1
|
1 |
/*
|
|
2 |
* Copyright 1997-2005 Sun Microsystems, Inc. All Rights Reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation.
|
|
8 |
*
|
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
13 |
* accompanied this code).
|
|
14 |
*
|
|
15 |
* You should have received a copy of the GNU General Public License version
|
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
18 |
*
|
|
19 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
20 |
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
21 |
* have any questions.
|
|
22 |
*
|
|
23 |
*/
|
|
24 |
|
|
25 |
// Portions of code courtesy of Clifford Click
|
|
26 |
|
|
27 |
// Optimization - Graph Style
|
|
28 |
|
|
29 |
#include "incls/_precompiled.incl"
|
|
30 |
#include "incls/_domgraph.cpp.incl"
|
|
31 |
|
|
32 |
//------------------------------Tarjan-----------------------------------------
|
|
33 |
// A data structure that holds all the information needed to find dominators.
|
|
34 |
struct Tarjan {
|
|
35 |
Block *_block; // Basic block for this info
|
|
36 |
|
|
37 |
uint _semi; // Semi-dominators
|
|
38 |
uint _size; // Used for faster LINK and EVAL
|
|
39 |
Tarjan *_parent; // Parent in DFS
|
|
40 |
Tarjan *_label; // Used for LINK and EVAL
|
|
41 |
Tarjan *_ancestor; // Used for LINK and EVAL
|
|
42 |
Tarjan *_child; // Used for faster LINK and EVAL
|
|
43 |
Tarjan *_dom; // Parent in dominator tree (immediate dom)
|
|
44 |
Tarjan *_bucket; // Set of vertices with given semidominator
|
|
45 |
|
|
46 |
Tarjan *_dom_child; // Child in dominator tree
|
|
47 |
Tarjan *_dom_next; // Next in dominator tree
|
|
48 |
|
|
49 |
// Fast union-find work
|
|
50 |
void COMPRESS();
|
|
51 |
Tarjan *EVAL(void);
|
|
52 |
void LINK( Tarjan *w, Tarjan *tarjan0 );
|
|
53 |
|
|
54 |
void setdepth( uint size );
|
|
55 |
|
|
56 |
};
|
|
57 |
|
|
58 |
//------------------------------Dominator--------------------------------------
|
|
59 |
// Compute the dominator tree of the CFG. The CFG must already have been
|
|
60 |
// constructed. This is the Lengauer & Tarjan O(E-alpha(E,V)) algorithm.
|
|
61 |
void PhaseCFG::Dominators( ) {
|
|
62 |
// Pre-grow the blocks array, prior to the ResourceMark kicking in
|
|
63 |
_blocks.map(_num_blocks,0);
|
|
64 |
|
|
65 |
ResourceMark rm;
|
|
66 |
// Setup mappings from my Graph to Tarjan's stuff and back
|
|
67 |
// Note: Tarjan uses 1-based arrays
|
|
68 |
Tarjan *tarjan = NEW_RESOURCE_ARRAY(Tarjan,_num_blocks+1);
|
|
69 |
|
|
70 |
// Tarjan's algorithm, almost verbatim:
|
|
71 |
// Step 1:
|
|
72 |
_rpo_ctr = _num_blocks;
|
|
73 |
uint dfsnum = DFS( tarjan );
|
|
74 |
if( dfsnum-1 != _num_blocks ) {// Check for unreachable loops!
|
|
75 |
// If the returned dfsnum does not match the number of blocks, then we
|
|
76 |
// must have some unreachable loops. These can be made at any time by
|
|
77 |
// IterGVN. They are cleaned up by CCP or the loop opts, but the last
|
|
78 |
// IterGVN can always make more that are not cleaned up. Highly unlikely
|
|
79 |
// except in ZKM.jar, where endless irreducible loops cause the loop opts
|
|
80 |
// to not get run.
|
|
81 |
//
|
|
82 |
// Having found unreachable loops, we have made a bad RPO _block layout.
|
|
83 |
// We can re-run the above DFS pass with the correct number of blocks,
|
|
84 |
// and hack the Tarjan algorithm below to be robust in the presence of
|
|
85 |
// such dead loops (as was done for the NTarjan code farther below).
|
|
86 |
// Since this situation is so unlikely, instead I've decided to bail out.
