1
|
1 |
/*
|
|
2 |
* Copyright 1997-2006 Sun Microsystems, Inc. All Rights Reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation.
|
|
8 |
*
|
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
13 |
* accompanied this code).
|
|
14 |
*
|
|
15 |
* You should have received a copy of the GNU General Public License version
|
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
18 |
*
|
|
19 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
20 |
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
21 |
* have any questions.
|
|
22 |
*
|
|
23 |
*/
|
|
24 |
|
|
25 |
// Portions of code courtesy of Clifford Click
|
|
26 |
|
|
27 |
// Optimization - Graph Style
|
|
28 |
|
|
29 |
#include "incls/_precompiled.incl"
|
|
30 |
#include "incls/_divnode.cpp.incl"
|
|
31 |
#include <math.h>
|
|
32 |
|
|
33 |
// Implement the integer constant divide -> long multiply transform found in
|
|
34 |
// "Division by Invariant Integers using Multiplication"
|
|
35 |
// by Granlund and Montgomery
|
|
36 |
static Node *transform_int_divide_to_long_multiply( PhaseGVN *phase, Node *dividend, int divisor ) {
|
|
37 |
|
|
38 |
// Check for invalid divisors
|
|
39 |
assert( divisor != 0 && divisor != min_jint && divisor != 1,
|
|
40 |
"bad divisor for transforming to long multiply" );
|
|
41 |
|
|
42 |
// Compute l = ceiling(log2(d))
|
|
43 |
// presumes d is more likely small
|
|
44 |
bool d_pos = divisor >= 0;
|
|
45 |
int d = d_pos ? divisor : -divisor;
|
|
46 |
unsigned ud = (unsigned)d;
|
|
47 |
const int N = 32;
|
|
48 |
int l = log2_intptr(d-1)+1;
|
|
49 |
int sh_post = l;
|
|
50 |
|
|
51 |
const uint64_t U1 = (uint64_t)1;
|
|
52 |
|
|
53 |
// Cliff pointed out how to prevent overflow (from the paper)
|
|
54 |
uint64_t m_low = (((U1 << l) - ud) << N) / ud + (U1 << N);
|
|
55 |
uint64_t m_high = ((((U1 << l) - ud) << N) + (U1 << (l+1))) / ud + (U1 << N);
|
|
56 |
|
|
57 |
// Reduce to lowest terms
|
|
58 |
for ( ; sh_post > 0; sh_post-- ) {
|
|
59 |
uint64_t m_low_1 = m_low >> 1;
|
|
60 |
uint64_t m_high_1 = m_high >> 1;
|
|
61 |
if ( m_low_1 >= m_high_1 )
|
|
62 |
break;
|
|
63 |
m_low = m_low_1;
|
|
64 |
m_high = m_high_1;
|
|
65 |
}
|
|
66 |
|
|
67 |
// Result
|
|
68 |
Node *q;
|
|
69 |
|
|
70 |
// division by +/- 1
|
|
71 |
if (d == 1) {
|
|
72 |
// Filtered out as identity above
|
|
73 |
if (d_pos)
|
|
74 |
return NULL;
|
|
75 |
|
|
76 |
// Just negate the value
|
|
77 |
else {
|
|
78 |
q = new (phase->C, 3) SubINode(phase->intcon(0), dividend);
|
|
79 |
}
|
|
80 |
}
|
|
81 |
|
|
82 |
// division by +/- a power of 2
|
|
83 |
else if ( is_power_of_2(d) ) {
|
|
84 |
|
|
85 |
// See if we can simply do a shift without rounding
|
|
86 |
bool needs_rounding = true;
|
|
87 |
const Type *dt = phase->type(dividend);
|
|
88 |
const TypeInt *dti = dt->isa_int();
|
|
89 |
|
|
90 |
// we don't need to round a positive dividend
|
|
91 |
if (dti && dti->_lo >= 0)
|
|
92 |
needs_rounding = false;
|
|
93 |
|
|
94 |
// An AND mask of sufficient size clears the low bits and
|
|
95 |
// I can avoid rounding.
|
|
96 |
else if( dividend->Opcode() == Op_AndI ) {
|
|
97 |
const TypeInt *andconi = phase->type( dividend->in(2) )->isa_int();
|
|
98 |
if( andconi && andconi->is_con(-d) ) {
|
|
99 |
dividend = dividend->in(1);
|
|
100 |
needs_rounding = false;
|
|
101 |
}
|
|
102 |
}
|
|
103 |
|
|
104 |
// Add rounding to the shift to handle the sign bit
|
|
105 |
if( needs_rounding ) {
|
|
106 |
Node *t1 = phase->transform(new (phase->C, 3) RShiftINode(dividend, phase->intcon(l - 1)));
|
|
107 |
Node *t2 = phase->transform(new (phase->C, 3) URShiftINode(t1, phase->intcon(N - l)));
|
|
108 |
dividend = phase->transform(new (phase->C, 3) AddINode(dividend, t2));
|
|
109 |
}
|
|
110 |
|
|
111 |
q = new (phase->C, 3) RShiftINode(dividend, phase->intcon(l));
|
|
112 |
|
|
113 |
if (!d_pos)
|
|
114 |
q = new (phase->C, 3) SubINode(phase->intcon(0), phase->transform(q));
|
|
115 |
}
|
|
116 |
|
|
117 |
// division by something else
|
|
118 |
else if (m_high < (U1 << (N-1))) {
|
|
119 |
Node *t1 = phase->transform(new (phase->C, 2) ConvI2LNode(dividend));
|
|
120 |
Node *t2 = phase->transform(new (phase->C, 3) MulLNode(t1, phase->longcon(m_high)));
|
|
121 |
Node *t3 = phase->transform(new (phase->C, 3) RShiftLNode(t2, phase->intcon(sh_post+N)));
|
|
122 |
Node *t4 = phase->transform(new (phase->C, 2) ConvL2INode(t3));
|
|
123 |
Node *t5 = phase->transform(new (phase->C, 3) RShiftINode(dividend, phase->intcon(N-1)));
|
|
124 |
|
|
125 |
q = new (phase->C, 3) SubINode(d_pos ? t4 : t5, d_pos ? t5 : t4);
|
|
126 |
}
|
|
127 |
|
|
128 |
// This handles that case where m_high is >= 2**(N-1). In that case,
|
|
129 |
// we subtract out 2**N from the multiply and add it in later as
|
|
130 |
// "dividend" in the equation (t5). This case computes the same result
|
|
131 |
// as the immediately preceeding case, save that rounding and overflow
|
|
132 |
// are accounted for.
|
|
133 |
else {
|
|
134 |
Node *t1 = phase->transform(new (phase->C, 2) ConvI2LNode(dividend));
|
|
135 |
Node *t2 = phase->transform(new (phase->C, 3) MulLNode(t1, phase->longcon(m_high - (U1 << N))));
|
|
136 |
Node *t3 = phase->transform(new (phase->C, 3) RShiftLNode(t2, phase->intcon(N)));
|
|
137 |
Node *t4 = phase->transform(new (phase->C, 2) ConvL2INode(t3));
|
|
138 |
Node *t5 = phase->transform(new (phase->C, 3) AddINode(dividend, t4));
|
|
139 |
Node *t6 = phase->transform(new (phase->C, 3) RShiftINode(t5, phase->intcon(sh_post)));
|
|
140 |
Node *t7 = phase->transform(new (phase->C, 3) RShiftINode(dividend, phase->intcon(N-1)));
|
|
141 |
|
|
142 |
q = new (phase->C, 3) SubINode(d_pos ? t6 : t7, d_pos ? t7 : t6);
|
|
143 |
}
|
|
144 |
|
|
145 |
return (q);
|
|
146 |
}
|
|
147 |
|
|
148 |
//=============================================================================
|
|
149 |
//------------------------------Identity---------------------------------------
|
|
150 |
// If the divisor is 1, we are an identity on the dividend.
