author | twisti |
Fri, 27 Feb 2009 13:27:09 -0800 | |
changeset 2131 | 98f9cef66a34 |
parent 2127 | 268ea58ed775 |
child 2154 | 72a9b7284ccf |
permissions | -rw-r--r-- |
1 | 1 |
/* |
1217 | 2 |
* Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved. |
1 | 3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 |
* |
|
5 |
* This code is free software; you can redistribute it and/or modify it |
|
6 |
* under the terms of the GNU General Public License version 2 only, as |
|
7 |
* published by the Free Software Foundation. |
|
8 |
* |
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT |
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that |
|
13 |
* accompanied this code). |
|
14 |
* |
|
15 |
* You should have received a copy of the GNU General Public License version |
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation, |
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 |
* |
|
19 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, |
|
20 |
* CA 95054 USA or visit www.sun.com if you need additional information or |
|
21 |
* have any questions. |
|
22 |
* |
|
23 |
*/ |
|
24 |
||
25 |
// Optimization - Graph Style |
|
26 |
||
27 |
#include "incls/_precompiled.incl" |
|
28 |
#include "incls/_block.cpp.incl" |
|
29 |
||
30 |
||
31 |
//----------------------------------------------------------------------------- |
|
32 |
void Block_Array::grow( uint i ) { |
|
33 |
assert(i >= Max(), "must be an overflow"); |
|
34 |
debug_only(_limit = i+1); |
|
35 |
if( i < _size ) return; |
|
36 |
if( !_size ) { |
|
37 |
_size = 1; |
|
38 |
_blocks = (Block**)_arena->Amalloc( _size * sizeof(Block*) ); |
|
39 |
_blocks[0] = NULL; |
|
40 |
} |
|
41 |
uint old = _size; |
|
42 |
while( i >= _size ) _size <<= 1; // Double to fit |
|
43 |
_blocks = (Block**)_arena->Arealloc( _blocks, old*sizeof(Block*),_size*sizeof(Block*)); |
|
44 |
Copy::zero_to_bytes( &_blocks[old], (_size-old)*sizeof(Block*) ); |
|
45 |
} |
|
46 |
||
47 |
//============================================================================= |
|
48 |
void Block_List::remove(uint i) { |
|
49 |
assert(i < _cnt, "index out of bounds"); |
|
50 |
Copy::conjoint_words_to_lower((HeapWord*)&_blocks[i+1], (HeapWord*)&_blocks[i], ((_cnt-i-1)*sizeof(Block*))); |
|
51 |
pop(); // shrink list by one block |
|
52 |
} |
|
53 |
||
54 |
void Block_List::insert(uint i, Block *b) { |
|
55 |
push(b); // grow list by one block |
|
56 |
Copy::conjoint_words_to_higher((HeapWord*)&_blocks[i], (HeapWord*)&_blocks[i+1], ((_cnt-i-1)*sizeof(Block*))); |
|
57 |
_blocks[i] = b; |
|
58 |
} |
|
59 |
||
1498 | 60 |
#ifndef PRODUCT |
61 |
void Block_List::print() { |
|
62 |
for (uint i=0; i < size(); i++) { |
|
63 |
tty->print("B%d ", _blocks[i]->_pre_order); |
|
64 |
} |
|
65 |
tty->print("size = %d\n", size()); |
|
66 |
} |
|
67 |
#endif |
|
1 | 68 |
|
69 |
//============================================================================= |
|
70 |
||
71 |
uint Block::code_alignment() { |
|
72 |
// Check for Root block |
|
73 |
if( _pre_order == 0 ) return CodeEntryAlignment; |
|
74 |
// Check for Start block |
|
75 |
if( _pre_order == 1 ) return InteriorEntryAlignment; |
|
76 |
// Check for loop alignment |
|
1498 | 77 |
if (has_loop_alignment()) return loop_alignment(); |
78 |
||
79 |
return 1; // no particular alignment |
|
80 |
} |
|
81 |
||
82 |
uint Block::compute_loop_alignment() { |
|
1 | 83 |
Node *h = head(); |
84 |
if( h->is_Loop() && h->as_Loop()->is_inner_loop() ) { |
|
85 |
// Pre- and post-loops have low trip count so do not bother with |
|
86 |
// NOPs for align loop head. The constants are hidden from tuning |
|
87 |
// but only because my "divide by 4" heuristic surely gets nearly |
|
88 |
// all possible gain (a "do not align at all" heuristic has a |
|
89 |
// chance of getting a really tiny gain). |
|
90 |
if( h->is_CountedLoop() && (h->as_CountedLoop()->is_pre_loop() || |
|
91 |
h->as_CountedLoop()->is_post_loop()) ) |
|
92 |
return (OptoLoopAlignment > 4) ? (OptoLoopAlignment>>2) : 1; |
|
93 |
// Loops with low backedge frequency should not be aligned. |
|
94 |
Node *n = h->in(LoopNode::LoopBackControl)->in(0); |
|
95 |
if( n->is_MachIf() && n->as_MachIf()->_prob < 0.01 ) { |
|
96 |
return 1; // Loop does not loop, more often than not! |
|
97 |
} |
|
98 |
return OptoLoopAlignment; // Otherwise align loop head |
|
99 |
} |
|
1498 | 100 |
|
1 | 101 |
return 1; // no particular alignment |
102 |
} |
|
103 |
||
104 |
//----------------------------------------------------------------------------- |
|
105 |
// Compute the size of first 'inst_cnt' instructions in this block. |
|
106 |
// Return the number of instructions left to compute if the block has |
|
1498 | 107 |
// less then 'inst_cnt' instructions. Stop, and return 0 if sum_size |
108 |
// exceeds OptoLoopAlignment. |
|
1 | 109 |
uint Block::compute_first_inst_size(uint& sum_size, uint inst_cnt, |
110 |
PhaseRegAlloc* ra) { |
|
111 |
uint last_inst = _nodes.size(); |
|
112 |
for( uint j = 0; j < last_inst && inst_cnt > 0; j++ ) { |
|
113 |
uint inst_size = _nodes[j]->size(ra); |
|
114 |
if( inst_size > 0 ) { |
|
115 |
inst_cnt--; |
|
116 |
uint sz = sum_size + inst_size; |
|
117 |
if( sz <= (uint)OptoLoopAlignment ) { |
|
118 |
// Compute size of instructions which fit into fetch buffer only |
|
119 |
// since all inst_cnt instructions will not fit even if we align them. |
|
120 |
sum_size = sz; |
|
121 |
} else { |
|
122 |
return 0; |
|
123 |
} |
|
124 |
} |
|
125 |
} |
|
126 |
return inst_cnt; |
|
127 |
} |
|
128 |
||
129 |
//----------------------------------------------------------------------------- |
|
130 |
uint Block::find_node( const Node *n ) const { |
|
131 |
for( uint i = 0; i < _nodes.size(); i++ ) { |
|
132 |
if( _nodes[i] == n ) |
|
133 |
return i; |
|
134 |
} |
|
135 |
ShouldNotReachHere(); |
|
136 |
return 0; |
|
137 |
} |
|
138 |
||
139 |
// Find and remove n from block list |
|
140 |
void Block::find_remove( const Node *n ) { |
|
141 |
_nodes.remove(find_node(n)); |
|
142 |
} |
|
143 |
||
144 |
//------------------------------is_Empty--------------------------------------- |
|
145 |
// Return empty status of a block. Empty blocks contain only the head, other |
|
146 |
// ideal nodes, and an optional trailing goto. |
|
147 |
int Block::is_Empty() const { |
|
148 |
||
149 |
// Root or start block is not considered empty |
|
150 |
if (head()->is_Root() || head()->is_Start()) { |
|
151 |
return not_empty; |
|
152 |
} |
|
153 |
||
154 |
int success_result = completely_empty; |
|
155 |
int end_idx = _nodes.size()-1; |
|
156 |
||
157 |
// Check for ending goto |
|
158 |
if ((end_idx > 0) && (_nodes[end_idx]->is_Goto())) { |
|
159 |
success_result = empty_with_goto; |
|
160 |
end_idx--; |
|
161 |
} |
|
162 |
||
163 |
// Unreachable blocks are considered empty |
|
164 |
if (num_preds() <= 1) { |
|
165 |
return success_result; |
|
166 |
} |
|
167 |
||
168 |
// Ideal nodes are allowable in empty blocks: skip them Only MachNodes |
|
169 |
// turn directly into code, because only MachNodes have non-trivial |
|
170 |
// emit() functions. |
|
171 |
while ((end_idx > 0) && !_nodes[end_idx]->is_Mach()) { |
|
172 |
end_idx--; |
|
173 |
} |
|
174 |
||
175 |
// No room for any interesting instructions? |
|
176 |
if (end_idx == 0) { |
|
177 |
return success_result; |
|
178 |
} |
|
179 |
||
180 |
return not_empty; |
|
181 |
} |
|
182 |
||
183 |
//------------------------------has_uncommon_code------------------------------ |
|
2131 | 184 |
// Return true if the block's code implies that it is likely to be |
1 | 185 |
// executed infrequently. Check to see if the block ends in a Halt or |
186 |
// a low probability call. |
|
187 |
bool Block::has_uncommon_code() const { |
|
188 |
Node* en = end(); |
|
189 |
||
190 |
if (en->is_Goto()) |
|
191 |
en = en->in(0); |
|
192 |
if (en->is_Catch()) |
|
193 |
en = en->in(0); |
|
194 |
if (en->is_Proj() && en->in(0)->is_MachCall()) { |