|
|
87 |
// CNC 7/24/2001
|
|
88 |
C->record_method_not_compilable("unreachable loop");
|
|
89 |
return;
|
|
90 |
}
|
|
91 |
_blocks._cnt = _num_blocks;
|
|
92 |
|
|
93 |
// Tarjan is using 1-based arrays, so these are some initialize flags
|
|
94 |
tarjan[0]._size = tarjan[0]._semi = 0;
|
|
95 |
tarjan[0]._label = &tarjan[0];
|
|
96 |
|
|
97 |
uint i;
|
|
98 |
for( i=_num_blocks; i>=2; i-- ) { // For all vertices in DFS order
|
|
99 |
Tarjan *w = &tarjan[i]; // Get vertex from DFS
|
|
100 |
|
|
101 |
// Step 2:
|
|
102 |
Node *whead = w->_block->head();
|
|
103 |
for( uint j=1; j < whead->req(); j++ ) {
|
|
104 |
Block *b = _bbs[whead->in(j)->_idx];
|
|
105 |
Tarjan *vx = &tarjan[b->_pre_order];
|
|
106 |
Tarjan *u = vx->EVAL();
|
|
107 |
if( u->_semi < w->_semi )
|
|
108 |
w->_semi = u->_semi;
|
|
109 |
}
|
|
110 |
|
|
111 |
// w is added to a bucket here, and only here.
|
|
112 |
// Thus w is in at most one bucket and the sum of all bucket sizes is O(n).
|
|
113 |
// Thus bucket can be a linked list.
|
|
114 |
// Thus we do not need a small integer name for each Block.
|
|
115 |
w->_bucket = tarjan[w->_semi]._bucket;
|
|
116 |
tarjan[w->_semi]._bucket = w;
|
|
117 |
|
|
118 |
w->_parent->LINK( w, &tarjan[0] );
|
|
119 |
|
|
120 |
// Step 3:
|
|
121 |
for( Tarjan *vx = w->_parent->_bucket; vx; vx = vx->_bucket ) {
|
|
122 |
Tarjan *u = vx->EVAL();
|
|
123 |
vx->_dom = (u->_semi < vx->_semi) ? u : w->_parent;
|
|
124 |
}
|
|
125 |
}
|
|
126 |
|
|
127 |
// Step 4:
|
|
128 |
for( i=2; i <= _num_blocks; i++ ) {
|
|
129 |
Tarjan *w = &tarjan[i];
|
|
130 |
if( w->_dom != &tarjan[w->_semi] )
|
|
131 |
w->_dom = w->_dom->_dom;
|
|
132 |
w->_dom_next = w->_dom_child = NULL; // Initialize for building tree later
|
|
133 |
}
|
|
134 |
// No immediate dominator for the root
|
|
135 |
Tarjan *w = &tarjan[_broot->_pre_order];
|
|
136 |
w->_dom = NULL;
|
|
137 |
w->_dom_next = w->_dom_child = NULL; // Initialize for building tree later
|
|
138 |
|
|
139 |
// Convert the dominator tree array into my kind of graph
|
|
140 |
for( i=1; i<=_num_blocks;i++){// For all Tarjan vertices
|
|
141 |
Tarjan *t = &tarjan[i]; // Handy access
|
|
142 |
Tarjan *tdom = t->_dom; // Handy access to immediate dominator
|
|
143 |
if( tdom ) { // Root has no immediate dominator
|
|
144 |
t->_block->_idom = tdom->_block; // Set immediate dominator
|
|
145 |
t->_dom_next = tdom->_dom_child; // Make me a sibling of parent's child
|
|
146 |
tdom->_dom_child = t; // Make me a child of my parent
|
|
147 |
} else
|
|
148 |
t->_block->_idom = NULL; // Root
|
|
149 |
}
|
|
150 |
w->setdepth( _num_blocks+1 ); // Set depth in dominator tree
|
|
151 |
|
|
152 |
}
|
|
153 |
|
|
154 |
//----------------------------Block_Stack--------------------------------------
|
|
155 |
class Block_Stack {
|
|
156 |
private:
|
|
157 |
struct Block_Descr {
|
|
158 |
Block *block; // Block
|
|
159 |
int index; // Index of block's successor pushed on stack
|
|
160 |
int freq_idx; // Index of block's most frequent successor
|
|
161 |
};
|
|
162 |
Block_Descr *_stack_top;
|
|
163 |
Block_Descr *_stack_max;
|
|
164 |
Block_Descr *_stack;
|
|
165 |
Tarjan *_tarjan;
|
|
166 |
uint most_frequent_successor( Block *b );
|
|
167 |
public:
|
|
168 |
Block_Stack(Tarjan *tarjan, int size) : _tarjan(tarjan) {
|
|
169 |
_stack = NEW_RESOURCE_ARRAY(Block_Descr, size);
|
|
170 |
_stack_max = _stack + size;
|
|
171 |
_stack_top = _stack - 1; // stack is empty
|
|
172 |
}
|
|
173 |
void push(uint pre_order, Block *b) {
|
|
174 |
Tarjan *t = &_tarjan[pre_order]; // Fast local access
|
|
175 |
b->_pre_order = pre_order; // Flag as visited
|
|
176 |
t->_block = b; // Save actual block
|
|
177 |
t->_semi = pre_order; // Block to DFS map
|
|
178 |
t->_label = t; // DFS to vertex map
|
|
179 |
t->_ancestor = NULL; // Fast LINK & EVAL setup
|
|
180 |
t->_child = &_tarjan[0]; // Sentenial
|
|
181 |
t->_size = 1;
|
|
182 |
t->_bucket = NULL;
|
|
183 |
if (pre_order == 1)
|
|
184 |
t->_parent = NULL; // first block doesn't have parent
|
|
185 |
else {
|
|
186 |
// Save parent (currernt top block on stack) in DFS
|
|
187 |
t->_parent = &_tarjan[_stack_top->block->_pre_order];
|
|
188 |
}
|
|
189 |
// Now put this block on stack
|
|
190 |
++_stack_top;
|
|
191 |
assert(_stack_top < _stack_max, ""); // assert if stack have to grow
|
|
192 |
_stack_top->block = b;
|
|
193 |
_stack_top->index = -1;
|
|
194 |
// Find the index into b->succs[] array of the most frequent successor.
