1
|
1 |
/*
|
|
2 |
* Copyright 1997-2006 Sun Microsystems, Inc. All Rights Reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation.
|
|
8 |
*
|
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
13 |
* accompanied this code).
|
|
14 |
*
|
|
15 |
* You should have received a copy of the GNU General Public License version
|
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
18 |
*
|
|
19 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
20 |
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
21 |
* have any questions.
|
|
22 |
*
|
|
23 |
*/
|
|
24 |
|
|
25 |
// Some fun naming (textual) substitutions:
|
|
26 |
//
|
|
27 |
// RegMask::get_low_elem() ==> RegMask::find_first_elem()
|
|
28 |
// RegMask::Special ==> RegMask::Empty
|
|
29 |
// RegMask::_flags ==> RegMask::is_AllStack()
|
|
30 |
// RegMask::operator<<=() ==> RegMask::Insert()
|
|
31 |
// RegMask::operator>>=() ==> RegMask::Remove()
|
|
32 |
// RegMask::Union() ==> RegMask::OR
|
|
33 |
// RegMask::Inter() ==> RegMask::AND
|
|
34 |
//
|
|
35 |
// OptoRegister::RegName ==> OptoReg::Name
|
|
36 |
//
|
|
37 |
// OptoReg::stack0() ==> _last_Mach_Reg or ZERO in core version
|
|
38 |
//
|
|
39 |
// numregs in chaitin ==> proper degree in chaitin
|
|
40 |
|
|
41 |
//-------------Non-zero bit search methods used by RegMask---------------------
|
|
42 |
// Find lowest 1, or return 32 if empty
|
|
43 |
int find_lowest_bit( uint32 mask );
|
|
44 |
// Find highest 1, or return 32 if empty
|
|
45 |
int find_hihghest_bit( uint32 mask );
|
|
46 |
|
|
47 |
//------------------------------RegMask----------------------------------------
|
|
48 |
// The ADL file describes how to print the machine-specific registers, as well
|
|
49 |
// as any notion of register classes. We provide a register mask, which is
|
|
50 |
// just a collection of Register numbers.
|
|
51 |
|
|
52 |
// The ADLC defines 2 macros, RM_SIZE and FORALL_BODY.
|
|
53 |
// RM_SIZE is the size of a register mask in words.
|
|
54 |
// FORALL_BODY replicates a BODY macro once per word in the register mask.
|
|
55 |
// The usage is somewhat clumsy and limited to the regmask.[h,c]pp files.
|
|
56 |
// However, it means the ADLC can redefine the unroll macro and all loops
|
|
57 |
// over register masks will be unrolled by the correct amount.
|
|
58 |
|
|
59 |
class RegMask VALUE_OBJ_CLASS_SPEC {
|
|
60 |
union {
|
|
61 |
double _dummy_force_double_alignment[RM_SIZE>>1];
|
|
62 |
// Array of Register Mask bits. This array is large enough to cover
|
|
63 |
// all the machine registers and all parameters that need to be passed
|
|
64 |
// on the stack (stack registers) up to some interesting limit. Methods
|
|
65 |
// that need more parameters will NOT be compiled. On Intel, the limit
|
|
66 |
// is something like 90+ parameters.
|
|
67 |
int _A[RM_SIZE];
|
|
68 |
};
|
|
69 |
|
|
70 |
enum {
|
|
71 |
_WordBits = BitsPerInt,
|
|
72 |
_LogWordBits = LogBitsPerInt,
|
|
73 |
_RM_SIZE = RM_SIZE // local constant, imported, then hidden by #undef
|
|
74 |
};
|
|
75 |
|
|
76 |
public:
|
|
77 |
enum { CHUNK_SIZE = RM_SIZE*_WordBits };
|
|
78 |
|
|
79 |
// SlotsPerLong is 2, since slots are 32 bits and longs are 64 bits.
|
|
80 |
// Also, consider the maximum alignment size for a normally allocated
|
|
81 |
// value. Since we allocate register pairs but not register quads (at
|
|
82 |
// present), this alignment is SlotsPerLong (== 2). A normally
|
|
83 |
// aligned allocated register is either a single register, or a pair
|
|
84 |
// of adjacent registers, the lower-numbered being even.
|
|
85 |
// See also is_aligned_Pairs() below, and the padding added before
|
|
86 |
// Matcher::_new_SP to keep allocated pairs aligned properly.
|
|
87 |
// If we ever go to quad-word allocations, SlotsPerQuad will become
|
|
88 |
// the controlling alignment constraint. Note that this alignment
|
|
89 |
// requirement is internal to the allocator, and independent of any
|
|
90 |
// particular platform.