|
195 |
MachCallNode* call = en->in(0)->as_MachCall(); |
|
196 |
if (call->cnt() != COUNT_UNKNOWN && call->cnt() <= PROB_UNLIKELY_MAG(4)) { |
|
197 |
// This is true for slow-path stubs like new_{instance,array}, |
|
198 |
// slow_arraycopy, complete_monitor_locking, uncommon_trap. |
|
199 |
// The magic number corresponds to the probability of an uncommon_trap, |
|
200 |
// even though it is a count not a probability. |
|
201 |
return true; |
|
202 |
} |
|
203 |
} |
|
204 |
||
205 |
int op = en->is_Mach() ? en->as_Mach()->ideal_Opcode() : en->Opcode(); |
|
206 |
return op == Op_Halt; |
|
207 |
} |
|
208 |
||
209 |
//------------------------------is_uncommon------------------------------------ |
|
210 |
// True if block is low enough frequency or guarded by a test which |
|
211 |
// mostly does not go here. |
|
212 |
bool Block::is_uncommon( Block_Array &bbs ) const { |
|
213 |
// Initial blocks must never be moved, so are never uncommon. |
|
214 |
if (head()->is_Root() || head()->is_Start()) return false; |
|
215 |
||
216 |
// Check for way-low freq |
|
217 |
if( _freq < BLOCK_FREQUENCY(0.00001f) ) return true; |
|
218 |
||
219 |
// Look for code shape indicating uncommon_trap or slow path |
|
220 |
if (has_uncommon_code()) return true; |
|
221 |
||
222 |
const float epsilon = 0.05f; |
|
223 |
const float guard_factor = PROB_UNLIKELY_MAG(4) / (1.f - epsilon); |
|
224 |
uint uncommon_preds = 0; |
|
225 |
uint freq_preds = 0; |
|
226 |
uint uncommon_for_freq_preds = 0; |
|
227 |
||
228 |
for( uint i=1; i<num_preds(); i++ ) { |
|
229 |
Block* guard = bbs[pred(i)->_idx]; |
|
230 |
// Check to see if this block follows its guard 1 time out of 10000 |
|
231 |
// or less. |
|
232 |
// |
|
233 |
// See list of magnitude-4 unlikely probabilities in cfgnode.hpp which |
|
234 |
// we intend to be "uncommon", such as slow-path TLE allocation, |
|
235 |
// predicted call failure, and uncommon trap triggers. |
|
236 |
// |
|
237 |
// Use an epsilon value of 5% to allow for variability in frequency |
|
238 |
// predictions and floating point calculations. The net effect is |
|
239 |
// that guard_factor is set to 9500. |
|
240 |
// |
|
241 |
// Ignore low-frequency blocks. |
|
242 |
// The next check is (guard->_freq < 1.e-5 * 9500.). |
|
243 |
if(guard->_freq*BLOCK_FREQUENCY(guard_factor) < BLOCK_FREQUENCY(0.00001f)) { |
|
244 |
uncommon_preds++; |
|
245 |
} else { |
|
246 |
freq_preds++; |
|
247 |
if( _freq < guard->_freq * guard_factor ) { |
|
248 |
uncommon_for_freq_preds++; |
|
249 |
} |
|
250 |
} |
|
251 |
} |
|
252 |
if( num_preds() > 1 && |
|
253 |
// The block is uncommon if all preds are uncommon or |
|
254 |
(uncommon_preds == (num_preds()-1) || |
|
255 |
// it is uncommon for all frequent preds. |
|
256 |
uncommon_for_freq_preds == freq_preds) ) { |
|
257 |
return true; |
|
258 |
} |
|
259 |
return false; |
|
260 |
} |
|
261 |
||
262 |
//------------------------------dump------------------------------------------- |
|
263 |
#ifndef PRODUCT |
|
264 |
void Block::dump_bidx(const Block* orig) const { |
|
265 |
if (_pre_order) tty->print("B%d",_pre_order); |
|
266 |
else tty->print("N%d", head()->_idx); |
|
267 |
||
268 |
if (Verbose && orig != this) { |
|
269 |
// Dump the original block's idx |
|
270 |
tty->print(" ("); |
|
271 |
orig->dump_bidx(orig); |
|
272 |
tty->print(")"); |
|
273 |
} |
|
274 |
} |
|
275 |
||
276 |
void Block::dump_pred(const Block_Array *bbs, Block* orig) const { |
|
277 |
if (is_connector()) { |
|
278 |
for (uint i=1; i<num_preds(); i++) { |
|
279 |
Block *p = ((*bbs)[pred(i)->_idx]); |
|
280 |
p->dump_pred(bbs, orig); |
|
281 |
} |
|
282 |
} else { |
|
283 |
dump_bidx(orig); |
|
284 |
tty->print(" "); |
|
285 |
} |
|
286 |
} |
|
287 |
||
288 |
void Block::dump_head( const Block_Array *bbs ) const { |
|
289 |
// Print the basic block |
|
290 |
dump_bidx(this); |
|
291 |
tty->print(": #\t"); |
|
292 |
||
293 |
// Print the incoming CFG edges and the outgoing CFG edges |
|
294 |
for( uint i=0; i<_num_succs; i++ ) { |
|
295 |
non_connector_successor(i)->dump_bidx(_succs[i]); |
|
296 |
tty->print(" "); |
|
297 |
} |
|
298 |
tty->print("<- "); |
|
299 |
if( head()->is_block_start() ) { |
|
300 |
for (uint i=1; i<num_preds(); i++) { |
|
301 |
Node *s = pred(i); |
|
302 |
if (bbs) { |
|
303 |
Block *p = (*bbs)[s->_idx]; |
|
304 |
p->dump_pred(bbs, p); |
|
305 |
} else { |
|
306 |
while (!s->is_block_start()) |
|
307 |
s = s->in(0); |
|
308 |
tty->print("N%d ", s->_idx ); |
|
309 |
} |
|
310 |
} |
|
311 |
} else |
|
312 |
tty->print("BLOCK HEAD IS JUNK "); |
|
313 |
||
314 |
// Print loop, if any |
|
315 |
const Block *bhead = this; // Head of self-loop |
|
316 |
Node *bh = bhead->head(); |
|
317 |
if( bbs && bh->is_Loop() && !head()->is_Root() ) { |
|
318 |
LoopNode *loop = bh->as_Loop(); |
|
319 |
const Block *bx = (*bbs)[loop->in(LoopNode::LoopBackControl)->_idx]; |
|
320 |
while (bx->is_connector()) { |
|
321 |
bx = (*bbs)[bx->pred(1)->_idx]; |
|
322 |
} |
|
323 |
tty->print("\tLoop: B%d-B%d ", bhead->_pre_order, bx->_pre_order); |
|
324 |
// Dump any loop-specific bits, especially for CountedLoops. |
|
325 |
loop->dump_spec(tty); |
|
1498 | 326 |
} else if (has_loop_alignment()) { |
327 |
tty->print(" top-of-loop"); |
|
1 | 328 |
} |
329 |
tty->print(" Freq: %g",_freq); |
|
330 |
if( Verbose || WizardMode ) { |
|
331 |
tty->print(" IDom: %d/#%d", _idom ? _idom->_pre_order : 0, _dom_depth); |
|
332 |
tty->print(" RegPressure: %d",_reg_pressure); |
|
333 |
tty->print(" IHRP Index: %d",_ihrp_index); |
|
334 |
tty->print(" FRegPressure: %d",_freg_pressure); |
|
335 |
tty->print(" FHRP Index: %d",_fhrp_index); |
|
336 |
} |
|
337 |
tty->print_cr(""); |
|
338 |
} |
|
339 |
||
340 |
void Block::dump() const { dump(0); } |
|
341 |
||
342 |
void Block::dump( const Block_Array *bbs ) const { |
|
343 |
dump_head(bbs); |
|
344 |
uint cnt = _nodes.size(); |
|
345 |
for( uint i=0; i<cnt; i++ ) |
|
346 |
_nodes[i]->dump(); |
|
347 |
tty->print("\n"); |
|
348 |
} |
|
349 |
#endif |
|
350 |
||
351 |
//============================================================================= |
|
352 |
//------------------------------PhaseCFG--------------------------------------- |
|
353 |
PhaseCFG::PhaseCFG( Arena *a, RootNode *r, Matcher &m ) : |
|
354 |
Phase(CFG), |
|
355 |
_bbs(a), |
|
356 |
_root(r) |
|
357 |
#ifndef PRODUCT |
|
358 |
, _trace_opto_pipelining(TraceOptoPipelining || C->method_has_option("TraceOptoPipelining")) |
|
359 |
#endif |
|
360 |
{ |
|
361 |
ResourceMark rm; |
|
362 |
// I'll need a few machine-specific GotoNodes. Make an Ideal GotoNode, |
|
363 |
// then Match it into a machine-specific Node. Then clone the machine |
|
364 |
// Node on demand. |
|
365 |
Node *x = new (C, 1) GotoNode(NULL); |
|
366 |
x->init_req(0, x); |
|
367 |
_goto = m.match_tree(x); |
|
368 |
assert(_goto != NULL, ""); |
|
369 |
_goto->set_req(0,_goto); |
|
370 |
||
371 |
// Build the CFG in Reverse Post Order |
|
372 |
_num_blocks = build_cfg(); |
|
373 |
_broot = _bbs[_root->_idx]; |
|
374 |
} |
|
375 |
||
376 |
//------------------------------build_cfg-------------------------------------- |
|
377 |
// Build a proper looking CFG. Make every block begin with either a StartNode |
|
378 |
// or a RegionNode. Make every block end with either a Goto, If or Return. |
|
379 |
// The RootNode both starts and ends it's own block. Do this with a recursive |
|
380 |
// backwards walk over the control edges. |
|
381 |
uint PhaseCFG::build_cfg() { |
|
382 |
Arena *a = Thread::current()->resource_area(); |
|
383 |
VectorSet visited(a); |
|
384 |
||
385 |
// Allocate stack with enough space to avoid frequent realloc |
|
386 |
Node_Stack nstack(a, C->unique() >> 1); |
|
387 |
nstack.push(_root, 0); |
|
388 |
uint sum = 0; // Counter for blocks |
|
389 |
||
390 |
while (nstack.is_nonempty()) { |
|
391 |
// node and in's index from stack's top |
|
392 |
// 'np' is _root (see above) or RegionNode, StartNode: we push on stack |