|
|
151 |
Node *DivINode::Identity( PhaseTransform *phase ) {
|
|
152 |
return (phase->type( in(2) )->higher_equal(TypeInt::ONE)) ? in(1) : this;
|
|
153 |
}
|
|
154 |
|
|
155 |
//------------------------------Idealize---------------------------------------
|
|
156 |
// Divides can be changed to multiplies and/or shifts
|
|
157 |
Node *DivINode::Ideal(PhaseGVN *phase, bool can_reshape) {
|
|
158 |
if (in(0) && remove_dead_region(phase, can_reshape)) return this;
|
|
159 |
|
|
160 |
const Type *t = phase->type( in(2) );
|
|
161 |
if( t == TypeInt::ONE ) // Identity?
|
|
162 |
return NULL; // Skip it
|
|
163 |
|
|
164 |
const TypeInt *ti = t->isa_int();
|
|
165 |
if( !ti ) return NULL;
|
|
166 |
if( !ti->is_con() ) return NULL;
|
|
167 |
int i = ti->get_con(); // Get divisor
|
|
168 |
|
|
169 |
if (i == 0) return NULL; // Dividing by zero constant does not idealize
|
|
170 |
|
|
171 |
set_req(0,NULL); // Dividing by a not-zero constant; no faulting
|
|
172 |
|
|
173 |
// Dividing by MININT does not optimize as a power-of-2 shift.
|
|
174 |
if( i == min_jint ) return NULL;
|
|
175 |
|
|
176 |
return transform_int_divide_to_long_multiply( phase, in(1), i );
|
|
177 |
}
|
|
178 |
|
|
179 |
//------------------------------Value------------------------------------------
|
|
180 |
// A DivINode divides its inputs. The third input is a Control input, used to
|
|
181 |
// prevent hoisting the divide above an unsafe test.
|
|
182 |
const Type *DivINode::Value( PhaseTransform *phase ) const {
|
|
183 |
// Either input is TOP ==> the result is TOP
|
|
184 |
const Type *t1 = phase->type( in(1) );
|
|
185 |
const Type *t2 = phase->type( in(2) );
|
|
186 |
if( t1 == Type::TOP ) return Type::TOP;
|
|
187 |
if( t2 == Type::TOP ) return Type::TOP;
|
|
188 |
|
|
189 |
// x/x == 1 since we always generate the dynamic divisor check for 0.
|
|
190 |
if( phase->eqv( in(1), in(2) ) )
|
|
191 |
return TypeInt::ONE;
|
|
192 |
|
|
193 |
// Either input is BOTTOM ==> the result is the local BOTTOM
|
|
194 |
const Type *bot = bottom_type();
|
|
195 |
if( (t1 == bot) || (t2 == bot) ||
|
|
196 |
(t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
|
|
197 |
return bot;
|
|
198 |
|
|
199 |
// Divide the two numbers. We approximate.
|
|
200 |
// If divisor is a constant and not zero
|
|
201 |
const TypeInt *i1 = t1->is_int();
|
|
202 |
const TypeInt *i2 = t2->is_int();
|
|
203 |
int widen = MAX2(i1->_widen, i2->_widen);
|
|
204 |
|
|
205 |
if( i2->is_con() && i2->get_con() != 0 ) {
|
|
206 |
int32 d = i2->get_con(); // Divisor
|
|
207 |
jint lo, hi;
|
|
208 |
if( d >= 0 ) {
|
|
209 |
lo = i1->_lo/d;
|
|
210 |
hi = i1->_hi/d;
|
|
211 |
} else {
|
|
212 |
if( d == -1 && i1->_lo == min_jint ) {
|
|
213 |
// 'min_jint/-1' throws arithmetic exception during compilation
|
|
214 |
lo = min_jint;
|
|
215 |
// do not support holes, 'hi' must go to either min_jint or max_jint:
|
|
216 |
// [min_jint, -10]/[-1,-1] ==> [min_jint] UNION [10,max_jint]
|
|
217 |
hi = i1->_hi == min_jint ? min_jint : max_jint;
|
|
218 |
} else {
|
|
219 |
lo = i1->_hi/d;
|
|
220 |
hi = i1->_lo/d;
|
|
221 |
}
|
|
222 |
}
|
|
223 |
return TypeInt::make(lo, hi, widen);
|
|
224 |
}
|
|
225 |
|
|
226 |
// If the dividend is a constant
|
|
227 |
if( i1->is_con() ) {
|
|
228 |
int32 d = i1->get_con();
|
|
229 |
if( d < 0 ) {
|
|
230 |
if( d == min_jint ) {
|
|
231 |
// (-min_jint) == min_jint == (min_jint / -1)
|
|
232 |
return TypeInt::make(min_jint, max_jint/2 + 1, widen);
|
|
233 |
} else {
|
|
234 |
return TypeInt::make(d, -d, widen);
|
|
235 |
}
|
|
236 |
}
|
|
237 |
return TypeInt::make(-d, d, widen);
|
|
238 |
}
|
|
239 |
|
|
240 |
// Otherwise we give up all hope
|
|
241 |
return TypeInt::INT;
|
|
242 |
}
|
|
243 |
|
|
244 |
|
|
245 |
//=============================================================================
|
|
246 |
//------------------------------Identity---------------------------------------
|
|
247 |
// If the divisor is 1, we are an identity on the dividend.
|
|
248 |
Node *DivLNode::Identity( PhaseTransform *phase ) {
|
|
249 |
return (phase->type( in(2) )->higher_equal(TypeLong::ONE)) ? in(1) : this;
|
|
250 |
}
|
|
251 |
|
|
252 |
//------------------------------Idealize---------------------------------------
|
|
253 |
// Dividing by a power of 2 is a shift.
|
|
254 |
Node *DivLNode::Ideal( PhaseGVN *phase, bool can_reshape) {
|
|
255 |
if (in(0) && remove_dead_region(phase, can_reshape)) return this;
|
|
256 |
|
|
257 |
const Type *t = phase->type( in(2) );
|
|
258 |
if( t == TypeLong::ONE ) // Identity?
|
|
259 |
return NULL; // Skip it
|
|
260 |
|
|
261 |
const TypeLong *ti = t->isa_long();
|
|
262 |
if( !ti ) return NULL;
|
|
263 |
if( !ti->is_con() ) return NULL;
|
|
264 |
jlong i = ti->get_con(); // Get divisor
|
|
265 |
if( i ) set_req(0, NULL); // Dividing by a not-zero constant; no faulting
|
|
266 |
|
|
267 |
// Dividing by MININT does not optimize as a power-of-2 shift.
