1
|
1 |
/*
|
1217
|
2 |
* Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved.
|
1
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation.
|
|
8 |
*
|
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
13 |
* accompanied this code).
|
|
14 |
*
|
|
15 |
* You should have received a copy of the GNU General Public License version
|
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
18 |
*
|
|
19 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
20 |
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
21 |
* have any questions.
|
|
22 |
*
|
|
23 |
*/
|
|
24 |
|
|
25 |
// Optimization - Graph Style
|
|
26 |
|
|
27 |
#include "incls/_precompiled.incl"
|
|
28 |
#include "incls/_block.cpp.incl"
|
|
29 |
|
|
30 |
|
|
31 |
//-----------------------------------------------------------------------------
|
|
32 |
void Block_Array::grow( uint i ) {
|
|
33 |
assert(i >= Max(), "must be an overflow");
|
|
34 |
debug_only(_limit = i+1);
|
|
35 |
if( i < _size ) return;
|
|
36 |
if( !_size ) {
|
|
37 |
_size = 1;
|
|
38 |
_blocks = (Block**)_arena->Amalloc( _size * sizeof(Block*) );
|
|
39 |
_blocks[0] = NULL;
|
|
40 |
}
|
|
41 |
uint old = _size;
|
|
42 |
while( i >= _size ) _size <<= 1; // Double to fit
|
|
43 |
_blocks = (Block**)_arena->Arealloc( _blocks, old*sizeof(Block*),_size*sizeof(Block*));
|
|
44 |
Copy::zero_to_bytes( &_blocks[old], (_size-old)*sizeof(Block*) );
|
|
45 |
}
|
|
46 |
|
|
47 |
//=============================================================================
|
|
48 |
void Block_List::remove(uint i) {
|
|
49 |
assert(i < _cnt, "index out of bounds");
|
|
50 |
Copy::conjoint_words_to_lower((HeapWord*)&_blocks[i+1], (HeapWord*)&_blocks[i], ((_cnt-i-1)*sizeof(Block*)));
|
|
51 |
pop(); // shrink list by one block
|
|
52 |
}
|
|
53 |
|
|
54 |
void Block_List::insert(uint i, Block *b) {
|
|
55 |
push(b); // grow list by one block
|
|
56 |
Copy::conjoint_words_to_higher((HeapWord*)&_blocks[i], (HeapWord*)&_blocks[i+1], ((_cnt-i-1)*sizeof(Block*)));
|
|
57 |
_blocks[i] = b;
|
|
58 |
}
|
|
59 |
|
1498
|
60 |
#ifndef PRODUCT
|
|
61 |
void Block_List::print() {
|
|
62 |
for (uint i=0; i < size(); i++) {
|
|
63 |
tty->print("B%d ", _blocks[i]->_pre_order);
|
|
64 |
}
|
|
65 |
tty->print("size = %d\n", size());
|
|
66 |
}
|
|
67 |
#endif
|
1
|
68 |
|
|
69 |
//=============================================================================
|
|
70 |
|
|
71 |
uint Block::code_alignment() {
|
|
72 |
// Check for Root block
|
|
73 |
if( _pre_order == 0 ) return CodeEntryAlignment;
|
|
74 |
// Check for Start block
|
|
75 |
if( _pre_order == 1 ) return InteriorEntryAlignment;
|
|
76 |
// Check for loop alignment
|
1498
|
77 |
if (has_loop_alignment()) return loop_alignment();
|
|
78 |
|
|
79 |
return 1; // no particular alignment
|
|
80 |
}
|
|
81 |
|
|
82 |
uint Block::compute_loop_alignment() {
|
1
|
83 |
Node *h = head();
|
|
84 |
if( h->is_Loop() && h->as_Loop()->is_inner_loop() ) {
|
|
85 |
// Pre- and post-loops have low trip count so do not bother with
|
|
86 |
// NOPs for align loop head. The constants are hidden from tuning
|
|
87 |
// but only because my "divide by 4" heuristic surely gets nearly
|
|
88 |
// all possible gain (a "do not align at all" heuristic has a
|
|
89 |
// chance of getting a really tiny gain).
|
|
90 |
if( h->is_CountedLoop() && (h->as_CountedLoop()->is_pre_loop() ||
|
|
91 |
h->as_CountedLoop()->is_post_loop()) )
|
|
92 |
return (OptoLoopAlignment > 4) ? (OptoLoopAlignment>>2) : 1;
|
|
93 |
// Loops with low backedge frequency should not be aligned.
|
|
94 |
Node *n = h->in(LoopNode::LoopBackControl)->in(0);
|
|
95 |
if( n->is_MachIf() && n->as_MachIf()->_prob < 0.01 ) {
|
|
96 |
return 1; // Loop does not loop, more often than not!
|
|
97 |
}
|
|
98 |
return OptoLoopAlignment; // Otherwise align loop head
|
|
99 |
}
|
1498
|
100 |
|
1
|
101 |
return 1; // no particular alignment
|
|
102 |
}
|
|
103 |
|
|
104 |
//-----------------------------------------------------------------------------
|
|
105 |
// Compute the size of first 'inst_cnt' instructions in this block.
|
|
106 |
// Return the number of instructions left to compute if the block has
|
1498
|
107 |
// less then 'inst_cnt' instructions. Stop, and return 0 if sum_size
|
|
108 |
// exceeds OptoLoopAlignment.
|
1
|
109 |
uint Block::compute_first_inst_size(uint& sum_size, uint inst_cnt,
|
|
110 |
PhaseRegAlloc* ra) {
|
|
111 |
uint last_inst = _nodes.size();
|
|
112 |
for( uint j = 0; j < last_inst && inst_cnt > 0; j++ ) {
|
|
113 |
uint inst_size = _nodes[j]->size(ra);
|
|
114 |
if( inst_size > 0 ) {
|
|
115 |
inst_cnt--;
|
|
116 |
uint sz = sum_size + inst_size;
|
|
117 |
if( sz <= (uint)OptoLoopAlignment ) {
|
|
118 |
// Compute size of instructions which fit into fetch buffer only
|
|
119 |
// since all inst_cnt instructions will not fit even if we align them.
|
|
120 |
sum_size = sz;
|
|
121 |
} else {
|
|
122 |
return 0;
|
|
123 |
}
|
|
124 |
}
|
|
125 |
}
|
|
126 |
return inst_cnt;
|
|
127 |
}
|
|
128 |
|
|
129 |
//-----------------------------------------------------------------------------
|
|
130 |
uint Block::find_node( const Node *n ) const {
|
|
131 |
for( uint i = 0; i < _nodes.size(); i++ ) {
|
|
132 |
if( _nodes[i] == n )
|
|
133 |
return i;
|
|
134 |
}
|
|
135 |
ShouldNotReachHere();
|
|
136 |
return 0;
|
|
137 |
}
|
|
138 |
|
|
139 |
// Find and remove n from block list
|
|
140 |
void Block::find_remove( const Node *n ) {
|
|
141 |
_nodes.remove(find_node(n));
|
|
142 |
}
|
|
143 |
|
|
144 |
//------------------------------is_Empty---------------------------------------
|
|
145 |
// Return empty status of a block. Empty blocks contain only the head, other
|
|
146 |
// ideal nodes, and an optional trailing goto.
|
|
147 |
int Block::is_Empty() const {
|
|
148 |
|
|
149 |
// Root or start block is not considered empty
|
|
150 |
if (head()->is_Root() || head()->is_Start()) {
|
|
151 |
return not_empty;
|
|
152 |
}
|
|
153 |
|
|
154 |
int success_result = completely_empty;
|
|
155 |
int end_idx = _nodes.size()-1;
|
|
156 |
|
|
157 |
// Check for ending goto
|
|
158 |
if ((end_idx > 0) && (_nodes[end_idx]->is_Goto())) {
|
|
159 |
success_result = empty_with_goto;
|
|
160 |
end_idx--;
|
|
161 |
}
|
|
162 |
|
|
163 |
// Unreachable blocks are considered empty
|
|
164 |
if (num_preds() <= 1) {
|
|
165 |
return success_result;
|
|
166 |
}
|
|
167 |
|
|
168 |
// Ideal nodes are allowable in empty blocks: skip them Only MachNodes
|
|
169 |
// turn directly into code, because only MachNodes have non-trivial
|
|
170 |
// emit() functions.
|
|
171 |
while ((end_idx > 0) && !_nodes[end_idx]->is_Mach()) {
|
|
172 |
end_idx--;
|
|
173 |
}
|
|
174 |
|
|
175 |
// No room for any interesting instructions?