|
393 |
// only nodes which point to the start of basic block (see below). |
|
394 |
Node *np = nstack.node(); |
|
395 |
// idx > 0, except for the first node (_root) pushed on stack |
|
396 |
// at the beginning when idx == 0. |
|
397 |
// We will use the condition (idx == 0) later to end the build. |
|
398 |
uint idx = nstack.index(); |
|
399 |
Node *proj = np->in(idx); |
|
400 |
const Node *x = proj->is_block_proj(); |
|
401 |
// Does the block end with a proper block-ending Node? One of Return, |
|
402 |
// If or Goto? (This check should be done for visited nodes also). |
|
403 |
if (x == NULL) { // Does not end right... |
|
404 |
Node *g = _goto->clone(); // Force it to end in a Goto |
|
405 |
g->set_req(0, proj); |
|
406 |
np->set_req(idx, g); |
|
407 |
x = proj = g; |
|
408 |
} |
|
409 |
if (!visited.test_set(x->_idx)) { // Visit this block once |
|
410 |
// Skip any control-pinned middle'in stuff |
|
411 |
Node *p = proj; |
|
412 |
do { |
|
413 |
proj = p; // Update pointer to last Control |
|
414 |
p = p->in(0); // Move control forward |
|
415 |
} while( !p->is_block_proj() && |
|
416 |
!p->is_block_start() ); |
|
417 |
// Make the block begin with one of Region or StartNode. |
|
418 |
if( !p->is_block_start() ) { |
|
419 |
RegionNode *r = new (C, 2) RegionNode( 2 ); |
|
420 |
r->init_req(1, p); // Insert RegionNode in the way |
|
421 |
proj->set_req(0, r); // Insert RegionNode in the way |
|
422 |
p = r; |
|
423 |
} |
|
424 |
// 'p' now points to the start of this basic block |
|
425 |
||
426 |
// Put self in array of basic blocks |
|
427 |
Block *bb = new (_bbs._arena) Block(_bbs._arena,p); |
|
428 |
_bbs.map(p->_idx,bb); |
|
429 |
_bbs.map(x->_idx,bb); |
|
430 |
if( x != p ) // Only for root is x == p |
|
431 |
bb->_nodes.push((Node*)x); |
|
432 |
||
433 |
// Now handle predecessors |
|
434 |
++sum; // Count 1 for self block |
|
435 |
uint cnt = bb->num_preds(); |
|
436 |
for (int i = (cnt - 1); i > 0; i-- ) { // For all predecessors |
|
437 |
Node *prevproj = p->in(i); // Get prior input |
|
438 |
assert( !prevproj->is_Con(), "dead input not removed" ); |
|
439 |
// Check to see if p->in(i) is a "control-dependent" CFG edge - |
|
440 |
// i.e., it splits at the source (via an IF or SWITCH) and merges |
|
441 |
// at the destination (via a many-input Region). |
|
442 |
// This breaks critical edges. The RegionNode to start the block |
|
443 |
// will be added when <p,i> is pulled off the node stack |
|
444 |
if ( cnt > 2 ) { // Merging many things? |
|
445 |
assert( prevproj== bb->pred(i),""); |
|
446 |
if(prevproj->is_block_proj() != prevproj) { // Control-dependent edge? |
|
447 |
// Force a block on the control-dependent edge |
|
448 |
Node *g = _goto->clone(); // Force it to end in a Goto |
|
449 |
g->set_req(0,prevproj); |
|
450 |
p->set_req(i,g); |
|
451 |
} |
|
452 |
} |
|
453 |
nstack.push(p, i); // 'p' is RegionNode or StartNode |
|
454 |
} |
|
455 |
} else { // Post-processing visited nodes |
|
456 |
nstack.pop(); // remove node from stack |
|
457 |
// Check if it the fist node pushed on stack at the beginning. |
|
458 |
if (idx == 0) break; // end of the build |
|
459 |
// Find predecessor basic block |
|
460 |
Block *pb = _bbs[x->_idx]; |
|
461 |
// Insert into nodes array, if not already there |
|
462 |
if( !_bbs.lookup(proj->_idx) ) { |
|
463 |
assert( x != proj, "" ); |
|
464 |
// Map basic block of projection |
|
465 |
_bbs.map(proj->_idx,pb); |
|
466 |
pb->_nodes.push(proj); |
|
467 |
} |
|
468 |
// Insert self as a child of my predecessor block |
|
469 |
pb->_succs.map(pb->_num_succs++, _bbs[np->_idx]); |
|
470 |
assert( pb->_nodes[ pb->_nodes.size() - pb->_num_succs ]->is_block_proj(), |
|
471 |
"too many control users, not a CFG?" ); |
|
472 |
} |
|
473 |
} |
|
474 |
// Return number of basic blocks for all children and self |
|
475 |
return sum; |
|
476 |
} |
|
477 |
||
478 |
//------------------------------insert_goto_at--------------------------------- |
|
479 |
// Inserts a goto & corresponding basic block between |
|
480 |
// block[block_no] and its succ_no'th successor block |
|
481 |
void PhaseCFG::insert_goto_at(uint block_no, uint succ_no) { |
|
482 |
// get block with block_no |
|
483 |
assert(block_no < _num_blocks, "illegal block number"); |
|
484 |
Block* in = _blocks[block_no]; |
|
485 |
// get successor block succ_no |
|
486 |
assert(succ_no < in->_num_succs, "illegal successor number"); |
|
487 |
Block* out = in->_succs[succ_no]; |
|
1070 | 488 |
// Compute frequency of the new block. Do this before inserting |
489 |
// new block in case succ_prob() needs to infer the probability from |
|
490 |
// surrounding blocks. |
|
491 |
float freq = in->_freq * in->succ_prob(succ_no); |
|
1 | 492 |
// get ProjNode corresponding to the succ_no'th successor of the in block |
493 |
ProjNode* proj = in->_nodes[in->_nodes.size() - in->_num_succs + succ_no]->as_Proj(); |
|
494 |
// create region for basic block |
|
495 |
RegionNode* region = new (C, 2) RegionNode(2); |
|
496 |
region->init_req(1, proj); |
|
497 |
// setup corresponding basic block |
|
498 |
Block* block = new (_bbs._arena) Block(_bbs._arena, region); |
|
499 |
_bbs.map(region->_idx, block); |
|
500 |
C->regalloc()->set_bad(region->_idx); |
|
501 |
// add a goto node |
|
502 |
Node* gto = _goto->clone(); // get a new goto node |
|
503 |
gto->set_req(0, region); |
|
504 |
// add it to the basic block |
|
505 |
block->_nodes.push(gto); |
|
506 |
_bbs.map(gto->_idx, block); |
|
507 |
C->regalloc()->set_bad(gto->_idx); |
|
508 |
// hook up successor block |
|
509 |
block->_succs.map(block->_num_succs++, out); |
|
510 |
// remap successor's predecessors if necessary |
|
511 |
for (uint i = 1; i < out->num_preds(); i++) { |
|
512 |
if (out->pred(i) == proj) out->head()->set_req(i, gto); |
|
513 |
} |
|
514 |
// remap predecessor's successor to new block |
|
515 |
in->_succs.map(succ_no, block); |
|
1070 | 516 |
// Set the frequency of the new block |
517 |
block->_freq = freq; |
|
1 | 518 |
// add new basic block to basic block list |
519 |
_blocks.insert(block_no + 1, block); |
|
520 |
_num_blocks++; |
|
521 |
} |
|
522 |
||
523 |
//------------------------------no_flip_branch--------------------------------- |
|
524 |
// Does this block end in a multiway branch that cannot have the default case |
|
525 |
// flipped for another case? |
|
526 |
static bool no_flip_branch( Block *b ) { |
|
527 |
int branch_idx = b->_nodes.size() - b->_num_succs-1; |
|
528 |
if( branch_idx < 1 ) return false; |
|
529 |
Node *bra = b->_nodes[branch_idx]; |
|
1498 | 530 |
if( bra->is_Catch() ) |
531 |
return true; |
|
1 | 532 |
if( bra->is_Mach() ) { |
1498 | 533 |
if( bra->is_MachNullCheck() ) |
534 |
return true; |
|
1 | 535 |
int iop = bra->as_Mach()->ideal_Opcode(); |
536 |
if( iop == Op_FastLock || iop == Op_FastUnlock ) |
|
537 |
return true; |
|
538 |
} |
|
539 |
return false; |
|
540 |
} |
|
541 |
||
542 |
//------------------------------convert_NeverBranch_to_Goto-------------------- |
|
543 |
// Check for NeverBranch at block end. This needs to become a GOTO to the |
|
544 |
// true target. NeverBranch are treated as a conditional branch that always |
|
545 |
// goes the same direction for most of the optimizer and are used to give a |
|
546 |
// fake exit path to infinite loops. At this late stage they need to turn |
|
547 |
// into Goto's so that when you enter the infinite loop you indeed hang. |
|
548 |
void PhaseCFG::convert_NeverBranch_to_Goto(Block *b) { |
|
549 |
// Find true target |
|
550 |
int end_idx = b->end_idx(); |
|
551 |
int idx = b->_nodes[end_idx+1]->as_Proj()->_con; |
|
552 |
Block *succ = b->_succs[idx]; |
|
553 |
Node* gto = _goto->clone(); // get a new goto node |
|
554 |
gto->set_req(0, b->head()); |
|
555 |
Node *bp = b->_nodes[end_idx]; |
|
556 |
b->_nodes.map(end_idx,gto); // Slam over NeverBranch |
|
557 |
_bbs.map(gto->_idx, b); |
|
558 |