|
|
268 |
if( i == min_jlong ) return NULL;
|
|
269 |
|
|
270 |
// Check for negative power of 2 divisor, if so, negate it and set a flag
|
|
271 |
// to indicate result needs to be negated. Note that negating the dividend
|
|
272 |
// here does not work when it has the value MININT
|
|
273 |
Node *dividend = in(1);
|
|
274 |
bool negate_res = false;
|
|
275 |
if (is_power_of_2_long(-i)) {
|
|
276 |
i = -i; // Flip divisor
|
|
277 |
negate_res = true;
|
|
278 |
}
|
|
279 |
|
|
280 |
// Check for power of 2
|
|
281 |
if (!is_power_of_2_long(i)) // Is divisor a power of 2?
|
|
282 |
return NULL; // Not a power of 2
|
|
283 |
|
|
284 |
// Compute number of bits to shift
|
|
285 |
int log_i = log2_long(i);
|
|
286 |
|
|
287 |
// See if we can simply do a shift without rounding
|
|
288 |
bool needs_rounding = true;
|
|
289 |
const Type *dt = phase->type(dividend);
|
|
290 |
const TypeLong *dtl = dt->isa_long();
|
|
291 |
|
|
292 |
if (dtl && dtl->_lo > 0) {
|
|
293 |
// we don't need to round a positive dividend
|
|
294 |
needs_rounding = false;
|
|
295 |
} else if( dividend->Opcode() == Op_AndL ) {
|
|
296 |
// An AND mask of sufficient size clears the low bits and
|
|
297 |
// I can avoid rounding.
|
|
298 |
const TypeLong *andconi = phase->type( dividend->in(2) )->isa_long();
|
|
299 |
if( andconi &&
|
|
300 |
andconi->is_con() &&
|
|
301 |
andconi->get_con() == -i ) {
|
|
302 |
dividend = dividend->in(1);
|
|
303 |
needs_rounding = false;
|
|
304 |
}
|
|
305 |
}
|
|
306 |
|
|
307 |
if (!needs_rounding) {
|
|
308 |
Node *result = new (phase->C, 3) RShiftLNode(dividend, phase->intcon(log_i));
|
|
309 |
if (negate_res) {
|
|
310 |
result = phase->transform(result);
|
|
311 |
result = new (phase->C, 3) SubLNode(phase->longcon(0), result);
|
|
312 |
}
|
|
313 |
return result;
|
|
314 |
}
|
|
315 |
|
|
316 |
// Divide-by-power-of-2 can be made into a shift, but you have to do
|
|
317 |
// more math for the rounding. You need to add 0 for positive
|
|
318 |
// numbers, and "i-1" for negative numbers. Example: i=4, so the
|
|
319 |
// shift is by 2. You need to add 3 to negative dividends and 0 to
|
|
320 |
// positive ones. So (-7+3)>>2 becomes -1, (-4+3)>>2 becomes -1,
|
|
321 |
// (-2+3)>>2 becomes 0, etc.
|
|
322 |
|
|
323 |
// Compute 0 or -1, based on sign bit
|
|
324 |
Node *sign = phase->transform(new (phase->C, 3) RShiftLNode(dividend,phase->intcon(63)));
|
|
325 |
// Mask sign bit to the low sign bits
|
|
326 |
Node *round = phase->transform(new (phase->C, 3) AndLNode(sign,phase->longcon(i-1)));
|
|
327 |
// Round up before shifting
|
|
328 |
Node *sum = phase->transform(new (phase->C, 3) AddLNode(dividend,round));
|
|
329 |
// Shift for division
|
|
330 |
Node *result = new (phase->C, 3) RShiftLNode(sum, phase->intcon(log_i));
|
|
331 |
if (negate_res) {
|
|
332 |
result = phase->transform(result);
|
|
333 |
result = new (phase->C, 3) SubLNode(phase->longcon(0), result);
|
|
334 |
}
|
|
335 |
|
|
336 |
return result;
|
|
337 |
}
|
|
338 |
|
|
339 |
//------------------------------Value------------------------------------------
|
|
340 |
// A DivLNode divides its inputs. The third input is a Control input, used to
|
|
341 |
// prevent hoisting the divide above an unsafe test.
|
|
342 |
const Type *DivLNode::Value( PhaseTransform *phase ) const {
|
|
343 |
// Either input is TOP ==> the result is TOP
|
|
344 |
const Type *t1 = phase->type( in(1) );
|
|
345 |
const Type *t2 = phase->type( in(2) );
|
|
346 |
if( t1 == Type::TOP ) return Type::TOP;
|
|
347 |
if( t2 == Type::TOP ) return Type::TOP;
|
|
348 |
|
|
349 |
// x/x == 1 since we always generate the dynamic divisor check for 0.
|
|
350 |
if( phase->eqv( in(1), in(2) ) )
|
|
351 |
return TypeLong::ONE;
|
|
352 |
|
|
353 |
// Either input is BOTTOM ==> the result is the local BOTTOM
|
|
354 |
const Type *bot = bottom_type();
|
|
355 |
if( (t1 == bot) || (t2 == bot) ||
|
|
356 |
(t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
|
|
357 |
return bot;
|
|
358 |
|
|
359 |
// Divide the two numbers. We approximate.
|
|
360 |
// If divisor is a constant and not zero
|
|
361 |
const TypeLong *i1 = t1->is_long();
|
|
362 |
const TypeLong *i2 = t2->is_long();
|
|
363 |
int widen = MAX2(i1->_widen, i2->_widen);
|
|
364 |
|
|
365 |
if( i2->is_con() && i2->get_con() != 0 ) {
|
|
366 |
jlong d = i2->get_con(); // Divisor
|
|
367 |
jlong lo, hi;
|
|
368 |
if( d >= 0 ) {
|
|
369 |
lo = i1->_lo/d;
|
|
370 |
hi = i1->_hi/d;
|
|
371 |
} else {
|
|
372 |
if( d == CONST64(-1) && i1->_lo == min_jlong ) {
|
|
373 |
// 'min_jlong/-1' throws arithmetic exception during compilation
|
|
374 |
lo = min_jlong;
|
|
375 |
// do not support holes, 'hi' must go to either min_jlong or max_jlong:
|
|
376 |
// [min_jlong, -10]/[-1,-1] ==> [min_jlong] UNION [10,max_jlong]
|
|
377 |
hi = i1->_hi == min_jlong ? min_jlong : max_jlong;
|
|
378 |
} else {
|
|
379 |
lo = i1->_hi/d;
|
|
380 |
hi = i1->_lo/d;
|
|
381 |
}
|
|
382 |
}
|
|
383 |
return TypeLong::make(lo, hi, widen);
|
|
384 |
}
|
|
385 |
|
|
386 |
// If the dividend is a constant
|
|
387 |
if( i1->is_con() ) {
|
|
388 |
jlong d = i1->get_con();
|
|
389 |
if( d < 0 ) {
|
|
390 |
if( d == min_jlong ) {
|
|
391 |
// (-min_jlong) == min_jlong == (min_jlong / -1)
|
|
392 |
return TypeLong::make(min_jlong, max_jlong/2 + 1, widen);
|
|
393 |
} else {
|
|
394 |
return TypeLong::make(d, -d, widen);
|
|
395 |
}
|
|
396 |
}
|
|
397 |
return TypeLong::make(-d, d, widen);
|
|
398 |
}
|
|
399 |
|
|
400 |
// Otherwise we give up all hope
|
|
401 |
return TypeLong::LONG;
|
|
402 |
}
|
|
403 |
|
|
404 |
|
|
405 |
//=============================================================================
|
|
406 |
//------------------------------Value------------------------------------------
|
|
407 |
// An DivFNode divides its inputs. The third input is a Control input, used to
|
|
408 |
// prevent hoisting the divide above an unsafe test.
