1
|
1 |
/*
|
|
2 |
* Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation.
|
|
8 |
*
|
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
13 |
* accompanied this code).
|
|
14 |
*
|
|
15 |
* You should have received a copy of the GNU General Public License version
|
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
18 |
*
|
|
19 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
20 |
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
21 |
* have any questions.
|
|
22 |
*
|
|
23 |
*/
|
|
24 |
|
|
25 |
class Compile;
|
|
26 |
class Node;
|
|
27 |
class MachNode;
|
|
28 |
class MachTypeNode;
|
|
29 |
class MachOper;
|
|
30 |
|
|
31 |
//---------------------------Matcher-------------------------------------------
|
|
32 |
class Matcher : public PhaseTransform {
|
|
33 |
friend class VMStructs;
|
|
34 |
// Private arena of State objects
|
|
35 |
ResourceArea _states_arena;
|
|
36 |
|
|
37 |
VectorSet _visited; // Visit bits
|
|
38 |
|
|
39 |
// Used to control the Label pass
|
|
40 |
VectorSet _shared; // Shared Ideal Node
|
|
41 |
VectorSet _dontcare; // Nothing the matcher cares about
|
|
42 |
|
|
43 |
// Private methods which perform the actual matching and reduction
|
|
44 |
// Walks the label tree, generating machine nodes
|
|
45 |
MachNode *ReduceInst( State *s, int rule, Node *&mem);
|
|
46 |
void ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach);
|
|
47 |
uint ReduceInst_Interior(State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds);
|
|
48 |
void ReduceOper( State *s, int newrule, Node *&mem, MachNode *mach );
|
|
49 |
|
|
50 |
// If this node already matched using "rule", return the MachNode for it.
|
|
51 |
MachNode* find_shared_constant(Node* con, uint rule);
|
|
52 |
|
|
53 |
// Convert a dense opcode number to an expanded rule number
|
|
54 |
const int *_reduceOp;
|
|
55 |
const int *_leftOp;
|
|
56 |
const int *_rightOp;
|
|
57 |
|
|
58 |
// Map dense opcode number to info on when rule is swallowed constant.
|
|
59 |
const bool *_swallowed;
|
|
60 |
|
|
61 |
// Map dense rule number to determine if this is an instruction chain rule
|
|
62 |
const uint _begin_inst_chain_rule;
|
|
63 |
const uint _end_inst_chain_rule;
|
|
64 |
|
|
65 |
// We want to clone constants and possible CmpI-variants.
|
|
66 |
// If we do not clone CmpI, then we can have many instances of
|
|
67 |
// condition codes alive at once. This is OK on some chips and
|
|
68 |
// bad on others. Hence the machine-dependent table lookup.
|
|
69 |
const char *_must_clone;
|
|
70 |
|
|
71 |
// Find shared Nodes, or Nodes that otherwise are Matcher roots
|
|
72 |
void find_shared( Node *n );
|
|
73 |
|
|
74 |
// Debug and profile information for nodes in old space:
|
|
75 |
GrowableArray<Node_Notes*>* _old_node_note_array;
|
|
76 |
|
|
77 |
// Node labeling iterator for instruction selection
|
|
78 |
Node *Label_Root( const Node *n, State *svec, Node *control, const Node *mem );
|
|
79 |
|
|
80 |
Node *transform( Node *dummy );
|
|
81 |
|
|
82 |
Node_List &_proj_list; // For Machine nodes killing many values
|
|
83 |
|
|
84 |
Node_Array _shared_constants;
|
|
85 |
|
|
86 |
debug_only(Node_Array _old2new_map;) // Map roots of ideal-trees to machine-roots
|
|
87 |
|
|
88 |
// Accessors for the inherited field PhaseTransform::_nodes:
|
|
89 |
void grow_new_node_array(uint idx_limit) {
|
|
90 |
_nodes.map(idx_limit-1, NULL);
|
|
91 |
}
|
|
92 |
bool has_new_node(const Node* n) const {
|
|
93 |
return _nodes.at(n->_idx) != NULL;
|
|
94 |
}
|
|
95 |
Node* new_node(const Node* n) const {
|
|
96 |
assert(has_new_node(n), "set before get");
|
|
97 |
return _nodes.at(n->_idx);