|
|
195 |
_stack_top->freq_idx = most_frequent_successor(b); // freq_idx >= 0
|
|
196 |
}
|
|
197 |
Block* pop() { Block* b = _stack_top->block; _stack_top--; return b; }
|
|
198 |
bool is_nonempty() { return (_stack_top >= _stack); }
|
|
199 |
bool last_successor() { return (_stack_top->index == _stack_top->freq_idx); }
|
|
200 |
Block* next_successor() {
|
|
201 |
int i = _stack_top->index;
|
|
202 |
i++;
|
|
203 |
if (i == _stack_top->freq_idx) i++;
|
|
204 |
if (i >= (int)(_stack_top->block->_num_succs)) {
|
|
205 |
i = _stack_top->freq_idx; // process most frequent successor last
|
|
206 |
}
|
|
207 |
_stack_top->index = i;
|
|
208 |
return _stack_top->block->_succs[ i ];
|
|
209 |
}
|
|
210 |
};
|
|
211 |
|
|
212 |
//-------------------------most_frequent_successor-----------------------------
|
|
213 |
// Find the index into the b->succs[] array of the most frequent successor.
|
|
214 |
uint Block_Stack::most_frequent_successor( Block *b ) {
|
|
215 |
uint freq_idx = 0;
|
|
216 |
int eidx = b->end_idx();
|
|
217 |
Node *n = b->_nodes[eidx];
|
|
218 |
int op = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : n->Opcode();
|
|
219 |
switch( op ) {
|
|
220 |
case Op_CountedLoopEnd:
|
|
221 |
case Op_If: { // Split frequency amongst children
|
|
222 |
float prob = n->as_MachIf()->_prob;
|
|
223 |
// Is succ[0] the TRUE branch or the FALSE branch?
|
|
224 |
if( b->_nodes[eidx+1]->Opcode() == Op_IfFalse )
|
|
225 |
prob = 1.0f - prob;
|
|
226 |
freq_idx = prob < PROB_FAIR; // freq=1 for succ[0] < 0.5 prob
|
|
227 |
break;
|
|
228 |
}
|
|
229 |
case Op_Catch: // Split frequency amongst children
|
|
230 |
for( freq_idx = 0; freq_idx < b->_num_succs; freq_idx++ )
|
|
231 |
if( b->_nodes[eidx+1+freq_idx]->as_CatchProj()->_con == CatchProjNode::fall_through_index )
|
|
232 |
break;
|
|
233 |
// Handle case of no fall-thru (e.g., check-cast MUST throw an exception)
|
|
234 |
if( freq_idx == b->_num_succs ) freq_idx = 0;
|
|
235 |
break;
|
|
236 |
// Currently there is no support for finding out the most
|
|
237 |
// frequent successor for jumps, so lets just make it the first one
|
|
238 |
case Op_Jump:
|
|
239 |
case Op_Root:
|
|
240 |
case Op_Goto:
|
|
241 |
case Op_NeverBranch:
|
|
242 |
freq_idx = 0; // fall thru
|
|
243 |
break;
|
|
244 |
case Op_TailCall:
|
|
245 |
case Op_TailJump:
|
|
246 |
case Op_Return:
|
|
247 |
case Op_Halt:
|
|
248 |
case Op_Rethrow:
|
|
249 |
break;
|
|
250 |
default:
|
|
251 |
ShouldNotReachHere();
|
|
252 |
}
|
|
253 |
return freq_idx;
|
|
254 |
}
|
|
255 |
|
|
256 |
//------------------------------DFS--------------------------------------------
|
|
257 |
// Perform DFS search. Setup 'vertex' as DFS to vertex mapping. Setup
|
|
258 |
// 'semi' as vertex to DFS mapping. Set 'parent' to DFS parent.