C->regalloc()->set_bad(gto->_idx); |
|
559 |
b->_nodes.pop(); // Yank projections |
|
560 |
b->_nodes.pop(); // Yank projections |
|
561 |
b->_succs.map(0,succ); // Map only successor |
|
562 |
b->_num_succs = 1; |
|
563 |
// remap successor's predecessors if necessary |
|
564 |
uint j; |
|
565 |
for( j = 1; j < succ->num_preds(); j++) |
|
566 |
if( succ->pred(j)->in(0) == bp ) |
|
567 |
succ->head()->set_req(j, gto); |
|
568 |
// Kill alternate exit path |
|
569 |
Block *dead = b->_succs[1-idx]; |
|
570 |
for( j = 1; j < dead->num_preds(); j++) |
|
571 |
if( dead->pred(j)->in(0) == bp ) |
|
572 |
break; |
|
573 |
// Scan through block, yanking dead path from |
|
574 |
// all regions and phis. |
|
575 |
dead->head()->del_req(j); |
|
576 |
for( int k = 1; dead->_nodes[k]->is_Phi(); k++ ) |
|
577 |
dead->_nodes[k]->del_req(j); |
|
578 |
} |
|
579 |
||
1498 | 580 |
//------------------------------move_to_next----------------------------------- |
1 | 581 |
// Helper function to move block bx to the slot following b_index. Return |
582 |
// true if the move is successful, otherwise false |
|
1498 | 583 |
bool PhaseCFG::move_to_next(Block* bx, uint b_index) { |
1 | 584 |
if (bx == NULL) return false; |
585 |
||
586 |
// Return false if bx is already scheduled. |
|
587 |
uint bx_index = bx->_pre_order; |
|
588 |
if ((bx_index <= b_index) && (_blocks[bx_index] == bx)) { |
|
589 |
return false; |
|
590 |
} |
|
591 |
||
592 |
// Find the current index of block bx on the block list |
|
593 |
bx_index = b_index + 1; |
|
594 |
while( bx_index < _num_blocks && _blocks[bx_index] != bx ) bx_index++; |
|
595 |
assert(_blocks[bx_index] == bx, "block not found"); |
|
596 |
||
597 |
// If the previous block conditionally falls into bx, return false, |
|
598 |
// because moving bx will create an extra jump. |
|
599 |
for(uint k = 1; k < bx->num_preds(); k++ ) { |
|
600 |
Block* pred = _bbs[bx->pred(k)->_idx]; |
|
601 |
if (pred == _blocks[bx_index-1]) { |
|
602 |
if (pred->_num_succs != 1) { |
|
603 |
return false; |
|
604 |
} |
|
605 |
} |
|
606 |
} |
|
607 |
||
608 |
// Reinsert bx just past block 'b' |
|
609 |
_blocks.remove(bx_index); |
|
610 |
_blocks.insert(b_index + 1, bx); |
|
611 |
return true; |
|
612 |
} |
|
613 |
||
1498 | 614 |
//------------------------------move_to_end------------------------------------ |
1 | 615 |
// Move empty and uncommon blocks to the end. |
1498 | 616 |
void PhaseCFG::move_to_end(Block *b, uint i) { |
1 | 617 |
int e = b->is_Empty(); |
618 |
if (e != Block::not_empty) { |
|
619 |
if (e == Block::empty_with_goto) { |
|
620 |
// Remove the goto, but leave the block. |
|
621 |
b->_nodes.pop(); |
|
622 |
} |
|
623 |
// Mark this block as a connector block, which will cause it to be |
|
624 |
// ignored in certain functions such as non_connector_successor(). |
|
625 |
b->set_connector(); |
|
626 |
} |
|
627 |
// Move the empty block to the end, and don't recheck. |
|
628 |
_blocks.remove(i); |
|
629 |
_blocks.push(b); |
|
630 |
} |
|
631 |
||
1498 | 632 |
//---------------------------set_loop_alignment-------------------------------- |
633 |
// Set loop alignment for every block |
|
634 |
void PhaseCFG::set_loop_alignment() { |
|
635 |
uint last = _num_blocks; |
|
636 |
assert( _blocks[0] == _broot, "" ); |
|
637 |
||
638 |
for (uint i = 1; i < last; i++ ) { |
|
639 |
Block *b = _blocks[i]; |
|
640 |
if (b->head()->is_Loop()) { |
|
641 |
b->set_loop_alignment(b); |
|
642 |
} |
|
643 |
} |
|
644 |
} |
|
645 |
||
646 |
//-----------------------------remove_empty------------------------------------ |
|
647 |
// Make empty basic blocks to be "connector" blocks, Move uncommon blocks |
|
648 |
// to the end. |
|
649 |
void PhaseCFG::remove_empty() { |
|
1 | 650 |
// Move uncommon blocks to the end |
651 |
uint last = _num_blocks; |
|
652 |
assert( _blocks[0] == _broot, "" ); |
|
1498 | 653 |
|
654 |
for (uint i = 1; i < last; i++) { |
|
1 | 655 |
Block *b = _blocks[i]; |
1498 | 656 |
if (b->is_connector()) break; |
1 | 657 |
|
658 |
// Check for NeverBranch at block end. This needs to become a GOTO to the |
|
659 |
// true target. NeverBranch are treated as a conditional branch that |
|
660 |
// always goes the same direction for most of the optimizer and are used |
|
661 |
// to give a fake exit path to infinite loops. At this late stage they |
|
662 |
// need to turn into Goto's so that when you enter the infinite loop you |
|
663 |
// indeed hang. |
|
664 |
if( b->_nodes[b->end_idx()]->Opcode() == Op_NeverBranch ) |
|
665 |
convert_NeverBranch_to_Goto(b); |
|
666 |
||
667 |
// Look for uncommon blocks and move to end. |
|
1498 | 668 |
if (!C->do_freq_based_layout()) { |
669 |
if( b->is_uncommon(_bbs) ) { |
|
670 |
move_to_end(b, i); |
|
671 |
last--; // No longer check for being uncommon! |
|
672 |
if( no_flip_branch(b) ) { // Fall-thru case must follow? |
|
673 |
b = _blocks[i]; // Find the fall-thru block |
|
674 |
move_to_end(b, i); |
|
675 |
last--; |
|
676 |
} |
|
677 |
i--; // backup block counter post-increment |
|
1 | 678 |
} |
679 |
} |
|
680 |
} |
|
681 |
||
1498 | 682 |
// Move empty blocks to the end |
1 | 683 |
last = _num_blocks; |
1498 | 684 |
for (uint i = 1; i < last; i++) { |
1 | 685 |
Block *b = _blocks[i]; |
1498 | 686 |
if (b->is_Empty() != Block::not_empty) { |
687 |
move_to_end(b, i); |
|
688 |
last--; |
|
689 |
i--; |
|
1 | 690 |
} |
691 |
} // End of for all blocks |
|
1498 | 692 |
} |
1 | 693 |
|
1498 | 694 |
//-----------------------------fixup_flow-------------------------------------- |
695 |
// Fix up the final control flow for basic blocks. |
|
696 |
void PhaseCFG::fixup_flow() { |
|
1 | 697 |
// Fixup final control flow for the blocks. Remove jump-to-next |
698 |
// block. If neither arm of a IF follows the conditional branch, we |
|
699 |
// have to add a second jump after the conditional. We place the |
|
700 |
// TRUE branch target in succs[0] for both GOTOs and IFs. |
|
1498 | 701 |
for (uint i=0; i < _num_blocks; i++) { |
1 | 702 |
Block *b = _blocks[i]; |
703 |
b->_pre_order = i; // turn pre-order into block-index |
|
704 |
||
705 |
// Connector blocks need no further processing. |
|
706 |
if (b->is_connector()) { |
|
707 |
assert((i+1) == _num_blocks || _blocks[i+1]->is_connector(), |
|
708 |
"All connector blocks should sink to the end"); |
|
709 |
continue; |
|
710 |
} |
|
711 |
assert(b->is_Empty() != Block::completely_empty, |
|
712 |
"Empty blocks should be connectors"); |
|
713 |
||
714 |
Block *bnext = (i < _num_blocks-1) ? _blocks[i+1] : NULL; |
|
715 |
Block *bs0 = b->non_connector_successor(0); |
|
716 |
||
717 |
// Check for multi-way branches where I cannot negate the test to |
|
718 |
// exchange the true and false targets. |
|
719 |
if( no_flip_branch( b ) ) { |
|
720 |
// Find fall through case - if must fall into its target |
|
721 |
int branch_idx = b->_nodes.size() - b->_num_succs; |
|
722 |
for (uint j2 = 0; j2 < b->_num_succs; j2++) { |
|
723 |
const ProjNode* p = b->_nodes[branch_idx + j2]->as_Proj(); |
|
724 |
if (p->_con == 0) { |
|
725 |
// successor j2 is fall through case |
|
726 |
if (b->non_connector_successor(j2) != bnext) { |
|
727 |
// but it is not the next block => insert a goto |
|
728 |
insert_goto_at(i, j2); |
|
729 |
} |
|
730 |
// Put taken branch in slot 0 |
|
731 |
if( j2 == 0 && b->_num_succs == 2) { |
|
732 |
// Flip targets in succs map |
|
733 |
Block *tbs0 = b->_succs[0]; |
|
734 |
Block *tbs1 = b->_succs[1]; |
|
735 |
b->_succs.map( 0, tbs1 ); |
|
736 |
b->_succs.map( 1, tbs0 ); |
|
737 |
} |
|
738 |
break; |
|
739 |
} |
|
740 |
} |
|
741 |
// Remove all CatchProjs |
|
1498 | 742 |
for (uint j1 = 0; j1 < b->_num_succs; j1++) b->_nodes.pop(); |
1 | 743 |
|
744 |
} else if (b->_num_succs == 1) { |
|
745 |
// Block ends in a Goto? |
|
746 |
if (bnext == bs0) { |
|
747 |
// We fall into next block; remove the Goto |
|
748 |
b->_nodes.pop(); |
|
749 |
} |
|
750 |
||
751 |