|
|
98 |
}
|
|
99 |
void set_new_node(const Node* n, Node *nn) {
|
|
100 |
assert(!has_new_node(n), "set only once");
|
|
101 |
_nodes.map(n->_idx, nn);
|
|
102 |
}
|
|
103 |
|
|
104 |
#ifdef ASSERT
|
|
105 |
// Make sure only new nodes are reachable from this node
|
|
106 |
void verify_new_nodes_only(Node* root);
|
|
107 |
#endif
|
|
108 |
|
|
109 |
public:
|
|
110 |
int LabelRootDepth;
|
|
111 |
static const int base2reg[]; // Map Types to machine register types
|
|
112 |
// Convert ideal machine register to a register mask for spill-loads
|
|
113 |
static const RegMask *idealreg2regmask[];
|
|
114 |
RegMask *idealreg2spillmask[_last_machine_leaf];
|
|
115 |
RegMask *idealreg2debugmask[_last_machine_leaf];
|
|
116 |
void init_spill_mask( Node *ret );
|
|
117 |
// Convert machine register number to register mask
|
|
118 |
static uint mreg2regmask_max;
|
|
119 |
static RegMask mreg2regmask[];
|
|
120 |
static RegMask STACK_ONLY_mask;
|
|
121 |
|
|
122 |
bool is_shared( Node *n ) { return _shared.test(n->_idx) != 0; }
|
|
123 |
void set_shared( Node *n ) { _shared.set(n->_idx); }
|
|
124 |
bool is_visited( Node *n ) { return _visited.test(n->_idx) != 0; }
|
|
125 |
void set_visited( Node *n ) { _visited.set(n->_idx); }
|
|
126 |
bool is_dontcare( Node *n ) { return _dontcare.test(n->_idx) != 0; }
|
|
127 |
void set_dontcare( Node *n ) { _dontcare.set(n->_idx); }
|
|
128 |
|
|
129 |
// Mode bit to tell DFA and expand rules whether we are running after
|
|
130 |
// (or during) register selection. Usually, the matcher runs before,
|
|
131 |
// but it will also get called to generate post-allocation spill code.
|
|
132 |
// In this situation, it is a deadly error to attempt to allocate more
|
|
133 |
// temporary registers.
|
|
134 |
bool _allocation_started;
|
|
135 |
|
|
136 |
// Machine register names
|
|
137 |
static const char *regName[];
|
|
138 |
// Machine register encodings
|
|
139 |
static const unsigned char _regEncode[];
|
|
140 |
// Machine Node names
|
|
141 |
const char **_ruleName;
|
|
142 |
// Rules that are cheaper to rematerialize than to spill
|
|
143 |
static const uint _begin_rematerialize;
|
|
144 |
static const uint _end_rematerialize;
|
|
145 |
|
|
146 |
// An array of chars, from 0 to _last_Mach_Reg.
|
|
147 |
// No Save = 'N' (for register windows)
|
|
148 |
// Save on Entry = 'E'
|
|
149 |
// Save on Call = 'C'
|
|
150 |
// Always Save = 'A' (same as SOE + SOC)
|
|
151 |
const char *_register_save_policy;
|
|
152 |
const char *_c_reg_save_policy;
|
|
153 |
// Convert a machine register to a machine register type, so-as to
|
|
154 |
// properly match spill code.
|
|
155 |
const int *_register_save_type;
|
|
156 |
// Maps from machine register to boolean; true if machine register can
|
|
157 |
// be holding a call argument in some signature.
|
|
158 |
static bool can_be_java_arg( int reg );
|
|
159 |
// Maps from machine register to boolean; true if machine register holds
|
|
160 |
// a spillable argument.
|
|
161 |
static bool is_spillable_arg( int reg );
|
|
162 |
|
|
163 |
// List of IfFalse or IfTrue Nodes that indicate a taken null test.
|
|
164 |
// List is valid in the post-matching space.
|
|
165 |
Node_List _null_check_tests;
|
|
166 |
void collect_null_checks( Node *proj );
|
|
167 |
void validate_null_checks( );
|
|
168 |
|
|
169 |
Matcher( Node_List &proj_list );
|
|
170 |
|
|
171 |
// Select instructions for entire method
|
|
172 |
void match( );
|
|
173 |
// Helper for match
|
|
174 |
OptoReg::Name warp_incoming_stk_arg( VMReg reg );
|
|
175 |
|
|
176 |
// Transform, then walk. Does implicit DCE while walking.