|
|
176 |
if (end_idx == 0) {
|
|
177 |
return success_result;
|
|
178 |
}
|
|
179 |
|
|
180 |
return not_empty;
|
|
181 |
}
|
|
182 |
|
|
183 |
//------------------------------has_uncommon_code------------------------------
|
|
184 |
// Return true if the block's code implies that it is not likely to be
|
|
185 |
// executed infrequently. Check to see if the block ends in a Halt or
|
|
186 |
// a low probability call.
|
|
187 |
bool Block::has_uncommon_code() const {
|
|
188 |
Node* en = end();
|
|
189 |
|
|
190 |
if (en->is_Goto())
|
|
191 |
en = en->in(0);
|
|
192 |
if (en->is_Catch())
|
|
193 |
en = en->in(0);
|
|
194 |
if (en->is_Proj() && en->in(0)->is_MachCall()) {
|
|
195 |
MachCallNode* call = en->in(0)->as_MachCall();
|
|
196 |
if (call->cnt() != COUNT_UNKNOWN && call->cnt() <= PROB_UNLIKELY_MAG(4)) {
|
|
197 |
// This is true for slow-path stubs like new_{instance,array},
|
|
198 |
// slow_arraycopy, complete_monitor_locking, uncommon_trap.
|
|
199 |
// The magic number corresponds to the probability of an uncommon_trap,
|
|
200 |
// even though it is a count not a probability.
|
|
201 |
return true;
|
|
202 |
}
|
|
203 |
}
|
|
204 |
|
|
205 |
int op = en->is_Mach() ? en->as_Mach()->ideal_Opcode() : en->Opcode();
|
|
206 |
return op == Op_Halt;
|
|
207 |
}
|
|
208 |
|
|
209 |
//------------------------------is_uncommon------------------------------------
|
|
210 |
// True if block is low enough frequency or guarded by a test which
|
|
211 |
// mostly does not go here.
|
|
212 |
bool Block::is_uncommon( Block_Array &bbs ) const {
|
|
213 |
// Initial blocks must never be moved, so are never uncommon.
|
|
214 |
if (head()->is_Root() || head()->is_Start()) return false;
|
|
215 |
|
|
216 |
// Check for way-low freq
|
|
217 |
if( _freq < BLOCK_FREQUENCY(0.00001f) ) return true;
|
|
218 |
|
|
219 |
// Look for code shape indicating uncommon_trap or slow path
|
|
220 |
if (has_uncommon_code()) return true;
|
|
221 |
|
|
222 |
const float epsilon = 0.05f;
|
|
223 |
const float guard_factor = PROB_UNLIKELY_MAG(4) / (1.f - epsilon);
|
|
224 |
uint uncommon_preds = 0;
|
|
225 |
uint freq_preds = 0;
|
|
226 |
uint uncommon_for_freq_preds = 0;
|
|
227 |
|
|
228 |
for( uint i=1; i<num_preds(); i++ ) {
|
|
229 |
Block* guard = bbs[pred(i)->_idx];
|
|
230 |
// Check to see if this block follows its guard 1 time out of 10000
|
|
231 |
// or less.
|
|
232 |
//
|
|
233 |
// See list of magnitude-4 unlikely probabilities in cfgnode.hpp which
|
|
234 |
// we intend to be "uncommon", such as slow-path TLE allocation,
|
|
235 |
// predicted call failure, and uncommon trap triggers.
|
|
236 |
//
|
|
237 |
// Use an epsilon value of 5% to allow for variability in frequency
|
|
238 |
// predictions and floating point calculations. The net effect is
|
|
239 |
// that guard_factor is set to 9500.
|
|
240 |
//
|
|
241 |
// Ignore low-frequency blocks.
|
|
242 |
// The next check is (guard->_freq < 1.e-5 * 9500.).
|
|
243 |
if(guard->_freq*BLOCK_FREQUENCY(guard_factor) < BLOCK_FREQUENCY(0.00001f)) {
|
|
244 |
uncommon_preds++;
|
|
245 |
} else {
|
|
246 |
freq_preds++;
|
|
247 |
if( _freq < guard->_freq * guard_factor ) {
|
|
248 |
uncommon_for_freq_preds++;
|
|
249 |
}
|
|
250 |
}
|
|
251 |
}
|
|
252 |
if( num_preds() > 1 &&
|
|
253 |
// The block is uncommon if all preds are uncommon or
|
|
254 |
(uncommon_preds == (num_preds()-1) ||
|
|
255 |
// it is uncommon for all frequent preds.
|
|
256 |
uncommon_for_freq_preds == freq_preds) ) {
|
|
257 |
return true;
|
|
258 |
}
|
|
259 |
return false;
|
|
260 |
}
|
|
261 |
|
|
262 |
//------------------------------dump-------------------------------------------
|
|
263 |
#ifndef PRODUCT
|
|
264 |
void Block::dump_bidx(const Block* orig) const {
|
|
265 |
if (_pre_order) tty->print("B%d",_pre_order);
|
|
266 |
else tty->print("N%d", head()->_idx);
|
|
267 |
|
|
268 |
if (Verbose && orig != this) {
|
|
269 |
// Dump the original block's idx
|
|
270 |
tty->print(" (");
|
|
271 |
orig->dump_bidx(orig);
|
|
272 |
tty->print(")");
|
|
273 |
}
|
|
274 |
}
|
|
275 |
|
|
276 |
void Block::dump_pred(const Block_Array *bbs, Block* orig) const {
|
|
277 |
if (is_connector()) {
|
|
278 |
for (uint i=1; i<num_preds(); i++) {
|
|
279 |
Block *p = ((*bbs)[pred(i)->_idx]);
|
|
280 |
p->dump_pred(bbs, orig);
|
|
281 |
}
|
|
282 |
} else {
|
|
283 |
dump_bidx(orig);
|
|
284 |
tty->print(" ");
|
|
285 |
}
|
|
286 |
}
|
|
287 |
|
|
288 |
void Block::dump_head( const Block_Array *bbs ) const {
|
|
289 |
// Print the basic block
|
|
290 |
dump_bidx(this);
|
|
291 |
tty->print(": #\t");
|
|
292 |
|
|
293 |
// Print the incoming CFG edges and the outgoing CFG edges
|
|
294 |
for( uint i=0; i<_num_succs; i++ ) {
|
|
295 |
non_connector_successor(i)->dump_bidx(_succs[i]);
|
|
296 |
tty->print(" ");
|
|
297 |
}
|
|
298 |
tty->print("<- ");
|
|
299 |
if( head()->is_block_start() ) {
|
|
300 |
for (uint i=1; i<num_preds(); i++) {
|
|
301 |
Node *s = pred(i);
|
|
302 |
if (bbs) {
|
|
303 |
Block *p = (*bbs)[s->_idx];
|
|
304 |
p->dump_pred(bbs, p);
|
|
305 |
} else {
|
|
306 |
while (!s->is_block_start())
|
|
307 |
s = s->in(0);
|
|
308 |
tty->print("N%d ", s->_idx );
|
|
309 |
}
|
|
310 |
}
|
|
311 |
} else
|
|
312 |
tty->print("BLOCK HEAD IS JUNK ");
|
|
313 |
|
|
314 |
// Print loop, if any
|
|
315 |
const Block *bhead = this; // Head of self-loop
|
|
316 |
Node *bh = bhead->head();
|
|
317 |
if( bbs && bh->is_Loop() && !head()->is_Root() ) {
|
|
318 |
LoopNode *loop = bh->as_Loop();
|
|
319 |
const Block *bx = (*bbs)[loop->in(LoopNode::LoopBackControl)->_idx];
|
|
320 |
while (bx->is_connector()) {
|
|
321 |
bx = (*bbs)[bx->pred(1)->_idx];
|
|
322 |
}
|
|
323 |
tty->print("\tLoop: B%d-B%d ", bhead->_pre_order, bx->_pre_order);
|
|
324 |
// Dump any loop-specific bits, especially for CountedLoops.