} else if( b->_num_succs == 2 ) { // Block ends in a If? |
|
752 |
// Get opcode of 1st projection (matches _succs[0]) |
|
753 |
// Note: Since this basic block has 2 exits, the last 2 nodes must |
|
754 |
// be projections (in any order), the 3rd last node must be |
|
755 |
// the IfNode (we have excluded other 2-way exits such as |
|
756 |
// CatchNodes already). |
|
757 |
MachNode *iff = b->_nodes[b->_nodes.size()-3]->as_Mach(); |
|
758 |
ProjNode *proj0 = b->_nodes[b->_nodes.size()-2]->as_Proj(); |
|
759 |
ProjNode *proj1 = b->_nodes[b->_nodes.size()-1]->as_Proj(); |
|
760 |
||
761 |
// Assert that proj0 and succs[0] match up. Similarly for proj1 and succs[1]. |
|
762 |
assert(proj0->raw_out(0) == b->_succs[0]->head(), "Mismatch successor 0"); |
|
763 |
assert(proj1->raw_out(0) == b->_succs[1]->head(), "Mismatch successor 1"); |
|
764 |
||
765 |
Block *bs1 = b->non_connector_successor(1); |
|
766 |
||
767 |
// Check for neither successor block following the current |
|
768 |
// block ending in a conditional. If so, move one of the |
|
769 |
// successors after the current one, provided that the |
|
770 |
// successor was previously unscheduled, but moveable |
|
771 |
// (i.e., all paths to it involve a branch). |
|
1498 | 772 |
if( !C->do_freq_based_layout() && bnext != bs0 && bnext != bs1 ) { |
1 | 773 |
// Choose the more common successor based on the probability |
774 |
// of the conditional branch. |
|
775 |
Block *bx = bs0; |
|
776 |
Block *by = bs1; |
|
777 |
||
778 |
// _prob is the probability of taking the true path. Make |
|
779 |
// p the probability of taking successor #1. |
|
780 |
float p = iff->as_MachIf()->_prob; |
|
781 |
if( proj0->Opcode() == Op_IfTrue ) { |
|
782 |
p = 1.0 - p; |
|
783 |
} |
|
784 |
||
785 |
// Prefer successor #1 if p > 0.5 |
|
786 |
if (p > PROB_FAIR) { |
|
787 |
bx = bs1; |
|
788 |
by = bs0; |
|
789 |
} |
|
790 |
||
791 |
// Attempt the more common successor first |
|
1498 | 792 |
if (move_to_next(bx, i)) { |
1 | 793 |
bnext = bx; |
1498 | 794 |
} else if (move_to_next(by, i)) { |
1 | 795 |
bnext = by; |
796 |
} |
|
797 |
} |
|
798 |
||
799 |
// Check for conditional branching the wrong way. Negate |
|
800 |
// conditional, if needed, so it falls into the following block |
|
801 |
// and branches to the not-following block. |
|
802 |
||
803 |
// Check for the next block being in succs[0]. We are going to branch |
|
804 |
// to succs[0], so we want the fall-thru case as the next block in |
|
805 |
// succs[1]. |
|
806 |
if (bnext == bs0) { |
|
807 |
// Fall-thru case in succs[0], so flip targets in succs map |
|
808 |
Block *tbs0 = b->_succs[0]; |
|
809 |
Block *tbs1 = b->_succs[1]; |
|
810 |
b->_succs.map( 0, tbs1 ); |
|
811 |
b->_succs.map( 1, tbs0 ); |
|
812 |
// Flip projection for each target |
|
813 |
{ ProjNode *tmp = proj0; proj0 = proj1; proj1 = tmp; } |
|
814 |
||
1498 | 815 |
} else if( bnext != bs1 ) { |
816 |
// Need a double-branch |
|
1 | 817 |
// The existing conditional branch need not change. |
818 |
// Add a unconditional branch to the false target. |
|
819 |
// Alas, it must appear in its own block and adding a |
|
820 |
// block this late in the game is complicated. Sigh. |
|
821 |
insert_goto_at(i, 1); |
|
822 |
} |
|
823 |
||
824 |
// Make sure we TRUE branch to the target |
|
1498 | 825 |
if( proj0->Opcode() == Op_IfFalse ) { |
1 | 826 |
iff->negate(); |
1498 | 827 |
} |
1 | 828 |
|
829 |
b->_nodes.pop(); // Remove IfFalse & IfTrue projections |
|
830 |
b->_nodes.pop(); |
|
831 |
||
832 |
} else { |
|
833 |
// Multi-exit block, e.g. a switch statement |
|
834 |
// But we don't need to do anything here |
|
835 |
} |
|
836 |
} // End of for all blocks |
|
837 |
} |
|
838 |
||
839 |
||
840 |
//------------------------------dump------------------------------------------- |
|
841 |
#ifndef PRODUCT |
|
842 |
void PhaseCFG::_dump_cfg( const Node *end, VectorSet &visited ) const { |
|
843 |
const Node *x = end->is_block_proj(); |
|
844 |
assert( x, "not a CFG" ); |
|
845 |
||
846 |
// Do not visit this block again |
|
847 |
if( visited.test_set(x->_idx) ) return; |
|
848 |
||
849 |
// Skip through this block |
|
850 |
const Node *p = x; |
|
851 |
do { |
|
852 |
p = p->in(0); // Move control forward |
|
853 |
assert( !p->is_block_proj() || p->is_Root(), "not a CFG" ); |
|
854 |
} while( !p->is_block_start() ); |
|
855 |
||
856 |
// Recursively visit |
|
857 |
for( uint i=1; i<p->req(); i++ ) |
|
858 |
_dump_cfg(p->in(i),visited); |
|
859 |
||
860 |
// Dump the block |
|
861 |
_bbs[p->_idx]->dump(&_bbs); |
|
862 |
} |
|
863 |
||
864 |
void PhaseCFG::dump( ) const { |
|
865 |
tty->print("\n--- CFG --- %d BBs\n",_num_blocks); |
|
866 |
if( _blocks.size() ) { // Did we do basic-block layout? |
|
867 |
for( uint i=0; i<_num_blocks; i++ ) |
|
868 |
_blocks[i]->dump(&_bbs); |
|
869 |
} else { // Else do it with a DFS |
|
870 |
VectorSet visited(_bbs._arena); |
|
871 |
_dump_cfg(_root,visited); |
|
872 |
} |
|
873 |
} |
|
874 |
||
875 |
void PhaseCFG::dump_headers() { |
|
876 |
for( uint i = 0; i < _num_blocks; i++ ) { |
|
877 |
if( _blocks[i] == NULL ) continue; |
|
878 |
_blocks[i]->dump_head(&_bbs); |
|
879 |
} |
|
880 |
} |
|
881 |
||
882 |
void PhaseCFG::verify( ) const { |
|
2030
39d55e4534b4
6791852: assert(b->_nodes[insidx] == n,"got insidx set incorrectly")
kvn
parents:
1498
diff
changeset
|
883 |
#ifdef ASSERT |
1 | 884 |
// Verify sane CFG |
885 |
for( uint i = 0; i < _num_blocks; i++ ) { |
|
886 |
Block *b = _blocks[i]; |
|
887 |
uint cnt = b->_nodes.size(); |
|
888 |
uint j; |
|
889 |
for( j = 0; j < cnt; j++ ) { |
|
890 |
Node *n = b->_nodes[j]; |
|
891 |
assert( _bbs[n->_idx] == b, "" ); |
|
892 |
if( j >= 1 && n->is_Mach() && |
|
893 |
n->as_Mach()->ideal_Opcode() == Op_CreateEx ) { |
|
894 |
assert( j == 1 || b->_nodes[j-1]->is_Phi(), |
|
895 |
"CreateEx must be first instruction in block" ); |
|
896 |
} |
|
897 |
for( uint k = 0; k < n->req(); k++ ) { |
|
2030
39d55e4534b4
6791852: assert(b->_nodes[insidx] == n,"got insidx set incorrectly")
kvn
parents:
1498
diff
changeset
|
898 |
Node *def = n->in(k); |
39d55e4534b4
6791852: assert(b->_nodes[insidx] == n,"got insidx set incorrectly")
kvn
parents:
1498
diff
changeset
|
899 |
if( def && def != n ) { |
39d55e4534b4
6791852: assert(b->_nodes[insidx] == n,"got insidx set incorrectly")
kvn
parents:
1498
diff
changeset
|
900 |
assert( _bbs[def->_idx] || def->is_Con(), |
1 | 901 |
"must have block; constants for debug info ok" ); |
2030
39d55e4534b4
6791852: assert(b->_nodes[insidx] == n,"got insidx set incorrectly")
kvn
parents:
1498
diff
changeset
|
902 |
// Verify that instructions in the block is in correct order. |
39d55e4534b4
6791852: assert(b->_nodes[insidx] == n,"got insidx set incorrectly")
kvn
parents:
1498
diff
changeset
|
903 |
// Uses must follow their definition if they are at the same block. |
39d55e4534b4
6791852: assert(b->_nodes[insidx] == n,"got insidx set incorrectly")
kvn
parents:
1498
diff
changeset
|
904 |
// Mostly done to check that MachSpillCopy nodes are placed correctly |
39d55e4534b4
6791852: assert(b->_nodes[insidx] == n,"got insidx set incorrectly")
kvn
parents:
1498
diff
changeset
|
905 |
// when CreateEx node is moved in build_ifg_physical(). |
39d55e4534b4
6791852: assert(b->_nodes[insidx] == n,"got insidx set incorrectly")
kvn
parents:
1498
diff
changeset
|
906 |
if( _bbs[def->_idx] == b && |
39d55e4534b4
6791852: assert(b->_nodes[insidx] == n,"got insidx set incorrectly")
kvn
parents:
1498
diff
changeset
|
907 |
!(b->head()->is_Loop() && n->is_Phi()) && |
39d55e4534b4
6791852: assert(b->_nodes[insidx] == n,"got insidx set incorrectly")
kvn
parents:
1498
diff
changeset
|
908 |
// See (+++) comment in reg_split.cpp |
39d55e4534b4
6791852: assert(b->_nodes[insidx] == n,"got insidx set incorrectly")
kvn
parents:
1498
diff
changeset
|
909 |
!(n->jvms() != NULL && n->jvms()->is_monitor_use(k)) ) { |
39d55e4534b4