|
|
409 |
const Type *DivFNode::Value( PhaseTransform *phase ) const {
|
|
410 |
// Either input is TOP ==> the result is TOP
|
|
411 |
const Type *t1 = phase->type( in(1) );
|
|
412 |
const Type *t2 = phase->type( in(2) );
|
|
413 |
if( t1 == Type::TOP ) return Type::TOP;
|
|
414 |
if( t2 == Type::TOP ) return Type::TOP;
|
|
415 |
|
|
416 |
// Either input is BOTTOM ==> the result is the local BOTTOM
|
|
417 |
const Type *bot = bottom_type();
|
|
418 |
if( (t1 == bot) || (t2 == bot) ||
|
|
419 |
(t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
|
|
420 |
return bot;
|
|
421 |
|
|
422 |
// x/x == 1, we ignore 0/0.
|
|
423 |
// Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
|
|
424 |
// does not work for variables because of NaN's
|
|
425 |
if( phase->eqv( in(1), in(2) ) && t1->base() == Type::FloatCon)
|
|
426 |
if (!g_isnan(t1->getf()) && g_isfinite(t1->getf()) && t1->getf() != 0.0) // could be negative ZERO or NaN
|
|
427 |
return TypeF::ONE;
|
|
428 |
|
|
429 |
if( t2 == TypeF::ONE )
|
|
430 |
return t1;
|
|
431 |
|
|
432 |
// If divisor is a constant and not zero, divide them numbers
|
|
433 |
if( t1->base() == Type::FloatCon &&
|
|
434 |
t2->base() == Type::FloatCon &&
|
|
435 |
t2->getf() != 0.0 ) // could be negative zero
|
|
436 |
return TypeF::make( t1->getf()/t2->getf() );
|
|
437 |
|
|
438 |
// If the dividend is a constant zero
|
|
439 |
// Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
|
|
440 |
// Test TypeF::ZERO is not sufficient as it could be negative zero
|
|
441 |
|
|
442 |
if( t1 == TypeF::ZERO && !g_isnan(t2->getf()) && t2->getf() != 0.0 )
|
|
443 |
return TypeF::ZERO;
|
|
444 |
|
|
445 |
// Otherwise we give up all hope
|
|
446 |
return Type::FLOAT;
|
|
447 |
}
|
|
448 |
|
|
449 |
//------------------------------isA_Copy---------------------------------------
|
|
450 |
// Dividing by self is 1.
|
|
451 |
// If the divisor is 1, we are an identity on the dividend.
|
|
452 |
Node *DivFNode::Identity( PhaseTransform *phase ) {
|
|
453 |
return (phase->type( in(2) ) == TypeF::ONE) ? in(1) : this;
|
|
454 |
}
|
|
455 |
|
|
456 |
|
|
457 |
//------------------------------Idealize---------------------------------------
|
|
458 |
Node *DivFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
|
|
459 |
if (in(0) && remove_dead_region(phase, can_reshape)) return this;
|
|
460 |
|
|
461 |
const Type *t2 = phase->type( in(2) );
|
|
462 |
if( t2 == TypeF::ONE ) // Identity?
|
|
463 |
return NULL; // Skip it
|
|
464 |
|
|
465 |
const TypeF *tf = t2->isa_float_constant();
|
|
466 |
if( !tf ) return NULL;
|
|
467 |
if( tf->base() != Type::FloatCon ) return NULL;
|
|
468 |
|
|
469 |
// Check for out of range values
|
|
470 |
if( tf->is_nan() || !tf->is_finite() ) return NULL;
|
|
471 |
|
|
472 |
// Get the value
|
|
473 |
float f = tf->getf();
|
|
474 |
int exp;
|
|
475 |
|
|
476 |
// Only for special case of dividing by a power of 2
|
|
477 |
if( frexp((double)f, &exp) != 0.5 ) return NULL;
|
|
478 |
|
|
479 |
// Limit the range of acceptable exponents
|
|
480 |
if( exp < -126 || exp > 126 ) return NULL;
|
|
481 |
|
|
482 |
// Compute the reciprocal
|
|
483 |
float reciprocal = ((float)1.0) / f;
|
|
484 |
|
|
485 |
assert( frexp((double)reciprocal, &exp) == 0.5, "reciprocal should be power of 2" );
|
|
486 |
|
|
487 |
// return multiplication by the reciprocal
|
|
488 |
return (new (phase->C, 3) MulFNode(in(1), phase->makecon(TypeF::make(reciprocal))));
|
|
489 |
}
|
|
490 |
|
|
491 |
//=============================================================================
|
|
492 |
//------------------------------Value------------------------------------------
|
|
493 |
// An DivDNode divides its inputs. The third input is a Control input, used to
|
|
494 |
// prvent hoisting the divide above an unsafe test.
|
|
495 |
const Type *DivDNode::Value( PhaseTransform *phase ) const {
|
|
496 |
// Either input is TOP ==> the result is TOP
|
|
497 |
const Type *t1 = phase->type( in(1) );
|
|
498 |
const Type *t2 = phase->type( in(2) );
|
|
499 |
if( t1 == Type::TOP ) return Type::TOP;
|
|
500 |
if( t2 == Type::TOP ) return Type::TOP;
|
|
501 |
|
|
502 |
// Either input is BOTTOM ==> the result is the local BOTTOM
|
|
503 |
const Type *bot = bottom_type();
|
|
504 |
if( (t1 == bot) || (t2 == bot) ||
|
|
505 |
(t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
|
|
506 |
return bot;
|
|
507 |
|
|
508 |
// x/x == 1, we ignore 0/0.
|
|
509 |
// Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
|
|
510 |
// Does not work for variables because of NaN's
|
|
511 |
if( phase->eqv( in(1), in(2) ) && t1->base() == Type::DoubleCon)
|
|
512 |
if (!g_isnan(t1->getd()) && g_isfinite(t1->getd()) && t1->getd() != 0.0) // could be negative ZERO or NaN
|
|
513 |
return TypeD::ONE;
|
|
514 |
|
|
515 |
if( t2 == TypeD::ONE )
|
|
516 |
return t1;
|
|
517 |
|
|
518 |
// If divisor is a constant and not zero, divide them numbers
|
|
519 |
if( t1->base() == Type::DoubleCon &&
|
|
520 |
t2->base() == Type::DoubleCon &&
|
|
521 |
t2->getd() != 0.0 ) // could be negative zero
|
|
522 |
return TypeD::make( t1->getd()/t2->getd() );
|
|
523 |
|
|
524 |
// If the dividend is a constant zero
|
|
525 |
// Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
|
|
526 |
// Test TypeF::ZERO is not sufficient as it could be negative zero
|
|
527 |
if( t1 == TypeD::ZERO && !g_isnan(t2->getd()) && t2->getd() != 0.0 )
|
|
528 |
return TypeD::ZERO;
|
|
529 |
|
|
530 |
// Otherwise we give up all hope
|
|
531 |
return Type::DOUBLE;
|
|
532 |
}
|
|
533 |
|
|
534 |
|
|
535 |
//------------------------------isA_Copy---------------------------------------
|
|
536 |
// Dividing by self is 1.
|
|
537 |
// If the divisor is 1, we are an identity on the dividend.