|
|
325 |
loop->dump_spec(tty);
|
1498
|
326 |
} else if (has_loop_alignment()) {
|
|
327 |
tty->print(" top-of-loop");
|
1
|
328 |
}
|
|
329 |
tty->print(" Freq: %g",_freq);
|
|
330 |
if( Verbose || WizardMode ) {
|
|
331 |
tty->print(" IDom: %d/#%d", _idom ? _idom->_pre_order : 0, _dom_depth);
|
|
332 |
tty->print(" RegPressure: %d",_reg_pressure);
|
|
333 |
tty->print(" IHRP Index: %d",_ihrp_index);
|
|
334 |
tty->print(" FRegPressure: %d",_freg_pressure);
|
|
335 |
tty->print(" FHRP Index: %d",_fhrp_index);
|
|
336 |
}
|
|
337 |
tty->print_cr("");
|
|
338 |
}
|
|
339 |
|
|
340 |
void Block::dump() const { dump(0); }
|
|
341 |
|
|
342 |
void Block::dump( const Block_Array *bbs ) const {
|
|
343 |
dump_head(bbs);
|
|
344 |
uint cnt = _nodes.size();
|
|
345 |
for( uint i=0; i<cnt; i++ )
|
|
346 |
_nodes[i]->dump();
|
|
347 |
tty->print("\n");
|
|
348 |
}
|
|
349 |
#endif
|
|
350 |
|
|
351 |
//=============================================================================
|
|
352 |
//------------------------------PhaseCFG---------------------------------------
|
|
353 |
PhaseCFG::PhaseCFG( Arena *a, RootNode *r, Matcher &m ) :
|
|
354 |
Phase(CFG),
|
|
355 |
_bbs(a),
|
|
356 |
_root(r)
|
|
357 |
#ifndef PRODUCT
|
|
358 |
, _trace_opto_pipelining(TraceOptoPipelining || C->method_has_option("TraceOptoPipelining"))
|
|
359 |
#endif
|
|
360 |
{
|
|
361 |
ResourceMark rm;
|
|
362 |
// I'll need a few machine-specific GotoNodes. Make an Ideal GotoNode,
|
|
363 |
// then Match it into a machine-specific Node. Then clone the machine
|
|
364 |
// Node on demand.
|
|
365 |
Node *x = new (C, 1) GotoNode(NULL);
|
|
366 |
x->init_req(0, x);
|
|
367 |
_goto = m.match_tree(x);
|
|
368 |
assert(_goto != NULL, "");
|
|
369 |
_goto->set_req(0,_goto);
|
|
370 |
|
|
371 |
// Build the CFG in Reverse Post Order
|
|
372 |
_num_blocks = build_cfg();
|
|
373 |
_broot = _bbs[_root->_idx];
|
|
374 |
}
|
|
375 |
|
|
376 |
//------------------------------build_cfg--------------------------------------
|
|
377 |
// Build a proper looking CFG. Make every block begin with either a StartNode
|
|
378 |
// or a RegionNode. Make every block end with either a Goto, If or Return.
|
|
379 |
// The RootNode both starts and ends it's own block. Do this with a recursive
|
|
380 |
// backwards walk over the control edges.
|
|
381 |
uint PhaseCFG::build_cfg() {
|
|
382 |
Arena *a = Thread::current()->resource_area();
|
|
383 |
VectorSet visited(a);
|
|
384 |
|
|
385 |
// Allocate stack with enough space to avoid frequent realloc
|
|
386 |
Node_Stack nstack(a, C->unique() >> 1);
|
|
387 |
nstack.push(_root, 0);
|
|
388 |
uint sum = 0; // Counter for blocks
|
|
389 |
|
|
390 |
while (nstack.is_nonempty()) {
|
|
391 |
// node and in's index from stack's top
|
|
392 |
// 'np' is _root (see above) or RegionNode, StartNode: we push on stack
|
|
393 |
// only nodes which point to the start of basic block (see below).
|
|
394 |
Node *np = nstack.node();
|
|
395 |
// idx > 0, except for the first node (_root) pushed on stack
|
|
396 |
// at the beginning when idx == 0.
|
|
397 |
// We will use the condition (idx == 0) later to end the build.
|
|
398 |
uint idx = nstack.index();
|
|
399 |
Node *proj = np->in(idx);
|
|
400 |
const Node *x = proj->is_block_proj();
|
|
401 |
// Does the block end with a proper block-ending Node? One of Return,
|
|
402 |
// If or Goto? (This check should be done for visited nodes also).
|
|
403 |
if (x == NULL) { // Does not end right...
|
|
404 |
Node *g = _goto->clone(); // Force it to end in a Goto
|
|
405 |
g->set_req(0, proj);
|
|
406 |
np->set_req(idx, g);
|
|
407 |
x = proj = g;
|
|
408 |
}
|
|
409 |
if (!visited.test_set(x->_idx)) { // Visit this block once
|
|
410 |
// Skip any control-pinned middle'in stuff
|
|
411 |
Node *p = proj;
|
|
412 |
do {
|
|
413 |
proj = p; // Update pointer to last Control
|
|
414 |
p = p->in(0); // Move control forward
|
|
415 |
} while( !p->is_block_proj() &&
|
|
416 |
!p->is_block_start() );
|
|
417 |
// Make the block begin with one of Region or StartNode.
|
|
418 |
if( !p->is_block_start() ) {
|
|
419 |
RegionNode *r = new (C, 2) RegionNode( 2 );
|
|
420 |
r->init_req(1, p); // Insert RegionNode in the way
|
|
421 |
proj->set_req(0, r); // Insert RegionNode in the way
|
|
422 |
p = r;
|
|
423 |
}
|
|
424 |
// 'p' now points to the start of this basic block
|
|
425 |
|
|
426 |
// Put self in array of basic blocks
|
|
427 |
Block *bb = new (_bbs._arena) Block(_bbs._arena,p);
|
|
428 |
_bbs.map(p->_idx,bb);
|
|
429 |
_bbs.map(x->_idx,bb);
|
|
430 |
if( x != p ) // Only for root is x == p
|
|
431 |
bb->_nodes.push((Node*)x);
|
|
432 |
|
|
433 |
// Now handle predecessors
|
|
434 |
++sum; // Count 1 for self block
|
|
435 |
uint cnt = bb->num_preds();
|
|
436 |
for (int i = (cnt - 1); i > 0; i-- ) { // For all predecessors
|
|
437 |
Node *prevproj = p->in(i); // Get prior input
|
|
438 |
assert( !prevproj->is_Con(), "dead input not removed" );
|
|
439 |
// Check to see if p->in(i) is a "control-dependent" CFG edge -
|
|
440 |
// i.e., it splits at the source (via an IF or SWITCH) and merges
|
|
441 |
// at the destination (via a many-input Region).
|
|
442 |
// This breaks critical edges. The RegionNode to start the block
|
|
443 |
// will be added when <p,i> is pulled off the node stack
|
|
444 |
if ( cnt > 2 ) { // Merging many things?
|
|
445 |
assert( prevproj== bb->pred(i),"");
|
|
446 |
if(prevproj->is_block_proj() != prevproj) { // Control-dependent edge?
|
|
447 |
// Force a block on the control-dependent edge
|
|
448 |
Node *g = _goto->clone(); // Force it to end in a Goto
|
|
449 |
g->set_req(0,prevproj);
|
|
450 |
p->set_req(i,g);
|
|
451 |
}
|
|
452 |
}
|
|
453 |
nstack.push(p, i); // 'p' is RegionNode or StartNode
|
|
454 |
}
|
|
455 |
} else { // Post-processing visited nodes
|
|
456 |
nstack.pop(); // remove node from stack
|
|
457 |
// Check if it the fist node pushed on stack at the beginning.
|
|
458 |
if (idx == 0) break; // end of the build
|
|
459 |
// Find predecessor basic block
|
|
460 |
Block *pb = _bbs[x->_idx];
|
|
461 |
// Insert into nodes array, if not already there
|
|
462 |
if( !_bbs.lookup(proj->_idx) ) {
|
|
463 |
assert( x != proj, "" );
|
|
464 |
// Map basic block of projection
|
|
465 |
_bbs.map(proj->_idx,pb);
|
|
466 |
pb->_nodes.push(proj);
|
|
467 |
}
|
|
468 |
// Insert self as a child of my predecessor block
|
|
469 |
pb->_succs.map(pb->_num_succs++, _bbs[np->_idx]);
|
|
470 |
assert( pb->_nodes[ pb->_nodes.size() - pb->_num_succs ]->is_block_proj(),
|
|
471 |
"too many control users, not a CFG?" );
|
|
472 |
}
|
|
473 |
}
|
|
474 |
// Return number of basic blocks for all children and self
|
|
475 |
return sum;
|
|
476 |
}
|
|
477 |
|
|
478 |
//------------------------------insert_goto_at---------------------------------
|
|
479 |
// Inserts a goto & corresponding basic block between
|
|
480 |
// block[block_no] and its succ_no'th successor block
|
|
481 |
void PhaseCFG::insert_goto_at(uint block_no, uint succ_no) {
|
|
482 |
// get block with block_no
|
|
483 |
assert(block_no < _num_blocks, "illegal block number");
|
|
484 |
Block* in = _blocks[block_no];
|
|
485 |
// get successor block succ_no
|
|
486 |
assert(succ_no < in->_num_succs, "illegal successor number");
|
|
487 |
Block* out = in->_succs[succ_no];
|
1070
|
488 |
// Compute frequency of the new block. Do this before inserting
|
|
489 |
// new block in case succ_prob() needs to infer the probability from
|
|
490 |
// surrounding blocks.