6791852: assert(b->_nodes[insidx] == n,"got insidx set incorrectly")
kvn
parents:
1498
diff
changeset
|
910 |
assert( b->find_node(def) < j, "uses must follow definitions" ); |
39d55e4534b4
6791852: assert(b->_nodes[insidx] == n,"got insidx set incorrectly")
kvn
parents:
1498
diff
changeset
|
911 |
} |
2127
268ea58ed775
6809798: SafePointScalarObject node placed into incorrect block during GCM
kvn
parents:
2030
diff
changeset
|
912 |
if( def->is_SafePointScalarObject() ) { |
268ea58ed775
6809798: SafePointScalarObject node placed into incorrect block during GCM
kvn
parents:
2030
diff
changeset
|
913 |
assert(_bbs[def->_idx] == b, "SafePointScalarObject Node should be at the same block as its SafePoint node"); |
268ea58ed775
6809798: SafePointScalarObject node placed into incorrect block during GCM
kvn
parents:
2030
diff
changeset
|
914 |
assert(_bbs[def->_idx] == _bbs[def->in(0)->_idx], "SafePointScalarObject Node should be at the same block as its control edge"); |
268ea58ed775
6809798: SafePointScalarObject node placed into incorrect block during GCM
kvn
parents:
2030
diff
changeset
|
915 |
} |
1 | 916 |
} |
917 |
} |
|
918 |
} |
|
919 |
||
920 |
j = b->end_idx(); |
|
921 |
Node *bp = (Node*)b->_nodes[b->_nodes.size()-1]->is_block_proj(); |
|
922 |
assert( bp, "last instruction must be a block proj" ); |
|
923 |
assert( bp == b->_nodes[j], "wrong number of successors for this block" ); |
|
924 |
if( bp->is_Catch() ) { |
|
925 |
while( b->_nodes[--j]->Opcode() == Op_MachProj ) ; |
|
926 |
assert( b->_nodes[j]->is_Call(), "CatchProj must follow call" ); |
|
927 |
} |
|
928 |
else if( bp->is_Mach() && bp->as_Mach()->ideal_Opcode() == Op_If ) { |
|
929 |
assert( b->_num_succs == 2, "Conditional branch must have two targets"); |
|
930 |
} |
|
931 |
} |
|
2030
39d55e4534b4
6791852: assert(b->_nodes[insidx] == n,"got insidx set incorrectly")
kvn
parents:
1498
diff
changeset
|
932 |
#endif |
1 | 933 |
} |
934 |
#endif |
|
935 |
||
936 |
//============================================================================= |
|
937 |
//------------------------------UnionFind-------------------------------------- |
|
938 |
UnionFind::UnionFind( uint max ) : _cnt(max), _max(max), _indices(NEW_RESOURCE_ARRAY(uint,max)) { |
|
939 |
Copy::zero_to_bytes( _indices, sizeof(uint)*max ); |
|
940 |
} |
|
941 |
||
942 |
void UnionFind::extend( uint from_idx, uint to_idx ) { |
|
943 |
_nesting.check(); |
|
944 |
if( from_idx >= _max ) { |
|
945 |
uint size = 16; |
|
946 |
while( size <= from_idx ) size <<=1; |
|
947 |
_indices = REALLOC_RESOURCE_ARRAY( uint, _indices, _max, size ); |
|
948 |
_max = size; |
|
949 |
} |
|
950 |
while( _cnt <= from_idx ) _indices[_cnt++] = 0; |
|
951 |
_indices[from_idx] = to_idx; |
|
952 |
} |
|
953 |
||
954 |
void UnionFind::reset( uint max ) { |
|
955 |
assert( max <= max_uint, "Must fit within uint" ); |
|
956 |
// Force the Union-Find mapping to be at least this large |
|
957 |
extend(max,0); |
|
958 |
// Initialize to be the ID mapping. |
|
1498 | 959 |
for( uint i=0; i<max; i++ ) map(i,i); |
1 | 960 |
} |
961 |
||
962 |
//------------------------------Find_compress---------------------------------- |
|
963 |
// Straight out of Tarjan's union-find algorithm |
|
964 |
uint UnionFind::Find_compress( uint idx ) { |
|
965 |
uint cur = idx; |
|
966 |
uint next = lookup(cur); |
|
967 |
while( next != cur ) { // Scan chain of equivalences |
|
968 |
assert( next < cur, "always union smaller" ); |
|
969 |
cur = next; // until find a fixed-point |
|
970 |
next = lookup(cur); |
|
971 |
} |
|
972 |
// Core of union-find algorithm: update chain of |
|
973 |
// equivalences to be equal to the root. |
|
974 |
while( idx != next ) { |
|
975 |
uint tmp = lookup(idx); |
|
976 |
map(idx, next); |
|
977 |
idx = tmp; |
|
978 |
} |
|
979 |
return idx; |
|
980 |
} |
|
981 |
||
982 |
//------------------------------Find_const------------------------------------- |
|
983 |
// Like Find above, but no path compress, so bad asymptotic behavior |
|
984 |
uint UnionFind::Find_const( uint idx ) const { |
|
985 |
if( idx == 0 ) return idx; // Ignore the zero idx |
|
986 |
// Off the end? This can happen during debugging dumps |
|
987 |
// when data structures have not finished being updated. |
|
988 |
if( idx >= _max ) return idx; |
|
989 |
uint next = lookup(idx); |
|
990 |
while( next != idx ) { // Scan chain of equivalences |
|
991 |
idx = next; // until find a fixed-point |
|
992 |
next = lookup(idx); |
|
993 |
} |
|
994 |
return next; |
|
995 |
} |
|
996 |
||
997 |
//------------------------------Union------------------------------------------ |
|
998 |
// union 2 sets together. |
|
999 |
void UnionFind::Union( uint idx1, uint idx2 ) { |
|
1000 |
uint src = Find(idx1); |
|
1001 |
uint dst = Find(idx2); |
|
1002 |
assert( src, "" ); |
|
1003 |
assert( dst, "" ); |
|
1004 |
assert( src < _max, "oob" ); |
|
1005 |
assert( dst < _max, "oob" ); |
|
1006 |
assert( src < dst, "always union smaller" ); |
|
1007 |
map(dst,src); |
|
1008 |
} |
|
1498 | 1009 |
|
1010 |
#ifndef PRODUCT |
|
1011 |
static void edge_dump(GrowableArray<CFGEdge *> *edges) { |
|
1012 |
tty->print_cr("---- Edges ----"); |
|
1013 |
for (int i = 0; i < edges->length(); i++) { |
|
1014 |
CFGEdge *e = edges->at(i); |
|
1015 |
if (e != NULL) { |
|
1016 |
edges->at(i)->dump(); |
|
1017 |
} |
|
1018 |
} |
|
1019 |
} |
|
1020 |
||
1021 |
static void trace_dump(Trace *traces[], int count) { |
|
1022 |
tty->print_cr("---- Traces ----"); |
|
1023 |
for (int i = 0; i < count; i++) { |
|
1024 |
Trace *tr = traces[i]; |
|
1025 |
if (tr != NULL) { |
|
1026 |
tr->dump(); |
|
1027 |
} |
|
1028 |
} |
|
1029 |
} |
|
1030 |
||
1031 |
void Trace::dump( ) const { |
|
1032 |
tty->print_cr("Trace (freq %f)", first_block()->_freq); |
|
1033 |
for (Block *b = first_block(); b != NULL; b = next(b)) { |
|
1034 |
tty->print(" B%d", b->_pre_order); |
|
1035 |
if (b->head()->is_Loop()) { |
|
1036 |
tty->print(" (L%d)", b->compute_loop_alignment()); |
|
1037 |
} |
|
1038 |
if (b->has_loop_alignment()) { |
|
1039 |
tty->print(" (T%d)", b->code_alignment()); |
|
1040 |
} |
|
1041 |
} |
|
1042 |
tty->cr(); |
|
1043 |
} |
|
1044 |
||
1045 |
void CFGEdge::dump( ) const { |
|
1046 |
tty->print(" B%d --> B%d Freq: %f out:%3d%% in:%3d%% State: ", |
|
1047 |
from()->_pre_order, to()->_pre_order, freq(), _from_pct, _to_pct); |
|
1048 |
switch(state()) { |
|
1049 |
case connected: |
|
1050 |
tty->print("connected"); |
|
1051 |
break; |
|
1052 |
case open: |
|
1053 |
tty->print("open"); |
|
1054 |
break; |
|
1055 |
case interior: |
|
1056 |
tty->print("interior"); |
|
1057 |
break; |
|
1058 |
} |
|
1059 |
if (infrequent()) { |
|
1060 |
tty->print(" infrequent"); |
|
1061 |
} |
|
1062 |
tty->cr(); |
|
1063 |
} |
|
1064 |
#endif |
|
1065 |
||
1066 |
//============================================================================= |
|
1067 |
||
1068 |
//------------------------------edge_order------------------------------------- |
|
1069 |
// Comparison function for edges |
|
1070 |
static int edge_order(CFGEdge **e0, CFGEdge **e1) { |
|
1071 |
float freq0 = (*e0)->freq(); |
|
1072 |
float freq1 = (*e1)->freq(); |
|
1073 |
if (freq0 != freq1) { |
|
1074 |
return freq0 > freq1 ? -1 : 1; |
|
1075 |
} |
|
1076 |
||
1077 |
int dist0 = (*e0)->to()->_rpo - (*e0)->from()->_rpo; |
|
1078 |
int dist1 = (*e1)->to()->_rpo - (*e1)->from()->_rpo; |
|
1079 |
||
1080 |
return dist1 - dist0; |
|
1081 |
} |
|
1082 |
||
1083 |
//------------------------------trace_frequency_order-------------------------- |
|
1084 |
// Comparison function for edges |
|
1085 |
static int trace_frequency_order(const void *p0, const void *p1) { |
|
1086 |
Trace *tr0 = *(Trace **) p0; |
|
1087 |
Trace *tr1 = *(Trace **) p1; |
|
1088 |
Block *b0 = tr0->first_block(); |
|
1089 |
Block *b1 = tr1->first_block(); |
|
1090 |
||
1091 |
// The trace of connector blocks goes at the end; |
|
1092 |
// we only expect one such trace |
|
1093 |