|
|
259 |
uint PhaseCFG::DFS( Tarjan *tarjan ) {
|
|
260 |
Block *b = _broot;
|
|
261 |
uint pre_order = 1;
|
|
262 |
// Allocate stack of size _num_blocks+1 to avoid frequent realloc
|
|
263 |
Block_Stack bstack(tarjan, _num_blocks+1);
|
|
264 |
|
|
265 |
// Push on stack the state for the first block
|
|
266 |
bstack.push(pre_order, b);
|
|
267 |
++pre_order;
|
|
268 |
|
|
269 |
while (bstack.is_nonempty()) {
|
|
270 |
if (!bstack.last_successor()) {
|
|
271 |
// Walk over all successors in pre-order (DFS).
|
|
272 |
Block *s = bstack.next_successor();
|
|
273 |
if (s->_pre_order == 0) { // Check for no-pre-order, not-visited
|
|
274 |
// Push on stack the state of successor
|
|
275 |
bstack.push(pre_order, s);
|
|
276 |
++pre_order;
|
|
277 |
}
|
|
278 |
}
|
|
279 |
else {
|
|
280 |
// Build a reverse post-order in the CFG _blocks array
|
|
281 |
Block *stack_top = bstack.pop();
|
|
282 |
stack_top->_rpo = --_rpo_ctr;
|
|
283 |
_blocks.map(stack_top->_rpo, stack_top);
|
|
284 |
}
|
|
285 |
}
|
|
286 |
return pre_order;
|
|
287 |
}
|
|
288 |
|
|
289 |
//------------------------------COMPRESS---------------------------------------
|
|
290 |
void Tarjan::COMPRESS()
|
|
291 |
{
|
|
292 |
assert( _ancestor != 0, "" );
|
|
293 |
if( _ancestor->_ancestor != 0 ) {
|
|
294 |
_ancestor->COMPRESS( );
|
|
295 |
if( _ancestor->_label->_semi < _label->_semi )
|
|
296 |
_label = _ancestor->_label;
|
|
297 |
_ancestor = _ancestor->_ancestor;
|
|
298 |
}
|
|
299 |
}
|
|
300 |
|
|
301 |
//------------------------------EVAL-------------------------------------------
|
|
302 |
Tarjan *Tarjan::EVAL() {
|
|
303 |
if( !_ancestor ) return _label;
|
|
304 |
COMPRESS();
|
|
305 |
return (_ancestor->_label->_semi >= _label->_semi) ? _label : _ancestor->_label;
|
|
306 |
}
|
|
307 |
|
|
308 |
//------------------------------LINK-------------------------------------------
|
|
309 |
void Tarjan::LINK( Tarjan *w, Tarjan *tarjan0 ) {
|
|
310 |
Tarjan *s = w;
|
|
311 |
while( w->_label->_semi < s->_child->_label->_semi ) {
|
|
312 |
if( s->_size + s->_child->_child->_size >= (s->_child->_size << 1) ) {
|
|
313 |
s->_child->_ancestor = s;
|
|
314 |
s->_child = s->_child->_child;
|
|
315 |
} else {
|
|
316 |
s->_child->_size = s->_size;
|
|
317 |
s = s->_ancestor = s->_child;
|
|
318 |
}
|
|
319 |
}
|
|
320 |
s->_label = w->_label;
|
|
321 |
_size += w->_size;
|
|
322 |
if( _size < (w->_size << 1) ) {
|
|
323 |
Tarjan *tmp = s; s = _child; _child = tmp;
|
|
324 |
}
|
|
325 |
while( s != tarjan0 ) {
|
|
326 |
s->_ancestor = this;
|
|
327 |
s = s->_child;
|
|
328 |
}
|
|
329 |
}
|
|
330 |
|
|
331 |
//------------------------------setdepth---------------------------------------
|
|
332 |
void Tarjan::setdepth( uint stack_size ) {
|
|
333 |
Tarjan **top = NEW_RESOURCE_ARRAY(Tarjan*, stack_size);
|
|
334 |
Tarjan **next = top;
|
|
335 |
Tarjan **last;
|
|
336 |
uint depth = 0;
|
|
337 |
*top = this;
|
|
338 |
++top;
|
|
339 |
do {
|
|
340 |
// next level
|
|
341 |
++depth;
|
|
342 |
last = top;
|
|
343 |
do {
|
|
344 |
// Set current depth for all tarjans on this level
|
|
345 |
Tarjan *t = *next; // next tarjan from stack
|
|
346 |
++next;
|
|
347 |
do {
|
|
348 |
t->_block->_dom_depth = depth; // Set depth in dominator tree
|
|
349 |
Tarjan *dom_child = t->_dom_child;
|
|
350 |
t = t->_dom_next; // next tarjan
|
|
351 |
if (dom_child != NULL) {
|
|
352 |
*top = dom_child; // save child on stack
|
|
353 |
++top;
|
|
354 |
}
|
|
355 |
} while (t != NULL);
|
|
356 |
} while (next < last);
|
|
357 |
} while (last < top);
|
|
358 |
}
|
|
359 |
|
|
360 |
//*********************** DOMINATORS ON THE SEA OF NODES***********************
|
|
361 |
//------------------------------NTarjan----------------------------------------
|
|
362 |
// A data structure that holds all the information needed to find dominators.