|
|
491 |
float freq = in->_freq * in->succ_prob(succ_no);
|
1
|
492 |
// get ProjNode corresponding to the succ_no'th successor of the in block
|
|
493 |
ProjNode* proj = in->_nodes[in->_nodes.size() - in->_num_succs + succ_no]->as_Proj();
|
|
494 |
// create region for basic block
|
|
495 |
RegionNode* region = new (C, 2) RegionNode(2);
|
|
496 |
region->init_req(1, proj);
|
|
497 |
// setup corresponding basic block
|
|
498 |
Block* block = new (_bbs._arena) Block(_bbs._arena, region);
|
|
499 |
_bbs.map(region->_idx, block);
|
|
500 |
C->regalloc()->set_bad(region->_idx);
|
|
501 |
// add a goto node
|
|
502 |
Node* gto = _goto->clone(); // get a new goto node
|
|
503 |
gto->set_req(0, region);
|
|
504 |
// add it to the basic block
|
|
505 |
block->_nodes.push(gto);
|
|
506 |
_bbs.map(gto->_idx, block);
|
|
507 |
C->regalloc()->set_bad(gto->_idx);
|
|
508 |
// hook up successor block
|
|
509 |
block->_succs.map(block->_num_succs++, out);
|
|
510 |
// remap successor's predecessors if necessary
|
|
511 |
for (uint i = 1; i < out->num_preds(); i++) {
|
|
512 |
if (out->pred(i) == proj) out->head()->set_req(i, gto);
|
|
513 |
}
|
|
514 |
// remap predecessor's successor to new block
|
|
515 |
in->_succs.map(succ_no, block);
|
1070
|
516 |
// Set the frequency of the new block
|
|
517 |
block->_freq = freq;
|
1
|
518 |
// add new basic block to basic block list
|
|
519 |
_blocks.insert(block_no + 1, block);
|
|
520 |
_num_blocks++;
|
|
521 |
}
|
|
522 |
|
|
523 |
//------------------------------no_flip_branch---------------------------------
|
|
524 |
// Does this block end in a multiway branch that cannot have the default case
|
|
525 |
// flipped for another case?
|
|
526 |
static bool no_flip_branch( Block *b ) {
|
|
527 |
int branch_idx = b->_nodes.size() - b->_num_succs-1;
|
|
528 |
if( branch_idx < 1 ) return false;
|
|
529 |
Node *bra = b->_nodes[branch_idx];
|
1498
|
530 |
if( bra->is_Catch() )
|
|
531 |
return true;
|
1
|
532 |
if( bra->is_Mach() ) {
|
1498
|
533 |
if( bra->is_MachNullCheck() )
|
|
534 |
return true;
|
1
|
535 |
int iop = bra->as_Mach()->ideal_Opcode();
|
|
536 |
if( iop == Op_FastLock || iop == Op_FastUnlock )
|
|
537 |
return true;
|
|
538 |
}
|
|
539 |
return false;
|
|
540 |
}
|
|
541 |
|
|
542 |
//------------------------------convert_NeverBranch_to_Goto--------------------
|
|
543 |
// Check for NeverBranch at block end. This needs to become a GOTO to the
|
|
544 |
// true target. NeverBranch are treated as a conditional branch that always
|
|
545 |
// goes the same direction for most of the optimizer and are used to give a
|
|
546 |
// fake exit path to infinite loops. At this late stage they need to turn
|
|
547 |
// into Goto's so that when you enter the infinite loop you indeed hang.
|
|
548 |
void PhaseCFG::convert_NeverBranch_to_Goto(Block *b) {
|
|
549 |
// Find true target
|
|
550 |
int end_idx = b->end_idx();
|
|
551 |
int idx = b->_nodes[end_idx+1]->as_Proj()->_con;
|
|
552 |
Block *succ = b->_succs[idx];
|
|
553 |
Node* gto = _goto->clone(); // get a new goto node
|
|
554 |
gto->set_req(0, b->head());
|
|
555 |
Node *bp = b->_nodes[end_idx];
|
|
556 |
b->_nodes.map(end_idx,gto); // Slam over NeverBranch
|
|
557 |
_bbs.map(gto->_idx, b);
|
|
558 |
C->regalloc()->set_bad(gto->_idx);
|
|
559 |
b->_nodes.pop(); // Yank projections
|
|
560 |
b->_nodes.pop(); // Yank projections
|
|
561 |
b->_succs.map(0,succ); // Map only successor
|
|
562 |
b->_num_succs = 1;
|
|
563 |
// remap successor's predecessors if necessary
|
|
564 |
uint j;
|
|
565 |
for( j = 1; j < succ->num_preds(); j++)
|
|
566 |
if( succ->pred(j)->in(0) == bp )
|
|
567 |
succ->head()->set_req(j, gto);
|
|
568 |
// Kill alternate exit path
|
|
569 |
Block *dead = b->_succs[1-idx];
|
|
570 |
for( j = 1; j < dead->num_preds(); j++)
|
|
571 |
if( dead->pred(j)->in(0) == bp )
|
|
572 |
break;
|
|
573 |
// Scan through block, yanking dead path from
|
|
574 |
// all regions and phis.
|
|
575 |
dead->head()->del_req(j);
|
|
576 |
for( int k = 1; dead->_nodes[k]->is_Phi(); k++ )
|
|
577 |
dead->_nodes[k]->del_req(j);
|
|
578 |
}
|
|
579 |
|
1498
|
580 |
//------------------------------move_to_next-----------------------------------
|
1
|
581 |
// Helper function to move block bx to the slot following b_index. Return
|
|
582 |
// true if the move is successful, otherwise false
|
1498
|
583 |
bool PhaseCFG::move_to_next(Block* bx, uint b_index) {
|
1
|
584 |
if (bx == NULL) return false;
|
|
585 |
|
|
586 |
// Return false if bx is already scheduled.
|
|
587 |
uint bx_index = bx->_pre_order;
|
|
588 |
if ((bx_index <= b_index) && (_blocks[bx_index] == bx)) {
|
|
589 |
return false;
|
|
590 |
}
|
|
591 |
|
|
592 |
// Find the current index of block bx on the block list
|
|
593 |
bx_index = b_index + 1;
|
|
594 |
while( bx_index < _num_blocks && _blocks[bx_index] != bx ) bx_index++;
|
|
595 |
assert(_blocks[bx_index] == bx, "block not found");
|
|
596 |
|
|
597 |
// If the previous block conditionally falls into bx, return false,
|
|
598 |
// because moving bx will create an extra jump.
|
|
599 |
for(uint k = 1; k < bx->num_preds(); k++ ) {
|
|
600 |
Block* pred = _bbs[bx->pred(k)->_idx];
|
|
601 |
if (pred == _blocks[bx_index-1]) {
|
|
602 |
if (pred->_num_succs != 1) {
|
|
603 |
return false;
|
|
604 |
}
|
|
605 |
}
|
|
606 |
}
|
|
607 |
|
|
608 |
// Reinsert bx just past block 'b'
|
|
609 |
_blocks.remove(bx_index);
|
|
610 |
_blocks.insert(b_index + 1, bx);
|
|
611 |
return true;
|
|
612 |
}
|
|
613 |
|
1498
|
614 |
//------------------------------move_to_end------------------------------------
|
1
|
615 |
// Move empty and uncommon blocks to the end.
|
1498
|
616 |
void PhaseCFG::move_to_end(Block *b, uint i) {
|
1
|
617 |
int e = b->is_Empty();
|
|
618 |
if (e != Block::not_empty) {
|
|
619 |
if (e == Block::empty_with_goto) {
|
|
620 |
// Remove the goto, but leave the block.
|
|
621 |
b->_nodes.pop();
|
|
622 |
}
|
|
623 |
// Mark this block as a connector block, which will cause it to be
|
|
624 |
// ignored in certain functions such as non_connector_successor().
|
|
625 |
b->set_connector();
|
|
626 |
}
|
|
627 |
// Move the empty block to the end, and don't recheck.