if (b0->is_connector() != b1->is_connector()) { |
|
1094 |
return b1->is_connector() ? -1 : 1; |
|
1095 |
} |
|
1096 |
||
1097 |
// Pull more frequently executed blocks to the beginning |
|
1098 |
float freq0 = b0->_freq; |
|
1099 |
float freq1 = b1->_freq; |
|
1100 |
if (freq0 != freq1) { |
|
1101 |
return freq0 > freq1 ? -1 : 1; |
|
1102 |
} |
|
1103 |
||
1104 |
int diff = tr0->first_block()->_rpo - tr1->first_block()->_rpo; |
|
1105 |
||
1106 |
return diff; |
|
1107 |
} |
|
1108 |
||
1109 |
//------------------------------find_edges------------------------------------- |
|
1110 |
// Find edges of interest, i.e, those which can fall through. Presumes that |
|
1111 |
// edges which don't fall through are of low frequency and can be generally |
|
1112 |
// ignored. Initialize the list of traces. |
|
1113 |
void PhaseBlockLayout::find_edges() |
|
1114 |
{ |
|
1115 |
// Walk the blocks, creating edges and Traces |
|
1116 |
uint i; |
|
1117 |
Trace *tr = NULL; |
|
1118 |
for (i = 0; i < _cfg._num_blocks; i++) { |
|
1119 |
Block *b = _cfg._blocks[i]; |
|
1120 |
tr = new Trace(b, next, prev); |
|
1121 |
traces[tr->id()] = tr; |
|
1122 |
||
1123 |
// All connector blocks should be at the end of the list |
|
1124 |
if (b->is_connector()) break; |
|
1125 |
||
1126 |
// If this block and the next one have a one-to-one successor |
|
1127 |
// predecessor relationship, simply append the next block |
|
1128 |
int nfallthru = b->num_fall_throughs(); |
|
1129 |
while (nfallthru == 1 && |
|
1130 |
b->succ_fall_through(0)) { |
|
1131 |
Block *n = b->_succs[0]; |
|
1132 |
||
1133 |
// Skip over single-entry connector blocks, we don't want to |
|
1134 |
// add them to the trace. |
|
1135 |
while (n->is_connector() && n->num_preds() == 1) { |
|
1136 |
n = n->_succs[0]; |
|
1137 |
} |
|
1138 |
||
1139 |
// We see a merge point, so stop search for the next block |
|
1140 |
if (n->num_preds() != 1) break; |
|
1141 |
||
1142 |
i++; |
|
1143 |
assert(n = _cfg._blocks[i], "expecting next block"); |
|
1144 |
tr->append(n); |
|
1145 |
uf->map(n->_pre_order, tr->id()); |
|
1146 |
traces[n->_pre_order] = NULL; |
|
1147 |
nfallthru = b->num_fall_throughs(); |
|
1148 |
b = n; |
|
1149 |
} |
|
1150 |
||
1151 |
if (nfallthru > 0) { |
|
1152 |
// Create a CFGEdge for each outgoing |
|
1153 |
// edge that could be a fall-through. |
|
1154 |
for (uint j = 0; j < b->_num_succs; j++ ) { |
|
1155 |
if (b->succ_fall_through(j)) { |
|
1156 |
Block *target = b->non_connector_successor(j); |
|
1157 |
float freq = b->_freq * b->succ_prob(j); |
|
1158 |
int from_pct = (int) ((100 * freq) / b->_freq); |
|
1159 |
int to_pct = (int) ((100 * freq) / target->_freq); |
|
1160 |
edges->append(new CFGEdge(b, target, freq, from_pct, to_pct)); |
|
1161 |
} |
|
1162 |
} |
|
1163 |
} |
|
1164 |
} |
|
1165 |
||
1166 |
// Group connector blocks into one trace |
|
1167 |
for (i++; i < _cfg._num_blocks; i++) { |
|
1168 |
Block *b = _cfg._blocks[i]; |
|
1169 |
assert(b->is_connector(), "connector blocks at the end"); |
|
1170 |
tr->append(b); |
|
1171 |
uf->map(b->_pre_order, tr->id()); |
|
1172 |
traces[b->_pre_order] = NULL; |
|
1173 |
} |
|
1174 |
} |
|
1175 |
||
1176 |
//------------------------------union_traces---------------------------------- |
|
1177 |
// Union two traces together in uf, and null out the trace in the list |
|
1178 |
void PhaseBlockLayout::union_traces(Trace* updated_trace, Trace* old_trace) |
|
1179 |
{ |
|
1180 |
uint old_id = old_trace->id(); |
|
1181 |
uint updated_id = updated_trace->id(); |
|
1182 |
||
1183 |
uint lo_id = updated_id; |
|
1184 |
uint hi_id = old_id; |
|
1185 |
||
1186 |
// If from is greater than to, swap values to meet |
|
1187 |
// UnionFind guarantee. |
|
1188 |
if (updated_id > old_id) { |
|
1189 |
lo_id = old_id; |
|
1190 |
hi_id = updated_id; |
|
1191 |
||
1192 |
// Fix up the trace ids |
|
1193 |
traces[lo_id] = traces[updated_id]; |
|
1194 |
updated_trace->set_id(lo_id); |
|
1195 |
} |
|
1196 |
||
1197 |
// Union the lower with the higher and remove the pointer |
|
1198 |
// to the higher. |
|
1199 |
uf->Union(lo_id, hi_id); |
|
1200 |
traces[hi_id] = NULL; |
|
1201 |
} |
|
1202 |
||
1203 |
//------------------------------grow_traces------------------------------------- |
|
1204 |
// Append traces together via the most frequently executed edges |
|
1205 |
void PhaseBlockLayout::grow_traces() |
|
1206 |
{ |
|
1207 |
// Order the edges, and drive the growth of Traces via the most |
|
1208 |
// frequently executed edges. |
|
1209 |
edges->sort(edge_order); |
|
1210 |
for (int i = 0; i < edges->length(); i++) { |
|
1211 |
CFGEdge *e = edges->at(i); |
|
1212 |
||
1213 |
if (e->state() != CFGEdge::open) continue; |
|
1214 |
||
1215 |
Block *src_block = e->from(); |
|
1216 |
Block *targ_block = e->to(); |
|
1217 |
||
1218 |
// Don't grow traces along backedges? |
|
1219 |
if (!BlockLayoutRotateLoops) { |
|
1220 |
if (targ_block->_rpo <= src_block->_rpo) { |
|
1221 |
targ_block->set_loop_alignment(targ_block); |
|
1222 |
continue; |
|
1223 |
} |
|
1224 |
} |
|
1225 |
||
1226 |
Trace *src_trace = trace(src_block); |
|
1227 |
Trace *targ_trace = trace(targ_block); |
|
1228 |
||
1229 |
// If the edge in question can join two traces at their ends, |
|
1230 |
// append one trace to the other. |
|
1231 |
if (src_trace->last_block() == src_block) { |
|
1232 |
if (src_trace == targ_trace) { |
|
1233 |
e->set_state(CFGEdge::interior); |
|
1234 |
if (targ_trace->backedge(e)) { |
|
1235 |
// Reset i to catch any newly eligible edge |
|
1236 |
// (Or we could remember the first "open" edge, and reset there) |
|
1237 |
i = 0; |
|
1238 |
} |
|
1239 |
} else if (targ_trace->first_block() == targ_block) { |
|
1240 |
e->set_state(CFGEdge::connected); |
|
1241 |
src_trace->append(targ_trace); |
|
1242 |
union_traces(src_trace, targ_trace); |
|
1243 |
} |
|
1244 |
} |
|
1245 |
} |
|
1246 |
} |
|
1247 |
||
1248 |
//------------------------------merge_traces----------------------------------- |
|
1249 |
// Embed one trace into another, if the fork or join points are sufficiently |
|
1250 |
// balanced. |
|
1251 |
void PhaseBlockLayout::merge_traces(bool fall_thru_only) |
|
1252 |
{ |
|
1253 |
// Walk the edge list a another time, looking at unprocessed edges. |
|
1254 |
// Fold in diamonds |
|
1255 |
for (int i = 0; i < edges->length(); i++) { |
|
1256 |
CFGEdge *e = edges->at(i); |
|
1257 |
||
1258 |
if (e->state() != CFGEdge::open) continue; |
|
1259 |
if (fall_thru_only) { |
|
1260 |
if (e->infrequent()) continue; |
|
1261 |
} |
|
1262 |
||
1263 |
Block *src_block = e->from(); |
|
1264 |
Trace *src_trace = trace(src_block); |
|
1265 |
bool src_at_tail = src_trace->last_block() == src_block; |
|
1266 |
||
1267 |
Block *targ_block = e->to(); |
|
1268 |
Trace *targ_trace = trace(targ_block); |
|
1269 |
bool targ_at_start = targ_trace->first_block() == targ_block; |
|
1270 |
||
1271 |
if (src_trace == targ_trace) { |
|
1272 |
// This may be a loop, but we can't do much about it. |
|
1273 |
e->set_state(CFGEdge::interior); |
|
1274 |
continue; |
|
1275 |
} |
|
1276 |
||
1277 |
if (fall_thru_only) { |
|
1278 |
// If the edge links the middle of two traces, we can't do anything. |
|
1279 |
// Mark the edge and continue. |
|
1280 |
if (!src_at_tail & !targ_at_start) { |
|
1281 |
continue; |
|
1282 |
} |
|
1283 |
||
1284 |
// Don't grow traces along backedges? |
|
1285 |
if (!BlockLayoutRotateLoops && (targ_block->_rpo <= src_block->_rpo)) { |
|
1286 |
continue; |
|
1287 |
} |
|
1288 |
||
1289 |
// If both ends of the edge are available, why didn't we handle it earlier? |
|
1290 |
assert(src_at_tail ^ targ_at_start, "Should have caught this edge earlier."); |
|
1291 |
||
1292 |
if (targ_at_start) { |
|
1293 |
// Insert the "targ" trace in the "src" trace if the insertion point |
|
1294 |
// is a two way branch. |
|
1295 |
// Better profitability check possible, but may not be worth it. |
|
1296 |