|
|
363 |
struct NTarjan {
|
|
364 |
Node *_control; // Control node associated with this info
|
|
365 |
|
|
366 |
uint _semi; // Semi-dominators
|
|
367 |
uint _size; // Used for faster LINK and EVAL
|
|
368 |
NTarjan *_parent; // Parent in DFS
|
|
369 |
NTarjan *_label; // Used for LINK and EVAL
|
|
370 |
NTarjan *_ancestor; // Used for LINK and EVAL
|
|
371 |
NTarjan *_child; // Used for faster LINK and EVAL
|
|
372 |
NTarjan *_dom; // Parent in dominator tree (immediate dom)
|
|
373 |
NTarjan *_bucket; // Set of vertices with given semidominator
|
|
374 |
|
|
375 |
NTarjan *_dom_child; // Child in dominator tree
|
|
376 |
NTarjan *_dom_next; // Next in dominator tree
|
|
377 |
|
|
378 |
// Perform DFS search.
|
|
379 |
// Setup 'vertex' as DFS to vertex mapping.
|
|
380 |
// Setup 'semi' as vertex to DFS mapping.
|
|
381 |
// Set 'parent' to DFS parent.
|
|
382 |
static int DFS( NTarjan *ntarjan, VectorSet &visited, PhaseIdealLoop *pil, uint *dfsorder );
|
|
383 |
void setdepth( uint size, uint *dom_depth );
|
|
384 |
|
|
385 |
// Fast union-find work
|
|
386 |
void COMPRESS();
|
|
387 |
NTarjan *EVAL(void);
|
|
388 |
void LINK( NTarjan *w, NTarjan *ntarjan0 );
|
|
389 |
#ifndef PRODUCT
|
|
390 |
void dump(int offset) const;
|
|
391 |
#endif
|
|
392 |
};
|
|
393 |
|
|
394 |
//------------------------------Dominator--------------------------------------
|
|
395 |
// Compute the dominator tree of the sea of nodes. This version walks all CFG
|
|
396 |
// nodes (using the is_CFG() call) and places them in a dominator tree. Thus,
|
|
397 |
// it needs a count of the CFG nodes for the mapping table. This is the
|
|
398 |
// Lengauer & Tarjan O(E-alpha(E,V)) algorithm.
|
|
399 |
void PhaseIdealLoop::Dominators( ) {
|
|
400 |
ResourceMark rm;
|
|
401 |
// Setup mappings from my Graph to Tarjan's stuff and back
|
|
402 |
// Note: Tarjan uses 1-based arrays
|
|
403 |
NTarjan *ntarjan = NEW_RESOURCE_ARRAY(NTarjan,C->unique()+1);
|
|
404 |
// Initialize _control field for fast reference
|
|
405 |
int i;
|
|
406 |
for( i= C->unique()-1; i>=0; i-- )
|
|
407 |
ntarjan[i]._control = NULL;
|
|
408 |
|
|
409 |
// Store the DFS order for the main loop
|
|
410 |
uint *dfsorder = NEW_RESOURCE_ARRAY(uint,C->unique()+1);
|
|
411 |
memset(dfsorder, max_uint, (C->unique()+1) * sizeof(uint));
|
|
412 |
|
|
413 |
// Tarjan's algorithm, almost verbatim:
|
|
414 |
// Step 1:
|
|
415 |
VectorSet visited(Thread::current()->resource_area());
|
|
416 |
int dfsnum = NTarjan::DFS( ntarjan, visited, this, dfsorder);
|
|
417 |
|
|
418 |
// Tarjan is using 1-based arrays, so these are some initialize flags
|
|
419 |
ntarjan[0]._size = ntarjan[0]._semi = 0;
|
|
420 |
ntarjan[0]._label = &ntarjan[0];
|
|
421 |
|
|
422 |
for( i = dfsnum-1; i>1; i-- ) { // For all nodes in reverse DFS order
|
|
423 |
NTarjan *w = &ntarjan[i]; // Get Node from DFS
|
|
424 |
assert(w->_control != NULL,"bad DFS walk");
|
|
425 |
|
|
426 |
// Step 2:
|
|
427 |
Node *whead = w->_control;
|
|
428 |
for( uint j=0; j < whead->req(); j++ ) { // For each predecessor
|
|
429 |
if( whead->in(j) == NULL || !whead->in(j)->is_CFG() )
|
|
430 |
continue; // Only process control nodes
|
|
431 |
uint b = dfsorder[whead->in(j)->_idx];
|
|
432 |
if(b == max_uint) continue;
|
|
433 |
NTarjan *vx = &ntarjan[b];
|
|
434 |
NTarjan *u = vx->EVAL();
|
|
435 |
if( u->_semi < w->_semi )
|
|
436 |
w->_semi = u->_semi;
|
|
437 |
}
|
|
438 |
|
|
439 |
// w is added to a bucket here, and only here.