|
|
628 |
_blocks.remove(i);
|
|
629 |
_blocks.push(b);
|
|
630 |
}
|
|
631 |
|
1498
|
632 |
//---------------------------set_loop_alignment--------------------------------
|
|
633 |
// Set loop alignment for every block
|
|
634 |
void PhaseCFG::set_loop_alignment() {
|
|
635 |
uint last = _num_blocks;
|
|
636 |
assert( _blocks[0] == _broot, "" );
|
|
637 |
|
|
638 |
for (uint i = 1; i < last; i++ ) {
|
|
639 |
Block *b = _blocks[i];
|
|
640 |
if (b->head()->is_Loop()) {
|
|
641 |
b->set_loop_alignment(b);
|
|
642 |
}
|
|
643 |
}
|
|
644 |
}
|
|
645 |
|
|
646 |
//-----------------------------remove_empty------------------------------------
|
|
647 |
// Make empty basic blocks to be "connector" blocks, Move uncommon blocks
|
|
648 |
// to the end.
|
|
649 |
void PhaseCFG::remove_empty() {
|
1
|
650 |
// Move uncommon blocks to the end
|
|
651 |
uint last = _num_blocks;
|
|
652 |
assert( _blocks[0] == _broot, "" );
|
1498
|
653 |
|
|
654 |
for (uint i = 1; i < last; i++) {
|
1
|
655 |
Block *b = _blocks[i];
|
1498
|
656 |
if (b->is_connector()) break;
|
1
|
657 |
|
|
658 |
// Check for NeverBranch at block end. This needs to become a GOTO to the
|
|
659 |
// true target. NeverBranch are treated as a conditional branch that
|
|
660 |
// always goes the same direction for most of the optimizer and are used
|
|
661 |
// to give a fake exit path to infinite loops. At this late stage they
|
|
662 |
// need to turn into Goto's so that when you enter the infinite loop you
|
|
663 |
// indeed hang.
|
|
664 |
if( b->_nodes[b->end_idx()]->Opcode() == Op_NeverBranch )
|
|
665 |
convert_NeverBranch_to_Goto(b);
|
|
666 |
|
|
667 |
// Look for uncommon blocks and move to end.
|
1498
|
668 |
if (!C->do_freq_based_layout()) {
|
|
669 |
if( b->is_uncommon(_bbs) ) {
|
|
670 |
move_to_end(b, i);
|
|
671 |
last--; // No longer check for being uncommon!
|
|
672 |
if( no_flip_branch(b) ) { // Fall-thru case must follow?
|
|
673 |
b = _blocks[i]; // Find the fall-thru block
|
|
674 |
move_to_end(b, i);
|
|
675 |
last--;
|
|
676 |
}
|
|
677 |
i--; // backup block counter post-increment
|
1
|
678 |
}
|
|
679 |
}
|
|
680 |
}
|
|
681 |
|
1498
|
682 |
// Move empty blocks to the end
|
1
|
683 |
last = _num_blocks;
|
1498
|
684 |
for (uint i = 1; i < last; i++) {
|
1
|
685 |
Block *b = _blocks[i];
|
1498
|
686 |
if (b->is_Empty() != Block::not_empty) {
|
|
687 |
move_to_end(b, i);
|
|
688 |
last--;
|
|
689 |
i--;
|
1
|
690 |
}
|
|
691 |
} // End of for all blocks
|
1498
|
692 |
}
|
1
|
693 |
|
1498
|
694 |
//-----------------------------fixup_flow--------------------------------------
|
|
695 |
// Fix up the final control flow for basic blocks.
|
|
696 |
void PhaseCFG::fixup_flow() {
|
1
|
697 |
// Fixup final control flow for the blocks. Remove jump-to-next
|
|
698 |
// block. If neither arm of a IF follows the conditional branch, we
|
|
699 |
// have to add a second jump after the conditional. We place the
|
|
700 |
// TRUE branch target in succs[0] for both GOTOs and IFs.
|
1498
|
701 |
for (uint i=0; i < _num_blocks; i++) {
|
1
|
702 |
Block *b = _blocks[i];
|
|
703 |
b->_pre_order = i; // turn pre-order into block-index
|
|
704 |
|
|
705 |
// Connector blocks need no further processing.
|
|
706 |
if (b->is_connector()) {
|
|
707 |
assert((i+1) == _num_blocks || _blocks[i+1]->is_connector(),
|
|
708 |
"All connector blocks should sink to the end");
|
|
709 |
continue;
|
|
710 |
}
|
|
711 |
assert(b->is_Empty() != Block::completely_empty,
|
|
712 |
"Empty blocks should be connectors");
|
|
713 |
|
|
714 |
Block *bnext = (i < _num_blocks-1) ? _blocks[i+1] : NULL;
|
|
715 |
Block *bs0 = b->non_connector_successor(0);
|
|
716 |
|
|
717 |
// Check for multi-way branches where I cannot negate the test to
|
|
718 |
// exchange the true and false targets.
|
|
719 |
if( no_flip_branch( b ) ) {
|
|
720 |
// Find fall through case - if must fall into its target
|
|
721 |
int branch_idx = b->_nodes.size() - b->_num_succs;
|
|
722 |
for (uint j2 = 0; j2 < b->_num_succs; j2++) {
|
|
723 |
const ProjNode* p = b->_nodes[branch_idx + j2]->as_Proj();
|
|
724 |
if (p->_con == 0) {
|
|
725 |
// successor j2 is fall through case
|
|
726 |
if (b->non_connector_successor(j2) != bnext) {
|
|
727 |
// but it is not the next block => insert a goto
|
|
728 |
insert_goto_at(i, j2);
|
|
729 |
}
|
|
730 |
// Put taken branch in slot 0
|
|
731 |
if( j2 == 0 && b->_num_succs == 2) {
|
|
732 |
// Flip targets in succs map
|
|
733 |
Block *tbs0 = b->_succs[0];
|
|
734 |
Block *tbs1 = b->_succs[1];
|
|
735 |
b->_succs.map( 0, tbs1 );
|
|
736 |
b->_succs.map( 1, tbs0 );
|
|
737 |
}
|
|
738 |
break;
|
|
739 |
}
|
|
740 |
}
|
|
741 |
// Remove all CatchProjs
|
1498
|
742 |
for (uint j1 = 0; j1 < b->_num_succs; j1++) b->_nodes.pop();
|
1
|
743 |
|
|
744 |
} else if (b->_num_succs == 1) {
|
|
745 |
// Block ends in a Goto?
|
|
746 |
if (bnext == bs0) {
|
|
747 |
// We fall into next block; remove the Goto
|
|
748 |
b->_nodes.pop();
|
|
749 |
}
|
|
750 |
|
|
751 |
} else if( b->_num_succs == 2 ) { // Block ends in a If?
|
|
752 |
// Get opcode of 1st projection (matches _succs[0])
|
|
753 |
// Note: Since this basic block has 2 exits, the last 2 nodes must
|
|
754 |
// be projections (in any order), the 3rd last node must be
|
|
755 |
// the IfNode (we have excluded other 2-way exits such as
|
|
756 |
// CatchNodes already).
|
|
757 |
MachNode *iff = b->_nodes[b->_nodes.size()-3]->as_Mach();
|
|
758 |
ProjNode *proj0 = b->_nodes[b->_nodes.size()-2]->as_Proj();
|
|
759 |
ProjNode *proj1 = b->_nodes[b->_nodes.size()-1]->as_Proj();
|
|
760 |
|
|
761 |
// Assert that proj0 and succs[0] match up. Similarly for proj1 and succs[1].
|
|
762 |
assert(proj0->raw_out(0) == b->_succs[0]->head(), "Mismatch successor 0");
|
|
763 |
assert(proj1->raw_out(0) == b->_succs[1]->head(), "Mismatch successor 1");
|
|
764 |
|
|
765 |
Block *bs1 = b->non_connector_successor(1);
|
|
766 |
|
|
767 |
// Check for neither successor block following the current
|
|
768 |
// block ending in a conditional. If so, move one of the
|
|
769 |
// successors after the current one, provided that the
|
|
770 |
// successor was previously unscheduled, but moveable
|
|
771 |
// (i.e., all paths to it involve a branch).
|
1498
|
772 |
if( !C->do_freq_based_layout() && bnext != bs0 && bnext != bs1 ) {
|
1
|
773 |
// Choose the more common successor based on the probability
|
|
774 |
// of the conditional branch.
|
|
775 |
Block *bx = bs0;
|
|
776 |
Block *by = bs1;
|
|
777 |
|
|
778 |
// _prob is the probability of taking the true path. Make
|
|
779 |
// p the probability of taking successor #1.