|
|
91 |
enum { SlotsPerLong = 2 };
|
|
92 |
|
|
93 |
// A constructor only used by the ADLC output. All mask fields are filled
|
|
94 |
// in directly. Calls to this look something like RM(1,2,3,4);
|
|
95 |
RegMask(
|
|
96 |
# define BODY(I) int a##I,
|
|
97 |
FORALL_BODY
|
|
98 |
# undef BODY
|
|
99 |
int dummy = 0 ) {
|
|
100 |
# define BODY(I) _A[I] = a##I;
|
|
101 |
FORALL_BODY
|
|
102 |
# undef BODY
|
|
103 |
}
|
|
104 |
|
|
105 |
// Handy copying constructor
|
|
106 |
RegMask( RegMask *rm ) {
|
|
107 |
# define BODY(I) _A[I] = rm->_A[I];
|
|
108 |
FORALL_BODY
|
|
109 |
# undef BODY
|
|
110 |
}
|
|
111 |
|
|
112 |
// Construct an empty mask
|
|
113 |
RegMask( ) { Clear(); }
|
|
114 |
|
|
115 |
// Construct a mask with a single bit
|
|
116 |
RegMask( OptoReg::Name reg ) { Clear(); Insert(reg); }
|
|
117 |
|
|
118 |
// Check for register being in mask
|
|
119 |
int Member( OptoReg::Name reg ) const {
|
|
120 |
assert( reg < CHUNK_SIZE, "" );
|
|
121 |
return _A[reg>>_LogWordBits] & (1<<(reg&(_WordBits-1)));
|
|
122 |
}
|
|
123 |
|
|
124 |
// The last bit in the register mask indicates that the mask should repeat
|
|
125 |
// indefinitely with ONE bits. Returns TRUE if mask is infinite or
|
|
126 |
// unbounded in size. Returns FALSE if mask is finite size.
|
|
127 |
int is_AllStack() const { return _A[RM_SIZE-1] >> (_WordBits-1); }
|
|
128 |
|
|
129 |
// Work around an -xO3 optimization problme in WS6U1. The old way:
|
|
130 |
// void set_AllStack() { _A[RM_SIZE-1] |= (1<<(_WordBits-1)); }
|
|
131 |
// will cause _A[RM_SIZE-1] to be clobbered, not updated when set_AllStack()
|
|
132 |
// follows an Insert() loop, like the one found in init_spill_mask(). Using
|
|
133 |
// Insert() instead works because the index into _A in computed instead of
|
|
134 |
// constant. See bug 4665841.
|
|
135 |
void set_AllStack() { Insert(OptoReg::Name(CHUNK_SIZE-1)); }
|
|
136 |
|
|
137 |
// Test for being a not-empty mask.
|
|
138 |
int is_NotEmpty( ) const {
|
|
139 |
int tmp = 0;
|
|
140 |
# define BODY(I) tmp |= _A[I];
|
|
141 |
FORALL_BODY
|
|
142 |
# undef BODY
|
|
143 |
return tmp;
|
|
144 |
}
|
|
145 |
|
|
146 |
// Find lowest-numbered register from mask, or BAD if mask is empty.
|
|
147 |
OptoReg::Name find_first_elem() const {
|
|
148 |
int base, bits;
|
|
149 |
# define BODY(I) if( (bits = _A[I]) != 0 ) base = I<<_LogWordBits; else
|
|
150 |
FORALL_BODY
|
|
151 |
# undef BODY
|
|
152 |
{ base = OptoReg::Bad; bits = 1<<0; }
|
|
153 |
return OptoReg::Name(base + find_lowest_bit(bits));
|
|
154 |
}
|
|
155 |
// Get highest-numbered register from mask, or BAD if mask is empty.
|
|
156 |
OptoReg::Name find_last_elem() const {
|
|
157 |
int base, bits;
|
|
158 |
# define BODY(I) if( (bits = _A[RM_SIZE-1-I]) != 0 ) base = (RM_SIZE-1-I)<<_LogWordBits; else
|
|
159 |
FORALL_BODY
|
|
160 |
# undef BODY
|
|
161 |
{ base = OptoReg::Bad; bits = 1<<0; }
|
|
162 |
return OptoReg::Name(base + find_hihghest_bit(bits));
|
|
163 |
}
|
|
164 |
|
|
165 |
// Find the lowest-numbered register pair in the mask. Return the
|
|
166 |
// HIGHEST register number in the pair, or BAD if no pairs.
|
|
167 |
// Assert that the mask contains only bit pairs.
|
|
168 |
OptoReg::Name find_first_pair() const;
|
|
169 |
|
|
170 |
// Clear out partial bits; leave only aligned adjacent bit pairs.