|
|
177 |
// Name changed from "transform" to avoid it being virtual.
|
|
178 |
Node *xform( Node *old_space_node, int Nodes );
|
|
179 |
|
|
180 |
// Match a single Ideal Node - turn it into a 1-Node tree; Label & Reduce.
|
|
181 |
MachNode *match_tree( const Node *n );
|
|
182 |
MachNode *match_sfpt( SafePointNode *sfpt );
|
|
183 |
// Helper for match_sfpt
|
|
184 |
OptoReg::Name warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call );
|
|
185 |
|
|
186 |
// Initialize first stack mask and related masks.
|
|
187 |
void init_first_stack_mask();
|
|
188 |
|
|
189 |
// If we should save-on-entry this register
|
|
190 |
bool is_save_on_entry( int reg );
|
|
191 |
|
|
192 |
// Fixup the save-on-entry registers
|
|
193 |
void Fixup_Save_On_Entry( );
|
|
194 |
|
|
195 |
// --- Frame handling ---
|
|
196 |
|
|
197 |
// Register number of the stack slot corresponding to the incoming SP.
|
|
198 |
// Per the Big Picture in the AD file, it is:
|
|
199 |
// SharedInfo::stack0 + locks + in_preserve_stack_slots + pad2.
|
|
200 |
OptoReg::Name _old_SP;
|
|
201 |
|
|
202 |
// Register number of the stack slot corresponding to the highest incoming
|
|
203 |
// argument on the stack. Per the Big Picture in the AD file, it is:
|
|
204 |
// _old_SP + out_preserve_stack_slots + incoming argument size.
|
|
205 |
OptoReg::Name _in_arg_limit;
|
|
206 |
|
|
207 |
// Register number of the stack slot corresponding to the new SP.
|
|
208 |
// Per the Big Picture in the AD file, it is:
|
|
209 |
// _in_arg_limit + pad0
|
|
210 |
OptoReg::Name _new_SP;
|
|
211 |
|
|
212 |
// Register number of the stack slot corresponding to the highest outgoing
|
|
213 |
// argument on the stack. Per the Big Picture in the AD file, it is:
|
|
214 |
// _new_SP + max outgoing arguments of all calls
|
|
215 |
OptoReg::Name _out_arg_limit;
|
|
216 |
|
|
217 |
OptoRegPair *_parm_regs; // Array of machine registers per argument
|
|
218 |
RegMask *_calling_convention_mask; // Array of RegMasks per argument
|
|
219 |
|
|
220 |
// Does matcher support this ideal node?
|
|
221 |
static const bool has_match_rule(int opcode);
|
|
222 |
static const bool _hasMatchRule[_last_opcode];
|
|
223 |
|
|
224 |
// Used to determine if we have fast l2f conversion
|
|
225 |
// USII has it, USIII doesn't
|
|
226 |
static const bool convL2FSupported(void);
|
|
227 |
|
|
228 |
// Vector width in bytes
|
|
229 |
static const uint vector_width_in_bytes(void);
|
|
230 |
|
|
231 |
// Vector ideal reg
|
|
232 |
static const uint vector_ideal_reg(void);
|
|
233 |
|
|
234 |
// Used to determine a "low complexity" 64-bit constant. (Zero is simple.)
|
|
235 |
// The standard of comparison is one (StoreL ConL) vs. two (StoreI ConI).
|
|
236 |
// Depends on the details of 64-bit constant generation on the CPU.
|
|
237 |
static const bool isSimpleConstant64(jlong con);
|
|
238 |
|
|
239 |
// These calls are all generated by the ADLC
|
|
240 |
|
|
241 |
// TRUE - grows up, FALSE - grows down (Intel)
|
|
242 |
virtual bool stack_direction() const;
|
|
243 |
|
|
244 |
// Java-Java calling convention
|
|
245 |
// (what you use when Java calls Java)
|
|
246 |
|
|
247 |
// Alignment of stack in bytes, standard Intel word alignment is 4.
|
|
248 |
// Sparc probably wants at least double-word (8).
|
|
249 |
static uint stack_alignment_in_bytes();
|
|
250 |
// Alignment of stack, measured in stack slots.
