 |
u_int64_t or_bits_top = (or_bits_sub << nbits) | 0;
|
|
183 |
|
|
184 |
wmask = ((wmask
|
|
185 |
& (replicate(and_bits_top, 2 * nbits, 32 / nbits)))
|
|
186 |
| replicate(or_bits_top, 2 * nbits, 32 / nbits));
|
|
187 |
}
|
|
188 |
|
|
189 |
if (diff & (1U << 6)) {
|
|
190 |
imm64 = tmask & wmask;
|
|
191 |
} else {
|
|
192 |
imm64 = tmask | wmask;
|
|
193 |
}
|
|
194 |
|
|
195 |
|
|
196 |
bimm = imm64;
|
|
197 |
return 1;
|
|
198 |
}
|
|
199 |
|
|
200 |
// constructor to initialise the lookup tables
|
|
201 |
|
|
202 |
static void initLITables() __attribute__ ((constructor));
|
|
203 |
static void initLITables()
|
|
204 |
{
|
|
205 |
li_table_entry_count = 0;
|
|
206 |
for (unsigned index = 0; index < LI_TABLE_SIZE; index++) {
|
|
207 |
u_int32_t N = uimm(index, 12, 12);
|
|
208 |
u_int32_t immr = uimm(index, 11, 6);
|
|
209 |
u_int32_t imms = uimm(index, 5, 0);
|
|
210 |
if (expandLogicalImmediate(N, immr, imms, LITable[index])) {
|
|
211 |
InverseLITable[li_table_entry_count].immediate = LITable[index];
|
|
212 |
InverseLITable[li_table_entry_count].encoding = index;
|
|
213 |
li_table_entry_count++;
|
|
214 |
}
|
|
215 |
}
|
|
216 |
// now sort the inverse table
|
|
217 |
qsort(InverseLITable, li_table_entry_count,
|
|
218 |
sizeof(InverseLITable[0]), compare_immediate_pair);
|
|
219 |
}
|
|
220 |
|
|
221 |
// public APIs provided for logical immediate lookup and reverse lookup
|
|
222 |
|
|
223 |
u_int64_t logical_immediate_for_encoding(u_int32_t encoding)
|
|
224 |
{
|
|
225 |
return LITable[encoding];
|
|
226 |
}
|
|
227 |
|
|
228 |
u_int32_t encoding_for_logical_immediate(u_int64_t immediate)
|
|
229 |
{
|
|
230 |
struct li_pair pair;
|
|
231 |
struct li_pair *result;
|
|
232 |
|
|
233 |
pair.immediate = immediate;
|
|
234 |
|
|
235 |
result = (struct li_pair *)
|
|
236 |
bsearch(&pair, InverseLITable, li_table_entry_count,
|
|
237 |
sizeof(InverseLITable[0]), compare_immediate_pair);
|
|
238 |
|
|
239 |
if (result) {
|
|
240 |
return result->encoding;
|
|
241 |
}
|
|
242 |
|
|
243 |
return 0xffffffff;
|
|
244 |
}
|
|
245 |
|
|
246 |
// floating point immediates are encoded in 8 bits
|
|
247 |
// fpimm[7] = sign bit
|
|
248 |
// fpimm[6:4] = signed exponent
|
|
249 |
// fpimm[3:0] = fraction (assuming leading 1)
|
|
250 |
// i.e. F = s * 1.f * 2^(e - b)
|
|
251 |
|
|
252 |
u_int64_t fp_immediate_for_encoding(u_int32_t imm8, int is_dp)
|
|
253 |
{
|
|
254 |
union {
|
|
255 |
float fpval;
|
|
256 |
double dpval;
|
|
257 |
u_int64_t val;
|
|
258 |
};
|
|
259 |
|
|
260 |
u_int32_t s, e, f;
|
|
261 |
s = (imm8 >> 7 ) & 0x1;
|
|
262 |
e = (imm8 >> 4) & 0x7;
|
|
263 |
f = imm8 & 0xf;
|
|
264 |
// the fp value is s * n/16 * 2r where n is 16+e
|
|
265 |
fpval = (16.0 + f) / 16.0;
|
|
266 |
// n.b. exponent is signed
|
|
267 |
if (e < 4) {
|
|
268 |
int epos = e;
|
|
269 |
for (int i = 0; i <= epos; i++) {
|
|
270 |
fpval *= 2.0;
|
|
271 |
}
|
|
272 |
} else {
|
|
273 |
int eneg = 7 - e;
|
|
274 |
for (int i = 0; i < eneg; i++) {
|
|
275 |
fpval /= 2.0;
|
|
276 |
}
|
|
277 |
}
|
|
278 |
|
|
279 |
if (s) {
|
|
280 |
fpval = -fpval;
|
|
281 |
}
|
|
282 |
if (is_dp) {
|
|
283 |
dpval = (double)fpval;
|
|
284 |
}
|
|
285 |
return val;
|
|
286 |
}
|
|
287 |
|
|
288 |
u_int32_t encoding_for_fp_immediate(float immediate)
|
|
289 |
{
|
|
290 |
// given a float which is of the form
|
|
291 |
//
|
|
292 |
// s * n/16 * 2r
|
|
293 |
//
|
|
294 |
// where n is 16+f and imm1:s, imm4:f, simm3:r
|
|
295 |
// return the imm8 result [s:r:f]
|
|
296 |
//
|
|
297 |
|
|
298 |
union {
|
|
299 |
float fpval;
|
|
300 |
u_int32_t val;
|
|
301 |
};
|
|
302 |
fpval = immediate;
|
|
303 |
u_int32_t s, r, f, res;
|
|
304 |
// sign bit is 31
|
|
305 |
s = (val >> 31) & 0x1;
|
|
306 |
// exponent is bits 30-23 but we only want the bottom 3 bits
|
|
307 |
// strictly we ought to check that the bits bits 30-25 are
|
|
308 |
// either all 1s or all 0s
|
|
309 |
r = (val >> 23) & 0x7;
|
|
310 |
// fraction is bits 22-0
|
|
311 |
f = (val >> 19) & 0xf;
|
|
312 |
res = (s << 7) | (r << 4) | f;
|
|
313 |
return res;
|
|
314 |
}
|
|
315 |
|