|
|
171 |
void ClearToPairs();
|
|
172 |
// Smear out partial bits; leave only aligned adjacent bit pairs.
|
|
173 |
void SmearToPairs();
|
|
174 |
// Verify that the mask contains only aligned adjacent bit pairs
|
|
175 |
void VerifyPairs() const { assert( is_aligned_Pairs(), "mask is not aligned, adjacent pairs" ); }
|
|
176 |
// Test that the mask contains only aligned adjacent bit pairs
|
|
177 |
bool is_aligned_Pairs() const;
|
|
178 |
|
|
179 |
// mask is a pair of misaligned registers
|
|
180 |
bool is_misaligned_Pair() const { return Size()==2 && !is_aligned_Pairs();}
|
|
181 |
// Test for single register
|
|
182 |
int is_bound1() const;
|
|
183 |
// Test for a single adjacent pair
|
|
184 |
int is_bound2() const;
|
|
185 |
|
|
186 |
// Fast overlap test. Non-zero if any registers in common.
|
|
187 |
int overlap( const RegMask &rm ) const {
|
|
188 |
return
|
|
189 |
# define BODY(I) (_A[I] & rm._A[I]) |
|
|
190 |
FORALL_BODY
|
|
191 |
# undef BODY
|
|
192 |
0 ;
|
|
193 |
}
|
|
194 |
|
|
195 |
// Special test for register pressure based splitting
|
|
196 |
// UP means register only, Register plus stack, or stack only is DOWN
|
|
197 |
bool is_UP() const;
|
|
198 |
|
|
199 |
// Clear a register mask
|
|
200 |
void Clear( ) {
|
|
201 |
# define BODY(I) _A[I] = 0;
|
|
202 |
FORALL_BODY
|
|
203 |
# undef BODY
|
|
204 |
}
|
|
205 |
|
|
206 |
// Fill a register mask with 1's
|
|
207 |
void Set_All( ) {
|
|
208 |
# define BODY(I) _A[I] = -1;
|
|
209 |
FORALL_BODY
|
|
210 |
# undef BODY
|
|
211 |
}
|
|
212 |
|
|
213 |
// Insert register into mask
|
|
214 |
void Insert( OptoReg::Name reg ) {
|
|
215 |
assert( reg < CHUNK_SIZE, "" );
|
|
216 |
_A[reg>>_LogWordBits] |= (1<<(reg&(_WordBits-1)));
|
|
217 |
}
|
|
218 |
|
|
219 |
// Remove register from mask
|
|
220 |
void Remove( OptoReg::Name reg ) {
|
|
221 |
assert( reg < CHUNK_SIZE, "" );
|
|
222 |
_A[reg>>_LogWordBits] &= ~(1<<(reg&(_WordBits-1)));
|
|
223 |
}
|
|
224 |
|
|
225 |
// OR 'rm' into 'this'
|
|
226 |
void OR( const RegMask &rm ) {
|
|
227 |
# define BODY(I) this->_A[I] |= rm._A[I];
|
|
228 |
FORALL_BODY
|
|
229 |
# undef BODY
|
|
230 |
}
|
|
231 |
|
|
232 |
// AND 'rm' into 'this'
|
|
233 |
void AND( const RegMask &rm ) {
|
|
234 |
# define BODY(I) this->_A[I] &= rm._A[I];
|
|
235 |
FORALL_BODY
|
|
236 |
# undef BODY
|
|
237 |
}
|
|
238 |
|
|
239 |
// Subtract 'rm' from 'this'
|
|
240 |
void SUBTRACT( const RegMask &rm ) {
|
|
241 |
# define BODY(I) _A[I] &= ~rm._A[I];
|
|
242 |
FORALL_BODY
|
|
243 |
# undef BODY
|
|
244 |
}
|
|
245 |
|
|
246 |
// Compute size of register mask: number of bits
|
|
247 |
uint Size() const;
|
|
248 |
|
|
249 |
#ifndef PRODUCT
|
|
250 |
void print() const { dump(); }
|
|
251 |
void dump() const; // Print a mask
|
|
252 |
#endif
|
|
253 |
|
|
254 |
static const RegMask Empty; // Common empty mask
|
|
255 |
|
|
256 |
static bool can_represent(OptoReg::Name reg) {
|
|
257 |
// NOTE: -1 in computation reflects the usage of the last
|
|
258 |
// bit of the regmask as an infinite stack flag.
|
|
259 |
return (int)reg < (int)(CHUNK_SIZE-1);
|
|
260 |
}
|
|
261 |
};
|
|
262 |
|
|
263 |
// Do not use this constant directly in client code!
|
|
264 |
#undef RM_SIZE
|