|
|
251 |
// The size of stack slots is defined by VMRegImpl::stack_slot_size.
|
|
252 |
static uint stack_alignment_in_slots() {
|
|
253 |
return stack_alignment_in_bytes() / (VMRegImpl::stack_slot_size);
|
|
254 |
}
|
|
255 |
|
|
256 |
// Array mapping arguments to registers. Argument 0 is usually the 'this'
|
|
257 |
// pointer. Registers can include stack-slots and regular registers.
|
|
258 |
static void calling_convention( BasicType *, VMRegPair *, uint len, bool is_outgoing );
|
|
259 |
|
|
260 |
// Convert a sig into a calling convention register layout
|
|
261 |
// and find interesting things about it.
|
|
262 |
static OptoReg::Name find_receiver( bool is_outgoing );
|
|
263 |
// Return address register. On Intel it is a stack-slot. On PowerPC
|
|
264 |
// it is the Link register. On Sparc it is r31?
|
|
265 |
virtual OptoReg::Name return_addr() const;
|
|
266 |
RegMask _return_addr_mask;
|
|
267 |
// Return value register. On Intel it is EAX. On Sparc i0/o0.
|
|
268 |
static OptoRegPair return_value(int ideal_reg, bool is_outgoing);
|
|
269 |
static OptoRegPair c_return_value(int ideal_reg, bool is_outgoing);
|
|
270 |
RegMask _return_value_mask;
|
|
271 |
// Inline Cache Register
|
|
272 |
static OptoReg::Name inline_cache_reg();
|
|
273 |
static const RegMask &inline_cache_reg_mask();
|
|
274 |
static int inline_cache_reg_encode();
|
|
275 |
|
|
276 |
// Register for DIVI projection of divmodI
|
|
277 |
static RegMask divI_proj_mask();
|
|
278 |
// Register for MODI projection of divmodI
|
|
279 |
static RegMask modI_proj_mask();
|
|
280 |
|
|
281 |
// Register for DIVL projection of divmodL
|
|
282 |
static RegMask divL_proj_mask();
|
|
283 |
// Register for MODL projection of divmodL
|
|
284 |
static RegMask modL_proj_mask();
|
|
285 |
|
|
286 |
// Java-Interpreter calling convention
|
|
287 |
// (what you use when calling between compiled-Java and Interpreted-Java
|
|
288 |
|
|
289 |
// Number of callee-save + always-save registers
|
|
290 |
// Ignores frame pointer and "special" registers
|
|
291 |
static int number_of_saved_registers();
|
|
292 |
|
|
293 |
// The Method-klass-holder may be passed in the inline_cache_reg
|
|
294 |
// and then expanded into the inline_cache_reg and a method_oop register
|
|
295 |
|
|
296 |
static OptoReg::Name interpreter_method_oop_reg();
|
|
297 |
static const RegMask &interpreter_method_oop_reg_mask();
|
|
298 |
static int interpreter_method_oop_reg_encode();
|
|
299 |
|
|
300 |
static OptoReg::Name compiler_method_oop_reg();
|
|
301 |
static const RegMask &compiler_method_oop_reg_mask();
|
|
302 |
static int compiler_method_oop_reg_encode();
|
|
303 |
|
|
304 |
// Interpreter's Frame Pointer Register
|
|
305 |
static OptoReg::Name interpreter_frame_pointer_reg();
|
|
306 |
static const RegMask &interpreter_frame_pointer_reg_mask();
|
|
307 |
|
|
308 |
// Java-Native calling convention
|
|
309 |
// (what you use when intercalling between Java and C++ code)
|
|
310 |
|
|
311 |
// Array mapping arguments to registers. Argument 0 is usually the 'this'
|
|
312 |
// pointer. Registers can include stack-slots and regular registers.
|
|
313 |
static void c_calling_convention( BasicType*, VMRegPair *, uint );
|
|
314 |
// Frame pointer. The frame pointer is kept at the base of the stack
|
|
315 |
// and so is probably the stack pointer for most machines. On Intel
|
|
316 |
// it is ESP. On the PowerPC it is R1. On Sparc it is SP.
|
|
317 |
OptoReg::Name c_frame_pointer() const;
|
|
318 |
static RegMask c_frame_ptr_mask;
|
|
319 |
|
|
320 |
// !!!!! Special stuff for building ScopeDescs
|
|
321 |
virtual int regnum_to_fpu_offset(int regnum);
|
|
322 |
|
|
323 |
// Is this branch offset small enough to be addressed by a short branch?