|
|
440 |
// Thus w is in at most one bucket and the sum of all bucket sizes is O(n).
|
|
441 |
// Thus bucket can be a linked list.
|
|
442 |
w->_bucket = ntarjan[w->_semi]._bucket;
|
|
443 |
ntarjan[w->_semi]._bucket = w;
|
|
444 |
|
|
445 |
w->_parent->LINK( w, &ntarjan[0] );
|
|
446 |
|
|
447 |
// Step 3:
|
|
448 |
for( NTarjan *vx = w->_parent->_bucket; vx; vx = vx->_bucket ) {
|
|
449 |
NTarjan *u = vx->EVAL();
|
|
450 |
vx->_dom = (u->_semi < vx->_semi) ? u : w->_parent;
|
|
451 |
}
|
|
452 |
|
|
453 |
// Cleanup any unreachable loops now. Unreachable loops are loops that
|
|
454 |
// flow into the main graph (and hence into ROOT) but are not reachable
|
|
455 |
// from above. Such code is dead, but requires a global pass to detect
|
|
456 |
// it; this global pass was the 'build_loop_tree' pass run just prior.
|
|
457 |
if( whead->is_Region() ) {
|
|
458 |
for( uint i = 1; i < whead->req(); i++ ) {
|
|
459 |
if (!has_node(whead->in(i))) {
|
|
460 |
// Kill dead input path
|
|
461 |
assert( !visited.test(whead->in(i)->_idx),
|
|
462 |
"input with no loop must be dead" );
|
|
463 |
_igvn.hash_delete(whead);
|
|
464 |
whead->del_req(i);
|
|
465 |
_igvn._worklist.push(whead);
|
|
466 |
for (DUIterator_Fast jmax, j = whead->fast_outs(jmax); j < jmax; j++) {
|
|
467 |
Node* p = whead->fast_out(j);
|
|
468 |
if( p->is_Phi() ) {
|
|
469 |
_igvn.hash_delete(p);
|
|
470 |
p->del_req(i);
|
|
471 |
_igvn._worklist.push(p);
|
|
472 |
}
|
|
473 |
}
|
|
474 |
i--; // Rerun same iteration
|
|
475 |
} // End of if dead input path
|
|
476 |
} // End of for all input paths
|
|
477 |
} // End if if whead is a Region
|
|
478 |
} // End of for all Nodes in reverse DFS order
|
|
479 |
|
|
480 |
// Step 4:
|
|
481 |
for( i=2; i < dfsnum; i++ ) { // DFS order
|
|
482 |
NTarjan *w = &ntarjan[i];
|
|
483 |
assert(w->_control != NULL,"Bad DFS walk");
|
|
484 |
if( w->_dom != &ntarjan[w->_semi] )
|
|
485 |
w->_dom = w->_dom->_dom;
|
|
486 |
w->_dom_next = w->_dom_child = NULL; // Initialize for building tree later
|
|
487 |
}
|
|
488 |
// No immediate dominator for the root
|
|
489 |
NTarjan *w = &ntarjan[dfsorder[C->root()->_idx]];
|
|
490 |
w->_dom = NULL;
|
|
491 |
w->_parent = NULL;
|
|
492 |
w->_dom_next = w->_dom_child = NULL; // Initialize for building tree later
|
|
493 |
|
|
494 |
// Convert the dominator tree array into my kind of graph
|
|
495 |
for( i=1; i<dfsnum; i++ ) { // For all Tarjan vertices
|
|
496 |
NTarjan *t = &ntarjan[i]; // Handy access
|
|
497 |
assert(t->_control != NULL,"Bad DFS walk");
|
|
498 |
NTarjan *tdom = t->_dom; // Handy access to immediate dominator
|
|
499 |