|
|
538 |
Node *DivDNode::Identity( PhaseTransform *phase ) {
|
|
539 |
return (phase->type( in(2) ) == TypeD::ONE) ? in(1) : this;
|
|
540 |
}
|
|
541 |
|
|
542 |
//------------------------------Idealize---------------------------------------
|
|
543 |
Node *DivDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
|
|
544 |
if (in(0) && remove_dead_region(phase, can_reshape)) return this;
|
|
545 |
|
|
546 |
const Type *t2 = phase->type( in(2) );
|
|
547 |
if( t2 == TypeD::ONE ) // Identity?
|
|
548 |
return NULL; // Skip it
|
|
549 |
|
|
550 |
const TypeD *td = t2->isa_double_constant();
|
|
551 |
if( !td ) return NULL;
|
|
552 |
if( td->base() != Type::DoubleCon ) return NULL;
|
|
553 |
|
|
554 |
// Check for out of range values
|
|
555 |
if( td->is_nan() || !td->is_finite() ) return NULL;
|
|
556 |
|
|
557 |
// Get the value
|
|
558 |
double d = td->getd();
|
|
559 |
int exp;
|
|
560 |
|
|
561 |
// Only for special case of dividing by a power of 2
|
|
562 |
if( frexp(d, &exp) != 0.5 ) return NULL;
|
|
563 |
|
|
564 |
// Limit the range of acceptable exponents
|
|
565 |
if( exp < -1021 || exp > 1022 ) return NULL;
|
|
566 |
|
|
567 |
// Compute the reciprocal
|
|
568 |
double reciprocal = 1.0 / d;
|
|
569 |
|
|
570 |
assert( frexp(reciprocal, &exp) == 0.5, "reciprocal should be power of 2" );
|
|
571 |
|
|
572 |
// return multiplication by the reciprocal
|
|
573 |
return (new (phase->C, 3) MulDNode(in(1), phase->makecon(TypeD::make(reciprocal))));
|
|
574 |
}
|
|
575 |
|
|
576 |
//=============================================================================
|
|
577 |
//------------------------------Idealize---------------------------------------
|
|
578 |
Node *ModINode::Ideal(PhaseGVN *phase, bool can_reshape) {
|
|
579 |
// Check for dead control input
|
|
580 |
if( remove_dead_region(phase, can_reshape) ) return this;
|
|
581 |
|
|
582 |
// Get the modulus
|
|
583 |
const Type *t = phase->type( in(2) );
|
|
584 |
if( t == Type::TOP ) return NULL;
|
|
585 |
const TypeInt *ti = t->is_int();
|
|
586 |
|
|
587 |
// Check for useless control input
|
|
588 |
// Check for excluding mod-zero case
|
|
589 |
if( in(0) && (ti->_hi < 0 || ti->_lo > 0) ) {
|
|
590 |
set_req(0, NULL); // Yank control input
|
|
591 |
return this;
|
|
592 |
}
|
|
593 |
|
|
594 |
// See if we are MOD'ing by 2^k or 2^k-1.
|
|
595 |
if( !ti->is_con() ) return NULL;
|
|
596 |
jint con = ti->get_con();
|
|
597 |
|
|
598 |
Node *hook = new (phase->C, 1) Node(1);
|
|
599 |
|
|
600 |
// First, special check for modulo 2^k-1
|
|
601 |
if( con >= 0 && con < max_jint && is_power_of_2(con+1) ) {
|
|
602 |
uint k = exact_log2(con+1); // Extract k
|
|
603 |
|
|
604 |
// Basic algorithm by David Detlefs. See fastmod_int.java for gory details.
|
|
605 |
static int unroll_factor[] = { 999, 999, 29, 14, 9, 7, 5, 4, 4, 3, 3, 2, 2, 2, 2, 2, 1 /*past here we assume 1 forever*/};
|
|
606 |
int trip_count = 1;
|
|
607 |
if( k < ARRAY_SIZE(unroll_factor)) trip_count = unroll_factor[k];
|
|
608 |
|
|
609 |
// If the unroll factor is not too large, and if conditional moves are
|
|
610 |
// ok, then use this case
|
|
611 |
if( trip_count <= 5 && ConditionalMoveLimit != 0 ) {
|
|
612 |
Node *x = in(1); // Value being mod'd
|
|
613 |
Node *divisor = in(2); // Also is mask
|
|
614 |
|
|
615 |
hook->init_req(0, x); // Add a use to x to prevent him from dying
|
|
616 |
// Generate code to reduce X rapidly to nearly 2^k-1.
|
|
617 |
for( int i = 0; i < trip_count; i++ ) {
|
|
618 |
Node *xl = phase->transform( new (phase->C, 3) AndINode(x,divisor) );
|
|
619 |
Node *xh = phase->transform( new (phase->C, 3) RShiftINode(x,phase->intcon(k)) ); // Must be signed
|
|
620 |
x = phase->transform( new (phase->C, 3) AddINode(xh,xl) );
|
|
621 |
hook->set_req(0, x);
|
|
622 |
}
|
|
623 |
|
|
624 |
// Generate sign-fixup code. Was original value positive?
|
|
625 |
// int hack_res = (i >= 0) ? divisor : 1;
|
|
626 |
Node *cmp1 = phase->transform( new (phase->C, 3) CmpINode( in(1), phase->intcon(0) ) );
|
|
627 |
Node *bol1 = phase->transform( new (phase->C, 2) BoolNode( cmp1, BoolTest::ge ) );
|
|
628 |
Node *cmov1= phase->transform( new (phase->C, 4) CMoveINode(bol1, phase->intcon(1), divisor, TypeInt::POS) );
|
|
629 |
// if( x >= hack_res ) x -= divisor;
|
|
630 |
Node *sub = phase->transform( new (phase->C, 3) SubINode( x, divisor ) );
|
|
631 |
Node *cmp2 = phase->transform( new (phase->C, 3) CmpINode( x, cmov1 ) );
|
|
632 |
Node *bol2 = phase->transform( new (phase->C, 2) BoolNode( cmp2, BoolTest::ge ) );
|
|
633 |
// Convention is to not transform the return value of an Ideal
|
|
634 |
// since Ideal is expected to return a modified 'this' or a new node.