// Someday, see if the this "fork" has an associated "join"; |
|
1297 |
// then make a policy on merging this trace at the fork or join. |
|
1298 |
// For example, other things being equal, it may be better to place this |
|
1299 |
// trace at the join point if the "src" trace ends in a two-way, but |
|
1300 |
// the insertion point is one-way. |
|
1301 |
assert(src_block->num_fall_throughs() == 2, "unexpected diamond"); |
|
1302 |
e->set_state(CFGEdge::connected); |
|
1303 |
src_trace->insert_after(src_block, targ_trace); |
|
1304 |
union_traces(src_trace, targ_trace); |
|
1305 |
} else if (src_at_tail) { |
|
1306 |
if (src_trace != trace(_cfg._broot)) { |
|
1307 |
e->set_state(CFGEdge::connected); |
|
1308 |
targ_trace->insert_before(targ_block, src_trace); |
|
1309 |
union_traces(targ_trace, src_trace); |
|
1310 |
} |
|
1311 |
} |
|
1312 |
} else if (e->state() == CFGEdge::open) { |
|
1313 |
// Append traces, even without a fall-thru connection. |
|
2131 | 1314 |
// But leave root entry at the beginning of the block list. |
1498 | 1315 |
if (targ_trace != trace(_cfg._broot)) { |
1316 |
e->set_state(CFGEdge::connected); |
|
1317 |
src_trace->append(targ_trace); |
|
1318 |
union_traces(src_trace, targ_trace); |
|
1319 |
} |
|
1320 |
} |
|
1321 |
} |
|
1322 |
} |
|
1323 |
||
1324 |
//----------------------------reorder_traces----------------------------------- |
|
1325 |
// Order the sequence of the traces in some desirable way, and fixup the |
|
1326 |
// jumps at the end of each block. |
|
1327 |
void PhaseBlockLayout::reorder_traces(int count) |
|
1328 |
{ |
|
1329 |
ResourceArea *area = Thread::current()->resource_area(); |
|
1330 |
Trace ** new_traces = NEW_ARENA_ARRAY(area, Trace *, count); |
|
1331 |
Block_List worklist; |
|
1332 |
int new_count = 0; |
|
1333 |
||
1334 |
// Compact the traces. |
|
1335 |
for (int i = 0; i < count; i++) { |
|
1336 |
Trace *tr = traces[i]; |
|
1337 |
if (tr != NULL) { |
|
1338 |
new_traces[new_count++] = tr; |
|
1339 |
} |
|
1340 |
} |
|
1341 |
||
1342 |
// The entry block should be first on the new trace list. |
|
1343 |
Trace *tr = trace(_cfg._broot); |
|
1344 |
assert(tr == new_traces[0], "entry trace misplaced"); |
|
1345 |
||
1346 |
// Sort the new trace list by frequency |
|
1347 |
qsort(new_traces + 1, new_count - 1, sizeof(new_traces[0]), trace_frequency_order); |
|
1348 |
||
1349 |
// Patch up the successor blocks |
|
1350 |
_cfg._blocks.reset(); |
|
1351 |
_cfg._num_blocks = 0; |
|
1352 |
for (int i = 0; i < new_count; i++) { |
|
1353 |
Trace *tr = new_traces[i]; |
|
1354 |
if (tr != NULL) { |
|
1355 |
tr->fixup_blocks(_cfg); |
|
1356 |
} |
|
1357 |
} |
|
1358 |
} |
|
1359 |
||
1360 |
//------------------------------PhaseBlockLayout------------------------------- |
|
1361 |
// Order basic blocks based on frequency |
|
1362 |
PhaseBlockLayout::PhaseBlockLayout(PhaseCFG &cfg) : |
|
1363 |
Phase(BlockLayout), |
|
1364 |
_cfg(cfg) |
|
1365 |
{ |
|
1366 |
ResourceMark rm; |
|
1367 |
ResourceArea *area = Thread::current()->resource_area(); |
|
1368 |
||
1369 |
// List of traces |
|
1370 |
int size = _cfg._num_blocks + 1; |
|
1371 |
traces = NEW_ARENA_ARRAY(area, Trace *, size); |
|
1372 |
memset(traces, 0, size*sizeof(Trace*)); |
|
1373 |
next = NEW_ARENA_ARRAY(area, Block *, size); |
|
1374 |
memset(next, 0, size*sizeof(Block *)); |
|
1375 |
prev = NEW_ARENA_ARRAY(area, Block *, size); |
|
1376 |
memset(prev , 0, size*sizeof(Block *)); |
|
1377 |
||
1378 |
// List of edges |
|
1379 |
edges = new GrowableArray<CFGEdge*>; |
|
1380 |
||
1381 |
// Mapping block index --> block_trace |
|
1382 |
uf = new UnionFind(size); |
|
1383 |
uf->reset(size); |
|
1384 |
||
1385 |
// Find edges and create traces. |
|
1386 |
find_edges(); |
|
1387 |
||
1388 |
// Grow traces at their ends via most frequent edges. |
|
1389 |
grow_traces(); |
|
1390 |
||
1391 |
// Merge one trace into another, but only at fall-through points. |
|
1392 |
// This may make diamonds and other related shapes in a trace. |
|
1393 |
merge_traces(true); |
|
1394 |
||
1395 |
// Run merge again, allowing two traces to be catenated, even if |
|
1396 |
// one does not fall through into the other. This appends loosely |
|
1397 |
// related traces to be near each other. |
|
1398 |
merge_traces(false); |
|
1399 |
||
1400 |
// Re-order all the remaining traces by frequency |
|
1401 |
reorder_traces(size); |
|
1402 |
||
1403 |
assert(_cfg._num_blocks >= (uint) (size - 1), "number of blocks can not shrink"); |
|
1404 |
} |
|
1405 |
||
1406 |
||
1407 |
//------------------------------backedge--------------------------------------- |
|
1408 |
// Edge e completes a loop in a trace. If the target block is head of the |
|
1409 |
// loop, rotate the loop block so that the loop ends in a conditional branch. |
|
1410 |
bool Trace::backedge(CFGEdge *e) { |
|
1411 |
bool loop_rotated = false; |
|
1412 |
Block *src_block = e->from(); |
|
1413 |
Block *targ_block = e->to(); |
|
1414 |
||
1415 |
assert(last_block() == src_block, "loop discovery at back branch"); |
|
1416 |
if (first_block() == targ_block) { |
|
1417 |
if (BlockLayoutRotateLoops && last_block()->num_fall_throughs() < 2) { |
|
1418 |
// Find the last block in the trace that has a conditional |
|
1419 |
// branch. |
|
1420 |
Block *b; |
|
1421 |
for (b = last_block(); b != NULL; b = prev(b)) { |
|
1422 |
if (b->num_fall_throughs() == 2) { |
|
1423 |
break; |
|
1424 |
} |
|
1425 |
} |
|
1426 |
||
1427 |
if (b != last_block() && b != NULL) { |
|
1428 |
loop_rotated = true; |
|
1429 |
||
1430 |
// Rotate the loop by doing two-part linked-list surgery. |
|
1431 |
append(first_block()); |
|
1432 |
break_loop_after(b); |
|
1433 |
} |
|
1434 |
} |
|
1435 |
||
1436 |
// Backbranch to the top of a trace |
|
2131 | 1437 |
// Scroll forward through the trace from the targ_block. If we find |
1498 | 1438 |
// a loop head before another loop top, use the the loop head alignment. |
1439 |
for (Block *b = targ_block; b != NULL; b = next(b)) { |
|
1440 |
if (b->has_loop_alignment()) { |
|
1441 |
break; |
|
1442 |
} |
|
1443 |
if (b->head()->is_Loop()) { |
|
1444 |
targ_block = b; |
|
1445 |
break; |
|
1446 |
} |
|
1447 |
} |
|
1448 |
||
1449 |
first_block()->set_loop_alignment(targ_block); |
|
1450 |
||
1451 |
} else { |
|
1452 |
// Backbranch into the middle of a trace |
|
1453 |
targ_block->set_loop_alignment(targ_block); |
|
1454 |
} |
|
1455 |
||
1456 |
return loop_rotated; |
|
1457 |
} |
|
1458 |
||
1459 |
//------------------------------fixup_blocks----------------------------------- |
|
1460 |
// push blocks onto the CFG list |
|
1461 |
// ensure that blocks have the correct two-way branch sense |
|
1462 |
void Trace::fixup_blocks(PhaseCFG &cfg) { |
|
1463 |
Block *last = last_block(); |
|
1464 |
for (Block *b = first_block(); b != NULL; b = next(b)) { |
|
1465 |
cfg._blocks.push(b); |
|
1466 |
cfg._num_blocks++; |
|
1467 |
if (!b->is_connector()) { |
|
1468 |
int nfallthru = b->num_fall_throughs(); |
|
1469 |
if (b != last) { |
|
1470 |
if (nfallthru == 2) { |
|
1471 |
// Ensure that the sense of the branch is correct |
|
1472 |
Block *bnext = next(b); |
|
1473 |
Block *bs0 = b->non_connector_successor(0); |
|
1474 |
||
1475 |
MachNode *iff = b->_nodes[b->_nodes.size()-3]->as_Mach(); |
|
1476 |
ProjNode *proj0 = b->_nodes[b->_nodes.size()-2]->as_Proj(); |
|
1477 |
ProjNode *proj1 = b->_nodes[b->_nodes.size()-1]->as_Proj(); |
|
1478 |
||
1479 |
if (bnext == bs0) { |
|
1480 |
// Fall-thru case in succs[0], should be in succs[1] |
|
1481 |
||
1482 |
// Flip targets in _succs map |
|
1483 |
Block *tbs0 = b->_succs[0]; |
|
1484 |
Block *tbs1 = b->_succs[1]; |
|
1485 |
b->_succs.map( 0, tbs1 ); |
|
1486 |
b->_succs.map( 1, tbs0 ); |
|
1487 |
||
1488 |
// Flip projections to match targets |
|
1489 |
b->_nodes.map(b->_nodes.size()-2, proj1); |
|
1490 |
b->_nodes.map(b->_nodes.size()-1, proj0); |
|
1491 |
} |
|
1492 |
} |
|
1493 |
} |
|
1494 |
} |
|
1495 |
} |
|
1496 |
} |