|
|
780 |
float p = iff->as_MachIf()->_prob;
|
|
781 |
if( proj0->Opcode() == Op_IfTrue ) {
|
|
782 |
p = 1.0 - p;
|
|
783 |
}
|
|
784 |
|
|
785 |
// Prefer successor #1 if p > 0.5
|
|
786 |
if (p > PROB_FAIR) {
|
|
787 |
bx = bs1;
|
|
788 |
by = bs0;
|
|
789 |
}
|
|
790 |
|
|
791 |
// Attempt the more common successor first
|
1498
|
792 |
if (move_to_next(bx, i)) {
|
1
|
793 |
bnext = bx;
|
1498
|
794 |
} else if (move_to_next(by, i)) {
|
1
|
795 |
bnext = by;
|
|
796 |
}
|
|
797 |
}
|
|
798 |
|
|
799 |
// Check for conditional branching the wrong way. Negate
|
|
800 |
// conditional, if needed, so it falls into the following block
|
|
801 |
// and branches to the not-following block.
|
|
802 |
|
|
803 |
// Check for the next block being in succs[0]. We are going to branch
|
|
804 |
// to succs[0], so we want the fall-thru case as the next block in
|
|
805 |
// succs[1].
|
|
806 |
if (bnext == bs0) {
|
|
807 |
// Fall-thru case in succs[0], so flip targets in succs map
|
|
808 |
Block *tbs0 = b->_succs[0];
|
|
809 |
Block *tbs1 = b->_succs[1];
|
|
810 |
b->_succs.map( 0, tbs1 );
|
|
811 |
b->_succs.map( 1, tbs0 );
|
|
812 |
// Flip projection for each target
|
|
813 |
{ ProjNode *tmp = proj0; proj0 = proj1; proj1 = tmp; }
|
|
814 |
|
1498
|
815 |
} else if( bnext != bs1 ) {
|
|
816 |
// Need a double-branch
|
1
|
817 |
// The existing conditional branch need not change.
|
|
818 |
// Add a unconditional branch to the false target.
|
|
819 |
// Alas, it must appear in its own block and adding a
|
|
820 |
// block this late in the game is complicated. Sigh.
|
|
821 |
insert_goto_at(i, 1);
|
|
822 |
}
|
|
823 |
|
|
824 |
// Make sure we TRUE branch to the target
|
1498
|
825 |
if( proj0->Opcode() == Op_IfFalse ) {
|
1
|
826 |
iff->negate();
|
1498
|
827 |
}
|
1
|
828 |
|
|
829 |
b->_nodes.pop(); // Remove IfFalse & IfTrue projections
|
|
830 |
b->_nodes.pop();
|
|
831 |
|
|
832 |
} else {
|
|
833 |
// Multi-exit block, e.g. a switch statement
|
|
834 |
// But we don't need to do anything here
|
|
835 |
}
|
|
836 |
} // End of for all blocks
|
|
837 |
}
|
|
838 |
|
|
839 |
|
|
840 |
//------------------------------dump-------------------------------------------
|
|
841 |
#ifndef PRODUCT
|
|
842 |
void PhaseCFG::_dump_cfg( const Node *end, VectorSet &visited ) const {
|
|
843 |
const Node *x = end->is_block_proj();
|
|
844 |
assert( x, "not a CFG" );
|
|
845 |
|
|
846 |
// Do not visit this block again
|
|
847 |
if( visited.test_set(x->_idx) ) return;
|
|
848 |
|
|
849 |
// Skip through this block
|
|
850 |
const Node *p = x;
|
|
851 |
do {
|
|
852 |
p = p->in(0); // Move control forward
|
|
853 |
assert( !p->is_block_proj() || p->is_Root(), "not a CFG" );
|
|
854 |
} while( !p->is_block_start() );
|
|
855 |
|
|
856 |
// Recursively visit
|
|
857 |
for( uint i=1; i<p->req(); i++ )
|
|
858 |
_dump_cfg(p->in(i),visited);
|
|
859 |
|
|
860 |
// Dump the block
|
|
861 |
_bbs[p->_idx]->dump(&_bbs);
|
|
862 |
}
|
|
863 |
|
|
864 |
void PhaseCFG::dump( ) const {
|
|
865 |
tty->print("\n--- CFG --- %d BBs\n",_num_blocks);
|
|
866 |
if( _blocks.size() ) { // Did we do basic-block layout?
|
|
867 |
for( uint i=0; i<_num_blocks; i++ )
|
|
868 |
_blocks[i]->dump(&_bbs);
|
|
869 |
} else { // Else do it with a DFS
|
|
870 |
VectorSet visited(_bbs._arena);
|
|
871 |
_dump_cfg(_root,visited);
|
|
872 |
}
|
|
873 |
}
|
|
874 |
|
|
875 |
void PhaseCFG::dump_headers() {
|
|
876 |
for( uint i = 0; i < _num_blocks; i++ ) {
|
|
877 |
if( _blocks[i] == NULL ) continue;
|
|
878 |
_blocks[i]->dump_head(&_bbs);
|
|
879 |
}
|
|
880 |
}
|
|
881 |
|
|
882 |
void PhaseCFG::verify( ) const {
|
|
883 |
// Verify sane CFG
|
|
884 |
for( uint i = 0; i < _num_blocks; i++ ) {
|
|
885 |
Block *b = _blocks[i];
|
|
886 |
uint cnt = b->_nodes.size();
|
|
887 |
uint j;
|
|
888 |
for( j = 0; j < cnt; j++ ) {
|
|
889 |
Node *n = b->_nodes[j];
|
|
890 |
assert( _bbs[n->_idx] == b, "" );
|
|
891 |
if( j >= 1 && n->is_Mach() &&
|
|
892 |
n->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
|
|
893 |
assert( j == 1 || b->_nodes[j-1]->is_Phi(),
|
|
894 |
"CreateEx must be first instruction in block" );
|
|
895 |
}
|
|
896 |
for( uint k = 0; k < n->req(); k++ ) {
|
|
897 |
Node *use = n->in(k);
|
|
898 |
if( use && use != n ) {
|
|
899 |
assert( _bbs[use->_idx] || use->is_Con(),
|
|
900 |
"must have block; constants for debug info ok" );
|
|
901 |
}
|
|
902 |
}
|
|
903 |
}
|
|
904 |
|
|
905 |
j = b->end_idx();
|
|
906 |
Node *bp = (Node*)b->_nodes[b->_nodes.size()-1]->is_block_proj();
|
|
907 |
assert( bp, "last instruction must be a block proj" );
|
|
908 |
assert( bp == b->_nodes[j], "wrong number of successors for this block" );
|
|
909 |
if( bp->is_Catch() ) {
|
|
910 |
while( b->_nodes[--j]->Opcode() == Op_MachProj ) ;
|
|
911 |
assert( b->_nodes[j]->is_Call(), "CatchProj must follow call" );
|
|
912 |
}
|
|
913 |
else if( bp->is_Mach() && bp->as_Mach()->ideal_Opcode() == Op_If ) {
|
|
914 |
assert( b->_num_succs == 2, "Conditional branch must have two targets");
|
|
915 |
}
|
|
916 |
}
|
|
917 |
}
|
|
918 |
#endif
|
|
919 |
|
|
920 |
//=============================================================================
|
|
921 |
//------------------------------UnionFind--------------------------------------
|
|
922 |
UnionFind::UnionFind( uint max ) : _cnt(max), _max(max), _indices(NEW_RESOURCE_ARRAY(uint,max)) {
|
|
923 |
Copy::zero_to_bytes( _indices, sizeof(uint)*max );
|
|
924 |
}
|
|
925 |
|
|
926 |
void UnionFind::extend( uint from_idx, uint to_idx ) {
|
|
927 |
_nesting.check();
|
|
928 |
if( from_idx >= _max ) {
|
|
929 |
uint size = 16;
|
|
930 |
while( size <= from_idx ) size <<=1;
|
|
931 |
_indices = REALLOC_RESOURCE_ARRAY( uint, _indices, _max, size );
|
|
932 |
_max = size;
|
|
933 |
}
|
|
934 |
while( _cnt <= from_idx ) _indices[_cnt++] = 0;
|
|
935 |
_indices[from_idx] = to_idx;
|
|
936 |
}
|
|
937 |
|
|
938 |
void UnionFind::reset( uint max ) {
|
|
939 |
assert( max <= max_uint, "Must fit within uint" );
|
|
940 |
// Force the Union-Find mapping to be at least this large
|
|
941 |
extend(max,0);
|
|
942 |
// Initialize to be the ID mapping.