|
|
635 |
Node *cmov2= new (phase->C, 4) CMoveINode(bol2, x, sub, TypeInt::INT);
|
|
636 |
// cmov2 is now the mod
|
|
637 |
|
|
638 |
// Now remove the bogus extra edges used to keep things alive
|
|
639 |
if (can_reshape) {
|
|
640 |
phase->is_IterGVN()->remove_dead_node(hook);
|
|
641 |
} else {
|
|
642 |
hook->set_req(0, NULL); // Just yank bogus edge during Parse phase
|
|
643 |
}
|
|
644 |
return cmov2;
|
|
645 |
}
|
|
646 |
}
|
|
647 |
|
|
648 |
// Fell thru, the unroll case is not appropriate. Transform the modulo
|
|
649 |
// into a long multiply/int multiply/subtract case
|
|
650 |
|
|
651 |
// Cannot handle mod 0, and min_jint isn't handled by the transform
|
|
652 |
if( con == 0 || con == min_jint ) return NULL;
|
|
653 |
|
|
654 |
// Get the absolute value of the constant; at this point, we can use this
|
|
655 |
jint pos_con = (con >= 0) ? con : -con;
|
|
656 |
|
|
657 |
// integer Mod 1 is always 0
|
|
658 |
if( pos_con == 1 ) return new (phase->C, 1) ConINode(TypeInt::ZERO);
|
|
659 |
|
|
660 |
int log2_con = -1;
|
|
661 |
|
|
662 |
// If this is a power of two, they maybe we can mask it
|
|
663 |
if( is_power_of_2(pos_con) ) {
|
|
664 |
log2_con = log2_intptr((intptr_t)pos_con);
|
|
665 |
|
|
666 |
const Type *dt = phase->type(in(1));
|
|
667 |
const TypeInt *dti = dt->isa_int();
|
|
668 |
|
|
669 |
// See if this can be masked, if the dividend is non-negative
|
|
670 |
if( dti && dti->_lo >= 0 )
|
|
671 |
return ( new (phase->C, 3) AndINode( in(1), phase->intcon( pos_con-1 ) ) );
|
|
672 |
}
|
|
673 |
|
|
674 |
// Save in(1) so that it cannot be changed or deleted
|
|
675 |
hook->init_req(0, in(1));
|
|
676 |
|
|
677 |
// Divide using the transform from DivI to MulL
|
|
678 |
Node *divide = phase->transform( transform_int_divide_to_long_multiply( phase, in(1), pos_con ) );
|
|
679 |
|
|
680 |
// Re-multiply, using a shift if this is a power of two
|
|
681 |
Node *mult = NULL;
|
|
682 |
|
|
683 |
if( log2_con >= 0 )
|
|
684 |
mult = phase->transform( new (phase->C, 3) LShiftINode( divide, phase->intcon( log2_con ) ) );
|
|
685 |
else
|
|
686 |
mult = phase->transform( new (phase->C, 3) MulINode( divide, phase->intcon( pos_con ) ) );
|
|
687 |
|
|
688 |
// Finally, subtract the multiplied divided value from the original
|
|
689 |
Node *result = new (phase->C, 3) SubINode( in(1), mult );
|
|
690 |
|
|
691 |
// Now remove the bogus extra edges used to keep things alive
|
|
692 |
if (can_reshape) {
|
|
693 |
phase->is_IterGVN()->remove_dead_node(hook);
|
|
694 |
} else {
|
|
695 |
hook->set_req(0, NULL); // Just yank bogus edge during Parse phase
|
|
696 |
}
|
|
697 |
|
|
698 |
// return the value
|
|
699 |
return result;
|
|
700 |
}
|
|
701 |
|
|
702 |
//------------------------------Value------------------------------------------
|
|
703 |
const Type *ModINode::Value( PhaseTransform *phase ) const {
|
|
704 |
// Either input is TOP ==> the result is TOP
|
|
705 |
const Type *t1 = phase->type( in(1) );
|
|
706 |
const Type *t2 = phase->type( in(2) );
|
|
707 |
if( t1 == Type::TOP ) return Type::TOP;
|
|
708 |
if( t2 == Type::TOP ) return Type::TOP;
|
|
709 |
|
|
710 |
// We always generate the dynamic check for 0.
|
|
711 |
// 0 MOD X is 0
|
|
712 |
if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
|
|
713 |
// X MOD X is 0
|
|
714 |
if( phase->eqv( in(1), in(2) ) ) return TypeInt::ZERO;
|
|
715 |
|
|
716 |
// Either input is BOTTOM ==> the result is the local BOTTOM
|
|
717 |
const Type *bot = bottom_type();
|
|
718 |
if( (t1 == bot) || (t2 == bot) ||
|
|
719 |
(t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
|
|
720 |
return bot;
|
|
721 |
|
|
722 |
const TypeInt *i1 = t1->is_int();
|
|
723 |
const TypeInt *i2 = t2->is_int();
|
|
724 |
if( !i1->is_con() || !i2->is_con() ) {
|
|
725 |
if( i1->_lo >= 0 && i2->_lo >= 0 )
|
|
726 |
return TypeInt::POS;
|
|
727 |
// If both numbers are not constants, we know little.
|
|
728 |
return TypeInt::INT;
|
|
729 |
}
|
|
730 |
// Mod by zero? Throw exception at runtime!
|
|
731 |
if( !i2->get_con() ) return TypeInt::POS;
|
|
732 |
|
|
733 |
// We must be modulo'ing 2 float constants.
|
|
734 |
// Check for min_jint % '-1', result is defined to be '0'.
|
|
735 |
if( i1->get_con() == min_jint && i2->get_con() == -1 )
|
|
736 |
return TypeInt::ZERO;
|
|
737 |
|
|
738 |
return TypeInt::make( i1->get_con() % i2->get_con() );
|
|
739 |
}
|
|
740 |
|
|
741 |
|
|
742 |
//=============================================================================
|
|
743 |
//------------------------------Idealize---------------------------------------
|
|
744 |
Node *ModLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
|
|
745 |
// Check for dead control input
|
|
746 |
if( remove_dead_region(phase, can_reshape) ) return this;
|
|
747 |
|
|
748 |
// Get the modulus
|
|
749 |
const Type *t = phase->type( in(2) );
|
|
750 |
if( t == Type::TOP ) return NULL;
|
|
751 |
const TypeLong *ti = t->is_long();
|
|
752 |
|
|
753 |
// Check for useless control input
|
|
754 |
// Check for excluding mod-zero case
|
|
755 |
if( in(0) && (ti->_hi < 0 || ti->_lo > 0) ) {
|
|
756 |
set_req(0, NULL); // Yank control input
|
|
757 |
return this;
|
|
758 |
}
|
|
759 |
|
|
760 |
// See if we are MOD'ing by 2^k or 2^k-1.
|
|
761 |
if( !ti->is_con() ) return NULL;
|
|
762 |
jlong con = ti->get_con();
|
|
763 |
bool m1 = false;
|
|
764 |
if( !is_power_of_2_long(con) ) { // Not 2^k
|
|
765 |
if( !is_power_of_2_long(con+1) ) // Not 2^k-1?
|
|
766 |
return NULL; // No interesting mod hacks
|
|
767 |
m1 = true; // Found 2^k-1
|
|
768 |
con++; // Convert to 2^k form
|
|
769 |
}
|
|
770 |
uint k = log2_long(con); // Extract k
|
|
771 |
|
|
772 |
// Expand mod
|
|
773 |
if( !m1 ) { // Case 2^k
|
|
774 |
} else { // Case 2^k-1
|
|
775 |
// Basic algorithm by David Detlefs. See fastmod_long.java for gory details.
|
|
776 |
// Used to help a popular random number generator which does a long-mod
|
|
777 |
// of 2^31-1 and shows up in SpecJBB and SciMark.
|
|
778 |
static int unroll_factor[] = { 999, 999, 61, 30, 20, 15, 12, 10, 8, 7, 6, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1 /*past here we assume 1 forever*/};
|
|
779 |
int trip_count = 1;
|
|
780 |
if( k < ARRAY_SIZE(unroll_factor)) trip_count = unroll_factor[k];
|
|
781 |
if( trip_count > 4 ) return NULL; // Too much unrolling
|
|
782 |
if (ConditionalMoveLimit == 0) return NULL; // cmov is required
|
|
783 |
|
|
784 |
Node *x = in(1); // Value being mod'd
|
|
785 |
Node *divisor = in(2); // Also is mask
|
|
786 |
|
|
787 |
Node *hook = new (phase->C, 1) Node(x);
|
|
788 |
// Generate code to reduce X rapidly to nearly 2^k-1.