if( tdom ) { // Root has no immediate dominator
|
|
500 |
_idom[t->_control->_idx] = tdom->_control; // Set immediate dominator
|
|
501 |
t->_dom_next = tdom->_dom_child; // Make me a sibling of parent's child
|
|
502 |
tdom->_dom_child = t; // Make me a child of my parent
|
|
503 |
} else
|
|
504 |
_idom[C->root()->_idx] = NULL; // Root
|
|
505 |
}
|
|
506 |
w->setdepth( C->unique()+1, _dom_depth ); // Set depth in dominator tree
|
|
507 |
// Pick up the 'top' node as well
|
|
508 |
_idom [C->top()->_idx] = C->root();
|
|
509 |
_dom_depth[C->top()->_idx] = 1;
|
|
510 |
|
|
511 |
// Debug Print of Dominator tree
|
|
512 |
if( PrintDominators ) {
|
|
513 |
#ifndef PRODUCT
|
|
514 |
w->dump(0);
|
|
515 |
#endif
|
|
516 |
}
|
|
517 |
}
|
|
518 |
|
|
519 |
//------------------------------DFS--------------------------------------------
|
|
520 |
// Perform DFS search. Setup 'vertex' as DFS to vertex mapping. Setup
|
|
521 |
// 'semi' as vertex to DFS mapping. Set 'parent' to DFS parent.
|
|
522 |
int NTarjan::DFS( NTarjan *ntarjan, VectorSet &visited, PhaseIdealLoop *pil, uint *dfsorder) {
|
|
523 |
// Allocate stack of size C->unique()/8 to avoid frequent realloc
|
|
524 |
GrowableArray <Node *> dfstack(pil->C->unique() >> 3);
|
|
525 |
Node *b = pil->C->root();
|
|
526 |
int dfsnum = 1;
|
|
527 |
dfsorder[b->_idx] = dfsnum; // Cache parent's dfsnum for a later use
|
|
528 |
dfstack.push(b);
|
|
529 |
|
|
530 |
while (dfstack.is_nonempty()) {
|
|
531 |
b = dfstack.pop();
|
|
532 |
if( !visited.test_set(b->_idx) ) { // Test node and flag it as visited
|
|
533 |
NTarjan *w = &ntarjan[dfsnum];
|
|
534 |
// Only fully process control nodes
|
|
535 |
w->_control = b; // Save actual node
|
|
536 |
// Use parent's cached dfsnum to identify "Parent in DFS"
|
|
537 |
w->_parent = &ntarjan[dfsorder[b->_idx]];
|
|
538 |
dfsorder[b->_idx] = dfsnum; // Save DFS order info
|
|
539 |
w->_semi = dfsnum; // Node to DFS map
|
|
540 |
w->_label = w; // DFS to vertex map
|
|
541 |
w->_ancestor = NULL; // Fast LINK & EVAL setup
|
|
542 |
w->_child = &ntarjan[0]; // Sentinal
|
|
543 |
w->_size = 1;
|
|
544 |
w->_bucket = NULL;
|
|
545 |
|
|
546 |
// Need DEF-USE info for this pass
|
|
547 |
for ( int i = b->outcnt(); i-- > 0; ) { // Put on stack backwards
|
|
548 |
Node* s = b->raw_out(i); // Get a use
|
|
549 |
// CFG nodes only and not dead stuff
|
|
550 |
if( s->is_CFG() && pil->has_node(s) && !visited.test(s->_idx) ) {
|
|
551 |
dfsorder[s->_idx] = dfsnum; // Cache parent's dfsnum for a later use
|
|
552 |
dfstack.push(s);
|
|
553 |
}
|
|
554 |
}
|
|
555 |
dfsnum++; // update after parent's dfsnum has been cached.