|
1498
|
943 |
for( uint i=0; i<max; i++ ) map(i,i);
|
1
|
944 |
}
|
|
945 |
|
|
946 |
//------------------------------Find_compress----------------------------------
|
|
947 |
// Straight out of Tarjan's union-find algorithm
|
|
948 |
uint UnionFind::Find_compress( uint idx ) {
|
|
949 |
uint cur = idx;
|
|
950 |
uint next = lookup(cur);
|
|
951 |
while( next != cur ) { // Scan chain of equivalences
|
|
952 |
assert( next < cur, "always union smaller" );
|
|
953 |
cur = next; // until find a fixed-point
|
|
954 |
next = lookup(cur);
|
|
955 |
}
|
|
956 |
// Core of union-find algorithm: update chain of
|
|
957 |
// equivalences to be equal to the root.
|
|
958 |
while( idx != next ) {
|
|
959 |
uint tmp = lookup(idx);
|
|
960 |
map(idx, next);
|
|
961 |
idx = tmp;
|
|
962 |
}
|
|
963 |
return idx;
|
|
964 |
}
|
|
965 |
|
|
966 |
//------------------------------Find_const-------------------------------------
|
|
967 |
// Like Find above, but no path compress, so bad asymptotic behavior
|
|
968 |
uint UnionFind::Find_const( uint idx ) const {
|
|
969 |
if( idx == 0 ) return idx; // Ignore the zero idx
|
|
970 |
// Off the end? This can happen during debugging dumps
|
|
971 |
// when data structures have not finished being updated.
|
|
972 |
if( idx >= _max ) return idx;
|
|
973 |
uint next = lookup(idx);
|
|
974 |
while( next != idx ) { // Scan chain of equivalences
|
|
975 |
idx = next; // until find a fixed-point
|
|
976 |
next = lookup(idx);
|
|
977 |
}
|
|
978 |
return next;
|
|
979 |
}
|
|
980 |
|
|
981 |
//------------------------------Union------------------------------------------
|
|
982 |
// union 2 sets together.
|
|
983 |
void UnionFind::Union( uint idx1, uint idx2 ) {
|
|
984 |
uint src = Find(idx1);
|
|
985 |
uint dst = Find(idx2);
|
|
986 |
assert( src, "" );
|
|
987 |
assert( dst, "" );
|
|
988 |
assert( src < _max, "oob" );
|
|
989 |
assert( dst < _max, "oob" );
|
|
990 |
assert( src < dst, "always union smaller" );
|
|
991 |
map(dst,src);
|
|
992 |
}
|
1498
|
993 |
|
|
994 |
#ifndef PRODUCT
|
|
995 |
static void edge_dump(GrowableArray<CFGEdge *> *edges) {
|
|
996 |
tty->print_cr("---- Edges ----");
|
|
997 |
for (int i = 0; i < edges->length(); i++) {
|
|
998 |
CFGEdge *e = edges->at(i);
|
|
999 |
if (e != NULL) {
|
|
1000 |
edges->at(i)->dump();
|
|
1001 |
}
|
|
1002 |
}
|
|
1003 |
}
|
|
1004 |
|
|
1005 |
static void trace_dump(Trace *traces[], int count) {
|
|
1006 |
tty->print_cr("---- Traces ----");
|
|
1007 |
for (int i = 0; i < count; i++) {
|
|
1008 |
Trace *tr = traces[i];
|
|
1009 |
if (tr != NULL) {
|
|
1010 |
tr->dump();
|
|
1011 |
}
|
|
1012 |
}
|
|
1013 |
}
|
|
1014 |
|
|
1015 |
void Trace::dump( ) const {
|
|
1016 |
tty->print_cr("Trace (freq %f)", first_block()->_freq);
|
|
1017 |
for (Block *b = first_block(); b != NULL; b = next(b)) {
|
|
1018 |
tty->print(" B%d", b->_pre_order);
|
|
1019 |
if (b->head()->is_Loop()) {
|
|
1020 |
tty->print(" (L%d)", b->compute_loop_alignment());
|
|
1021 |
}
|
|
1022 |
if (b->has_loop_alignment()) {
|
|
1023 |
tty->print(" (T%d)", b->code_alignment());
|
|
1024 |
}
|
|
1025 |
}
|
|
1026 |
tty->cr();
|
|
1027 |
}
|
|
1028 |
|
|
1029 |
void CFGEdge::dump( ) const {
|
|
1030 |
tty->print(" B%d --> B%d Freq: %f out:%3d%% in:%3d%% State: ",
|
|
1031 |
from()->_pre_order, to()->_pre_order, freq(), _from_pct, _to_pct);
|
|
1032 |
switch(state()) {
|
|
1033 |
case connected:
|
|
1034 |
tty->print("connected");
|
|
1035 |
break;
|
|
1036 |
case open:
|
|
1037 |
tty->print("open");
|
|
1038 |
break;
|
|
1039 |
case interior:
|
|
1040 |
tty->print("interior");
|
|
1041 |
break;
|
|
1042 |
}
|
|
1043 |
if (infrequent()) {
|
|
1044 |
tty->print(" infrequent");
|
|
1045 |
}
|
|
1046 |
tty->cr();
|
|
1047 |
}
|
|
1048 |
#endif
|
|
1049 |
|
|
1050 |
//=============================================================================
|
|
1051 |
|
|
1052 |
//------------------------------edge_order-------------------------------------
|
|
1053 |
// Comparison function for edges
|
|
1054 |
static int edge_order(CFGEdge **e0, CFGEdge **e1) {
|
|
1055 |
float freq0 = (*e0)->freq();
|
|
1056 |
float freq1 = (*e1)->freq();
|
|
1057 |
if (freq0 != freq1) {
|
|
1058 |
return freq0 > freq1 ? -1 : 1;
|
|
1059 |
}
|
|
1060 |
|
|
1061 |
int dist0 = (*e0)->to()->_rpo - (*e0)->from()->_rpo;
|
|
1062 |
int dist1 = (*e1)->to()->_rpo - (*e1)->from()->_rpo;
|
|
1063 |
|
|
1064 |
return dist1 - dist0;
|
|
1065 |
}
|
|
1066 |
|
|
1067 |
//------------------------------trace_frequency_order--------------------------
|
|
1068 |
// Comparison function for edges
|
|
1069 |
static int trace_frequency_order(const void *p0, const void *p1) {
|
|
1070 |
Trace *tr0 = *(Trace **) p0;
|
|
1071 |
Trace *tr1 = *(Trace **) p1;
|
|
1072 |
Block *b0 = tr0->first_block();
|
|
1073 |
Block *b1 = tr1->first_block();
|
|
1074 |
|
|
1075 |
// The trace of connector blocks goes at the end;
|
|
1076 |
// we only expect one such trace
|
|
1077 |
if (b0->is_connector() != b1->is_connector()) {
|
|
1078 |
return b1->is_connector() ? -1 : 1;
|
|
1079 |
}
|
|
1080 |
|
|
1081 |
// Pull more frequently executed blocks to the beginning
|
|
1082 |
float freq0 = b0->_freq;
|
|
1083 |
float freq1 = b1->_freq;
|
|
1084 |
if (freq0 != freq1) {
|
|
1085 |
return freq0 > freq1 ? -1 : 1;
|
|
1086 |
}
|
|
1087 |
|
|
1088 |
int diff = tr0->first_block()->_rpo - tr1->first_block()->_rpo;
|
|
1089 |
|
|
1090 |
return diff;
|
|
1091 |
}
|
|
1092 |
|
|
1093 |
//------------------------------find_edges-------------------------------------
|
|
1094 |
// Find edges of interest, i.e, those which can fall through. Presumes that
|
|
1095 |
// edges which don't fall through are of low frequency and can be generally
|
|
1096 |
// ignored. Initialize the list of traces.
|
|
1097 |
void PhaseBlockLayout::find_edges()
|
|
1098 |
{
|
|
1099 |
// Walk the blocks, creating edges and Traces
|
|
1100 |
uint i;
|
|
1101 |
Trace *tr = NULL;
|
|
1102 |
for (i = 0; i < _cfg._num_blocks; i++) {
|
|
1103 |
Block *b = _cfg._blocks[i];
|
|
1104 |
tr = new Trace(b, next, prev);
|
|
1105 |
traces[tr->id()] = tr;
|
|
1106 |
|
|
1107 |
// All connector blocks should be at the end of the list
|
|
1108 |
if (b->is_connector()) break;
|
|
1109 |
|
|
1110 |
// If this block and the next one have a one-to-one successor
|
|
1111 |
// predecessor relationship, simply append the next block
|
|
1112 |
int nfallthru = b->num_fall_throughs();
|
|
1113 |
while (nfallthru == 1 &&
|
|
1114 |
b->succ_fall_through(0)) {
|
|
1115 |
Block *n = b->_succs[0];
|
|
1116 |
|
|
1117 |
// Skip over single-entry connector blocks, we don't want to
|
|
1118 |
// add them to the trace.