|
|
789 |
for( int i = 0; i < trip_count; i++ ) {
|
|
790 |
Node *xl = phase->transform( new (phase->C, 3) AndLNode(x,divisor) );
|
|
791 |
Node *xh = phase->transform( new (phase->C, 3) RShiftLNode(x,phase->intcon(k)) ); // Must be signed
|
|
792 |
x = phase->transform( new (phase->C, 3) AddLNode(xh,xl) );
|
|
793 |
hook->set_req(0, x); // Add a use to x to prevent him from dying
|
|
794 |
}
|
|
795 |
// Generate sign-fixup code. Was original value positive?
|
|
796 |
// long hack_res = (i >= 0) ? divisor : CONST64(1);
|
|
797 |
Node *cmp1 = phase->transform( new (phase->C, 3) CmpLNode( in(1), phase->longcon(0) ) );
|
|
798 |
Node *bol1 = phase->transform( new (phase->C, 2) BoolNode( cmp1, BoolTest::ge ) );
|
|
799 |
Node *cmov1= phase->transform( new (phase->C, 4) CMoveLNode(bol1, phase->longcon(1), divisor, TypeLong::LONG) );
|
|
800 |
// if( x >= hack_res ) x -= divisor;
|
|
801 |
Node *sub = phase->transform( new (phase->C, 3) SubLNode( x, divisor ) );
|
|
802 |
Node *cmp2 = phase->transform( new (phase->C, 3) CmpLNode( x, cmov1 ) );
|
|
803 |
Node *bol2 = phase->transform( new (phase->C, 2) BoolNode( cmp2, BoolTest::ge ) );
|
|
804 |
// Convention is to not transform the return value of an Ideal
|
|
805 |
// since Ideal is expected to return a modified 'this' or a new node.
|
|
806 |
Node *cmov2= new (phase->C, 4) CMoveLNode(bol2, x, sub, TypeLong::LONG);
|
|
807 |
// cmov2 is now the mod
|
|
808 |
|
|
809 |
// Now remove the bogus extra edges used to keep things alive
|
|
810 |
if (can_reshape) {
|
|
811 |
phase->is_IterGVN()->remove_dead_node(hook);
|
|
812 |
} else {
|
|
813 |
hook->set_req(0, NULL); // Just yank bogus edge during Parse phase
|
|
814 |
}
|
|
815 |
return cmov2;
|
|
816 |
}
|
|
817 |
return NULL;
|
|
818 |
}
|
|
819 |
|
|
820 |
//------------------------------Value------------------------------------------
|
|
821 |
const Type *ModLNode::Value( PhaseTransform *phase ) const {
|
|
822 |
// Either input is TOP ==> the result is TOP
|
|
823 |
const Type *t1 = phase->type( in(1) );
|
|
824 |
const Type *t2 = phase->type( in(2) );
|
|
825 |
if( t1 == Type::TOP ) return Type::TOP;
|
|
826 |
if( t2 == Type::TOP ) return Type::TOP;
|
|
827 |
|
|
828 |
// We always generate the dynamic check for 0.
|
|
829 |
// 0 MOD X is 0
|
|
830 |
if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
|
|
831 |
// X MOD X is 0
|
|
832 |
if( phase->eqv( in(1), in(2) ) ) return TypeLong::ZERO;
|
|
833 |
|
|
834 |
// Either input is BOTTOM ==> the result is the local BOTTOM
|
|
835 |
const Type *bot = bottom_type();
|
|
836 |
if( (t1 == bot) || (t2 == bot) ||
|
|
837 |
(t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
|
|
838 |
return bot;
|
|
839 |
|
|
840 |
const TypeLong *i1 = t1->is_long();
|
|
841 |
const TypeLong *i2 = t2->is_long();
|
|
842 |
if( !i1->is_con() || !i2->is_con() ) {
|
|
843 |
if( i1->_lo >= CONST64(0) && i2->_lo >= CONST64(0) )
|
|
844 |
return TypeLong::POS;
|
|
845 |
// If both numbers are not constants, we know little.
|
|
846 |
return TypeLong::LONG;
|
|
847 |
}
|
|
848 |
// Mod by zero? Throw exception at runtime!
|
|
849 |
if( !i2->get_con() ) return TypeLong::POS;
|
|
850 |
|
|
851 |
// We must be modulo'ing 2 float constants.
|
|
852 |
// Check for min_jint % '-1', result is defined to be '0'.
|
|
853 |
if( i1->get_con() == min_jlong && i2->get_con() == -1 )
|
|
854 |
return TypeLong::ZERO;
|
|
855 |
|
|
856 |
return TypeLong::make( i1->get_con() % i2->get_con() );
|
|
857 |
}
|
|
858 |
|
|
859 |
|
|
860 |
//=============================================================================
|
|
861 |
//------------------------------Value------------------------------------------
|
|
862 |
const Type *ModFNode::Value( PhaseTransform *phase ) const {
|
|
863 |
// Either input is TOP ==> the result is TOP
|
|
864 |
const Type *t1 = phase->type( in(1) );
|
|
865 |
const Type *t2 = phase->type( in(2) );
|
|
866 |
if( t1 == Type::TOP ) return Type::TOP;
|
|
867 |
if( t2 == Type::TOP ) return Type::TOP;
|
|
868 |
|
|
869 |
// Either input is BOTTOM ==> the result is the local BOTTOM
|
|
870 |
const Type *bot = bottom_type();
|
|
871 |
if( (t1 == bot) || (t2 == bot) ||
|
|
872 |
(t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
|
|
873 |
return bot;
|
|
874 |
|
|
875 |
// If either is a NaN, return an input NaN
|
|
876 |
if( g_isnan(t1->getf()) ) return t1;
|
|
877 |
if( g_isnan(t2->getf()) ) return t2;
|
|
878 |
|
|
879 |
// It is not worth trying to constant fold this stuff!
|
|
880 |
return Type::FLOAT;
|
|
881 |
|
|
882 |
/*
|
|
883 |
// If dividend is infinity or divisor is zero, or both, the result is NaN
|
|
884 |
if( !g_isfinite(t1->getf()) || ((t2->getf() == 0.0) || (jint_cast(t2->getf()) == 0x80000000)) )
|
|
885 |
|
|
886 |
// X MOD infinity = X
|
|
887 |
if( !g_isfinite(t2->getf()) && !g_isnan(t2->getf()) ) return t1;
|
|
888 |
// 0 MOD finite = dividend (positive or negative zero)
|
|
889 |
// Not valid for: NaN MOD any; any MOD nan; 0 MOD 0; or for 0 MOD NaN
|
|
890 |
// NaNs are handled previously.
|
|
891 |
if( !(t2->getf() == 0.0) && !((int)t2->getf() == 0x80000000)) {
|
|
892 |
if (((t1->getf() == 0.0) || ((int)t1->getf() == 0x80000000)) && g_isfinite(t2->getf()) ) {
|
|
893 |
return t1;
|
|
894 |
}
|
|
895 |
}
|
|
896 |
// X MOD X is 0
|
|
897 |
// Does not work for variables because of NaN's
|
|
898 |
if( phase->eqv( in(1), in(2) ) && t1->base() == Type::FloatCon)
|
|
899 |
if (!g_isnan(t1->getf()) && (t1->getf() != 0.0) && ((int)t1->getf() != 0x80000000)) {
|
|
900 |
if(t1->getf() < 0.0) {
|
|
901 |
float result = jfloat_cast(0x80000000);
|
|
902 |
return TypeF::make( result );
|
|
903 |
}
|
|
904 |
else
|
|
905 |
return TypeF::ZERO;
|
|
906 |
}
|
|
907 |
|
|
908 |
// If both numbers are not constants, we know nothing.