|
|
324 |
bool is_short_branch_offset(int offset);
|
|
325 |
|
|
326 |
// Optional scaling for the parameter to the ClearArray/CopyArray node.
|
|
327 |
static const bool init_array_count_is_in_bytes;
|
|
328 |
|
|
329 |
// Threshold small size (in bytes) for a ClearArray/CopyArray node.
|
|
330 |
// Anything this size or smaller may get converted to discrete scalar stores.
|
|
331 |
static const int init_array_short_size;
|
|
332 |
|
|
333 |
// Should the Matcher clone shifts on addressing modes, expecting them to
|
|
334 |
// be subsumed into complex addressing expressions or compute them into
|
|
335 |
// registers? True for Intel but false for most RISCs
|
|
336 |
static const bool clone_shift_expressions;
|
|
337 |
|
|
338 |
// Is it better to copy float constants, or load them directly from memory?
|
|
339 |
// Intel can load a float constant from a direct address, requiring no
|
|
340 |
// extra registers. Most RISCs will have to materialize an address into a
|
|
341 |
// register first, so they may as well materialize the constant immediately.
|
|
342 |
static const bool rematerialize_float_constants;
|
|
343 |
|
|
344 |
// If CPU can load and store mis-aligned doubles directly then no fixup is
|
|
345 |
// needed. Else we split the double into 2 integer pieces and move it
|
|
346 |
// piece-by-piece. Only happens when passing doubles into C code or when
|
|
347 |
// calling i2c adapters as the Java calling convention forces doubles to be
|
|
348 |
// aligned.
|
|
349 |
static const bool misaligned_doubles_ok;
|
|
350 |
|
|
351 |
// Perform a platform dependent implicit null fixup. This is needed
|
|
352 |
// on windows95 to take care of some unusual register constraints.
|
|
353 |
void pd_implicit_null_fixup(MachNode *load, uint idx);
|
|
354 |
|
|
355 |
// Advertise here if the CPU requires explicit rounding operations
|
|
356 |
// to implement the UseStrictFP mode.
|
|
357 |
static const bool strict_fp_requires_explicit_rounding;
|
|
358 |
|
|
359 |
// Do floats take an entire double register or just half?
|
|
360 |
static const bool float_in_double;
|
|
361 |
// Do ints take an entire long register or just half?
|
|
362 |
static const bool int_in_long;
|
|
363 |
|
|
364 |
// This routine is run whenever a graph fails to match.
|
|
365 |
// If it returns, the compiler should bailout to interpreter without error.
|
|
366 |
// In non-product mode, SoftMatchFailure is false to detect non-canonical
|
|
367 |
// graphs. Print a message and exit.
|
|
368 |
static void soft_match_failure() {
|
|
369 |
if( SoftMatchFailure ) return;
|
|
370 |
else { fatal("SoftMatchFailure is not allowed except in product"); }
|
|
371 |
}
|
|
372 |
|
|
373 |
// Used by the DFA in dfa_sparc.cpp. Check for a prior FastLock
|
|
374 |
// acting as an Acquire and thus we don't need an Acquire here. We
|
|
375 |
// retain the Node to act as a compiler ordering barrier.
|
|
376 |
static bool prior_fast_lock( const Node *acq );
|
|
377 |
|
|
378 |
// Used by the DFA in dfa_sparc.cpp. Check for a following
|
|
379 |
// FastUnLock acting as a Release and thus we don't need a Release
|
|
380 |
// here. We retain the Node to act as a compiler ordering barrier.
|
|
381 |
static bool post_fast_unlock( const Node *rel );
|
|
382 |
|
|
383 |
// Check for a following volatile memory barrier without an
|
|
384 |
// intervening load and thus we don't need a barrier here. We
|
|
385 |
// retain the Node to act as a compiler ordering barrier.
|
|
386 |
static bool post_store_load_barrier(const Node* mb);
|
|
387 |
|
|
388 |
|
|
389 |
#ifdef ASSERT
|
|
390 |
void dump_old2new_map(); // machine-independent to machine-dependent
|
|
391 |
#endif
|
|
392 |
};
|