|
|
556 |
}
|
|
557 |
}
|
|
558 |
|
|
559 |
return dfsnum;
|
|
560 |
}
|
|
561 |
|
|
562 |
//------------------------------COMPRESS---------------------------------------
|
|
563 |
void NTarjan::COMPRESS()
|
|
564 |
{
|
|
565 |
assert( _ancestor != 0, "" );
|
|
566 |
if( _ancestor->_ancestor != 0 ) {
|
|
567 |
_ancestor->COMPRESS( );
|
|
568 |
if( _ancestor->_label->_semi < _label->_semi )
|
|
569 |
_label = _ancestor->_label;
|
|
570 |
_ancestor = _ancestor->_ancestor;
|
|
571 |
}
|
|
572 |
}
|
|
573 |
|
|
574 |
//------------------------------EVAL-------------------------------------------
|
|
575 |
NTarjan *NTarjan::EVAL() {
|
|
576 |
if( !_ancestor ) return _label;
|
|
577 |
COMPRESS();
|
|
578 |
return (_ancestor->_label->_semi >= _label->_semi) ? _label : _ancestor->_label;
|
|
579 |
}
|
|
580 |
|
|
581 |
//------------------------------LINK-------------------------------------------
|
|
582 |
void NTarjan::LINK( NTarjan *w, NTarjan *ntarjan0 ) {
|
|
583 |
NTarjan *s = w;
|
|
584 |
while( w->_label->_semi < s->_child->_label->_semi ) {
|
|
585 |
if( s->_size + s->_child->_child->_size >= (s->_child->_size << 1) ) {
|
|
586 |
s->_child->_ancestor = s;
|
|
587 |
s->_child = s->_child->_child;
|
|
588 |
} else {
|
|
589 |
s->_child->_size = s->_size;
|
|
590 |
s = s->_ancestor = s->_child;
|
|
591 |
}
|
|
592 |
}
|
|
593 |
s->_label = w->_label;
|
|
594 |
_size += w->_size;
|
|
595 |
if( _size < (w->_size << 1) ) {
|
|
596 |
NTarjan *tmp = s; s = _child; _child = tmp;
|
|
597 |
}
|
|
598 |
while( s != ntarjan0 ) {
|
|
599 |
s->_ancestor = this;
|
|
600 |
s = s->_child;
|
|
601 |
}
|
|
602 |
}
|
|
603 |
|
|
604 |
//------------------------------setdepth---------------------------------------
|
|
605 |
void NTarjan::setdepth( uint stack_size, uint *dom_depth ) {
|
|
606 |
NTarjan **top = NEW_RESOURCE_ARRAY(NTarjan*, stack_size);
|
|
607 |
NTarjan **next = top;
|
|
608 |
NTarjan **last;
|
|
609 |
uint depth = 0;
|
|
610 |
*top = this;
|
|
611 |
++top;
|
|
612 |
do {
|
|
613 |
// next level
|
|
614 |
++depth;
|
|
615 |
last = top;
|
|
616 |
do {
|
|
617 |
// Set current depth for all tarjans on this level
|
|
618 |
NTarjan *t = *next; // next tarjan from stack
|
|
619 |
++next;
|
|
620 |
do {
|
|
621 |
dom_depth[t->_control->_idx] = depth; // Set depth in dominator tree
|
|
622 |
NTarjan *dom_child = t->_dom_child;
|
|
623 |
t = t->_dom_next; // next tarjan
|
|
624 |
if (dom_child != NULL) {
|
|
625 |
*top = dom_child; // save child on stack
|
|
626 |
++top;
|
|
627 |
}
|
|
628 |
} while (t != NULL);
|
|
629 |
} while (next < last);
|
|
630 |
} while (last < top);
|
|
631 |
}
|
|
632 |
|
|
633 |
//------------------------------dump-------------------------------------------
|
|
634 |
#ifndef PRODUCT
|
|
635 |
void NTarjan::dump(int offset) const {
|
|
636 |
// Dump the data from this node
|
|
637 |
int i;
|
|
638 |
for(i = offset; i >0; i--) // Use indenting for tree structure
|
|
639 |
tty->print(" ");
|
|
640 |
tty->print("Dominator Node: ");
|
|
641 |
_control->dump(); // Control node for this dom node
|
|
642 |
tty->print("\n");
|
|
643 |
for(i = offset; i >0; i--) // Use indenting for tree structure
|
|
644 |
tty->print(" ");
|
|
645 |
tty->print("semi:%d, size:%d\n",_semi, _size);
|
|
646 |
for(i = offset; i >0; i--) // Use indenting for tree structure
|
|
647 |
tty->print(" ");
|
|
648 |
tty->print("DFS Parent: ");
|
|
649 |
if(_parent != NULL)
|
|
650 |
_parent->_control->dump(); // Parent in DFS
|
|
651 |
tty->print("\n");
|
|
652 |
for(i = offset; i >0; i--) // Use indenting for tree structure
|
|
653 |
tty->print(" ");
|
|
654 |
tty->print("Dom Parent: ");
|
|
655 |
if(_dom != NULL)
|
|
656 |
_dom->_control->dump(); // Parent in Dominator Tree
|
|
657 |
tty->print("\n");
|
|
658 |
|
|
659 |
// Recurse over remaining tree
|
|
660 |
if( _dom_child ) _dom_child->dump(offset+2); // Children in dominator tree
|
|
661 |
if( _dom_next ) _dom_next ->dump(offset ); // Siblings in dominator tree
|
|
662 |
|
|
663 |
}
|
|
664 |
#endif
|