|
|
909 |
if( (t1->base() != Type::FloatCon) || (t2->base() != Type::FloatCon) )
|
|
910 |
return Type::FLOAT;
|
|
911 |
|
|
912 |
// We must be modulo'ing 2 float constants.
|
|
913 |
// Make sure that the sign of the fmod is equal to the sign of the dividend
|
|
914 |
float result = (float)fmod( t1->getf(), t2->getf() );
|
|
915 |
float dividend = t1->getf();
|
|
916 |
if( (dividend < 0.0) || ((int)dividend == 0x80000000) ) {
|
|
917 |
if( result > 0.0 )
|
|
918 |
result = 0.0 - result;
|
|
919 |
else if( result == 0.0 ) {
|
|
920 |
result = jfloat_cast(0x80000000);
|
|
921 |
}
|
|
922 |
}
|
|
923 |
return TypeF::make( result );
|
|
924 |
*/
|
|
925 |
}
|
|
926 |
|
|
927 |
|
|
928 |
//=============================================================================
|
|
929 |
//------------------------------Value------------------------------------------
|
|
930 |
const Type *ModDNode::Value( PhaseTransform *phase ) const {
|
|
931 |
// Either input is TOP ==> the result is TOP
|
|
932 |
const Type *t1 = phase->type( in(1) );
|
|
933 |
const Type *t2 = phase->type( in(2) );
|
|
934 |
if( t1 == Type::TOP ) return Type::TOP;
|
|
935 |
if( t2 == Type::TOP ) return Type::TOP;
|
|
936 |
|
|
937 |
// Either input is BOTTOM ==> the result is the local BOTTOM
|
|
938 |
const Type *bot = bottom_type();
|
|
939 |
if( (t1 == bot) || (t2 == bot) ||
|
|
940 |
(t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
|
|
941 |
return bot;
|
|
942 |
|
|
943 |
// If either is a NaN, return an input NaN
|
|
944 |
if( g_isnan(t1->getd()) ) return t1;
|
|
945 |
if( g_isnan(t2->getd()) ) return t2;
|
|
946 |
// X MOD infinity = X
|
|
947 |
if( !g_isfinite(t2->getd())) return t1;
|
|
948 |
// 0 MOD finite = dividend (positive or negative zero)
|
|
949 |
// Not valid for: NaN MOD any; any MOD nan; 0 MOD 0; or for 0 MOD NaN
|
|
950 |
// NaNs are handled previously.
|
|
951 |
if( !(t2->getd() == 0.0) ) {
|
|
952 |
if( t1->getd() == 0.0 && g_isfinite(t2->getd()) ) {
|
|
953 |
return t1;
|
|
954 |
}
|
|
955 |
}
|
|
956 |
|
|
957 |
// X MOD X is 0
|
|
958 |
// does not work for variables because of NaN's
|
|
959 |
if( phase->eqv( in(1), in(2) ) && t1->base() == Type::DoubleCon )
|
|
960 |
if (!g_isnan(t1->getd()) && t1->getd() != 0.0)
|
|
961 |
return TypeD::ZERO;
|
|
962 |
|
|
963 |
|
|
964 |
// If both numbers are not constants, we know nothing.
|
|
965 |
if( (t1->base() != Type::DoubleCon) || (t2->base() != Type::DoubleCon) )
|
|
966 |
return Type::DOUBLE;
|
|
967 |
|
|
968 |
// We must be modulo'ing 2 double constants.
|
|
969 |
return TypeD::make( fmod( t1->getd(), t2->getd() ) );
|
|
970 |
}
|
|
971 |
|
|
972 |
//=============================================================================
|
|
973 |
|
|
974 |
DivModNode::DivModNode( Node *c, Node *dividend, Node *divisor ) : MultiNode(3) {
|
|
975 |
init_req(0, c);
|
|
976 |
init_req(1, dividend);
|
|
977 |
init_req(2, divisor);
|
|
978 |
}
|
|
979 |
|
|
980 |
//------------------------------make------------------------------------------
|
|
981 |
DivModINode* DivModINode::make(Compile* C, Node* div_or_mod) {
|
|
982 |
Node* n = div_or_mod;
|
|
983 |
assert(n->Opcode() == Op_DivI || n->Opcode() == Op_ModI,
|
|
984 |
"only div or mod input pattern accepted");
|
|
985 |
|
|
986 |
DivModINode* divmod = new (C, 3) DivModINode(n->in(0), n->in(1), n->in(2));
|
|
987 |
Node* dproj = new (C, 1) ProjNode(divmod, DivModNode::div_proj_num);
|
|
988 |
Node* mproj = new (C, 1) ProjNode(divmod, DivModNode::mod_proj_num);
|
|
989 |
return divmod;
|
|
990 |
}
|
|
991 |
|
|
992 |
//------------------------------make------------------------------------------
|
|
993 |
DivModLNode* DivModLNode::make(Compile* C, Node* div_or_mod) {
|
|
994 |
Node* n = div_or_mod;
|
|
995 |
assert(n->Opcode() == Op_DivL || n->Opcode() == Op_ModL,
|
|
996 |
"only div or mod input pattern accepted");
|
|
997 |
|
|
998 |
DivModLNode* divmod = new (C, 3) DivModLNode(n->in(0), n->in(1), n->in(2));
|
|
999 |
Node* dproj = new (C, 1) ProjNode(divmod, DivModNode::div_proj_num);
|
|
1000 |
Node* mproj = new (C, 1) ProjNode(divmod, DivModNode::mod_proj_num);
|
|
1001 |
return divmod;
|
|
1002 |
}
|
|
1003 |
|
|
1004 |
//------------------------------match------------------------------------------
|
|
1005 |
// return result(s) along with their RegMask info
|
|
1006 |
Node *DivModINode::match( const ProjNode *proj, const Matcher *match ) {
|
|
1007 |
uint ideal_reg = proj->ideal_reg();
|
|
1008 |
RegMask rm;
|
|
1009 |
if (proj->_con == div_proj_num) {
|
|
1010 |
rm = match->divI_proj_mask();
|
|
1011 |
} else {
|
|
1012 |
assert(proj->_con == mod_proj_num, "must be div or mod projection");
|
|
1013 |
rm = match->modI_proj_mask();
|
|
1014 |
}
|
|
1015 |
return new (match->C, 1)MachProjNode(this, proj->_con, rm, ideal_reg);
|
|
1016 |
}
|
|
1017 |
|
|
1018 |
|
|
1019 |
//------------------------------match------------------------------------------
|
|
1020 |
// return result(s) along with their RegMask info
|
|
1021 |
Node *DivModLNode::match( const ProjNode *proj, const Matcher *match ) {
|
|
1022 |
uint ideal_reg = proj->ideal_reg();
|
|
1023 |
RegMask rm;
|
|
1024 |
if (proj->_con == div_proj_num) {
|
|
1025 |
rm = match->divL_proj_mask();
|
|
1026 |
} else {
|
|
1027 |
assert(proj->_con == mod_proj_num, "must be div or mod projection");
|
|
1028 |
rm = match->modL_proj_mask();
|
|
1029 |
}
|
|
1030 |
return new (match->C, 1)MachProjNode(this, proj->_con, rm, ideal_reg);
|
|
1031 |
}
|