|
|
1119 |
while (n->is_connector() && n->num_preds() == 1) {
|
|
1120 |
n = n->_succs[0];
|
|
1121 |
}
|
|
1122 |
|
|
1123 |
// We see a merge point, so stop search for the next block
|
|
1124 |
if (n->num_preds() != 1) break;
|
|
1125 |
|
|
1126 |
i++;
|
|
1127 |
assert(n = _cfg._blocks[i], "expecting next block");
|
|
1128 |
tr->append(n);
|
|
1129 |
uf->map(n->_pre_order, tr->id());
|
|
1130 |
traces[n->_pre_order] = NULL;
|
|
1131 |
nfallthru = b->num_fall_throughs();
|
|
1132 |
b = n;
|
|
1133 |
}
|
|
1134 |
|
|
1135 |
if (nfallthru > 0) {
|
|
1136 |
// Create a CFGEdge for each outgoing
|
|
1137 |
// edge that could be a fall-through.
|
|
1138 |
for (uint j = 0; j < b->_num_succs; j++ ) {
|
|
1139 |
if (b->succ_fall_through(j)) {
|
|
1140 |
Block *target = b->non_connector_successor(j);
|
|
1141 |
float freq = b->_freq * b->succ_prob(j);
|
|
1142 |
int from_pct = (int) ((100 * freq) / b->_freq);
|
|
1143 |
int to_pct = (int) ((100 * freq) / target->_freq);
|
|
1144 |
edges->append(new CFGEdge(b, target, freq, from_pct, to_pct));
|
|
1145 |
}
|
|
1146 |
}
|
|
1147 |
}
|
|
1148 |
}
|
|
1149 |
|
|
1150 |
// Group connector blocks into one trace
|
|
1151 |
for (i++; i < _cfg._num_blocks; i++) {
|
|
1152 |
Block *b = _cfg._blocks[i];
|
|
1153 |
assert(b->is_connector(), "connector blocks at the end");
|
|
1154 |
tr->append(b);
|
|
1155 |
uf->map(b->_pre_order, tr->id());
|
|
1156 |
traces[b->_pre_order] = NULL;
|
|
1157 |
}
|
|
1158 |
}
|
|
1159 |
|
|
1160 |
//------------------------------union_traces----------------------------------
|
|
1161 |
// Union two traces together in uf, and null out the trace in the list
|
|
1162 |
void PhaseBlockLayout::union_traces(Trace* updated_trace, Trace* old_trace)
|
|
1163 |
{
|
|
1164 |
uint old_id = old_trace->id();
|
|
1165 |
uint updated_id = updated_trace->id();
|
|
1166 |
|
|
1167 |
uint lo_id = updated_id;
|
|
1168 |
uint hi_id = old_id;
|
|
1169 |
|
|
1170 |
// If from is greater than to, swap values to meet
|
|
1171 |
// UnionFind guarantee.
|
|
1172 |
if (updated_id > old_id) {
|
|
1173 |
lo_id = old_id;
|
|
1174 |
hi_id = updated_id;
|
|
1175 |
|
|
1176 |
// Fix up the trace ids
|
|
1177 |
traces[lo_id] = traces[updated_id];
|
|
1178 |
updated_trace->set_id(lo_id);
|
|
1179 |
}
|
|
1180 |
|
|
1181 |
// Union the lower with the higher and remove the pointer
|
|
1182 |
// to the higher.
|
|
1183 |
uf->Union(lo_id, hi_id);
|
|
1184 |
traces[hi_id] = NULL;
|
|
1185 |
}
|
|
1186 |
|
|
1187 |
//------------------------------grow_traces-------------------------------------
|
|
1188 |
// Append traces together via the most frequently executed edges
|
|
1189 |
void PhaseBlockLayout::grow_traces()
|
|
1190 |
{
|
|
1191 |
// Order the edges, and drive the growth of Traces via the most
|
|
1192 |
// frequently executed edges.
|
|
1193 |
edges->sort(edge_order);
|
|
1194 |
for (int i = 0; i < edges->length(); i++) {
|
|
1195 |
CFGEdge *e = edges->at(i);
|
|
1196 |
|
|
1197 |
if (e->state() != CFGEdge::open) continue;
|
|
1198 |
|
|
1199 |
Block *src_block = e->from();
|
|
1200 |
Block *targ_block = e->to();
|
|
1201 |
|
|
1202 |
// Don't grow traces along backedges?
|
|
1203 |
if (!BlockLayoutRotateLoops) {
|
|
1204 |
if (targ_block->_rpo <= src_block->_rpo) {
|
|
1205 |
targ_block->set_loop_alignment(targ_block);
|
|
1206 |
continue;
|
|
1207 |
}
|
|
1208 |
}
|
|
1209 |
|
|
1210 |
Trace *src_trace = trace(src_block);
|
|
1211 |
Trace *targ_trace = trace(targ_block);
|
|
1212 |
|
|
1213 |
// If the edge in question can join two traces at their ends,
|
|
1214 |
// append one trace to the other.
|
|
1215 |
if (src_trace->last_block() == src_block) {
|
|
1216 |
if (src_trace == targ_trace) {
|
|
1217 |
e->set_state(CFGEdge::interior);
|
|
1218 |
if (targ_trace->backedge(e)) {
|
|
1219 |
// Reset i to catch any newly eligible edge
|
|
1220 |
// (Or we could remember the first "open" edge, and reset there)
|
|
1221 |
i = 0;
|
|
1222 |
}
|
|
1223 |
} else if (targ_trace->first_block() == targ_block) {
|
|
1224 |
e->set_state(CFGEdge::connected);
|
|
1225 |
src_trace->append(targ_trace);
|
|
1226 |
union_traces(src_trace, targ_trace);
|
|
1227 |
}
|
|
1228 |
}
|
|
1229 |
}
|
|
1230 |
}
|
|
1231 |
|
|
1232 |
//------------------------------merge_traces-----------------------------------
|
|
1233 |
// Embed one trace into another, if the fork or join points are sufficiently
|
|
1234 |
// balanced.
|
|
1235 |
void PhaseBlockLayout::merge_traces(bool fall_thru_only)
|
|
1236 |
{
|
|
1237 |
// Walk the edge list a another time, looking at unprocessed edges.
|
|
1238 |
// Fold in diamonds
|
|
1239 |
for (int i = 0; i < edges->length(); i++) {
|
|
1240 |
CFGEdge *e = edges->at(i);
|
|
1241 |
|
|
1242 |
if (e->state() != CFGEdge::open) continue;
|
|
1243 |
if (fall_thru_only) {
|
|
1244 |
if (e->infrequent()) continue;
|
|
1245 |
}
|
|
1246 |
|
|
1247 |
Block *src_block = e->from();
|
|
1248 |
Trace *src_trace = trace(src_block);
|
|
1249 |
bool src_at_tail = src_trace->last_block() == src_block;
|
|
1250 |
|
|
1251 |
Block *targ_block = e->to();
|
|
1252 |
Trace *targ_trace = trace(targ_block);
|
|
1253 |
bool targ_at_start = targ_trace->first_block() == targ_block;
|
|
1254 |
|
|
1255 |
if (src_trace == targ_trace) {
|
|
1256 |
// This may be a loop, but we can't do much about it.
|
|
1257 |
e->set_state(CFGEdge::interior);
|
|
1258 |
continue;
|
|
1259 |
}
|
|
1260 |
|
|
1261 |
if (fall_thru_only) {
|
|
1262 |
// If the edge links the middle of two traces, we can't do anything.
|
|
1263 |
// Mark the edge and continue.
|
|
1264 |
if (!src_at_tail & !targ_at_start) {
|
|
1265 |
continue;
|
|
1266 |
}
|
|
1267 |
|
|
1268 |
// Don't grow traces along backedges?
|
|
1269 |
if (!BlockLayoutRotateLoops && (targ_block->_rpo <= src_block->_rpo)) {
|
|
1270 |
continue;
|
|
1271 |
}
|
|
1272 |
|
|
1273 |
// If both ends of the edge are available, why didn't we handle it earlier?
|
|
1274 |
assert(src_at_tail ^ targ_at_start, "Should have caught this edge earlier.");
|
|
1275 |
|
|
1276 |
if (targ_at_start) {
|
|
1277 |
// Insert the "targ" trace in the "src" trace if the insertion point
|
|
1278 |
// is a two way branch.
|
|
1279 |
// Better profitability check possible, but may not be worth it.
|
|
1280 |
// Someday, see if the this "fork" has an associated "join";
|
|
1281 |
// then make a policy on merging this trace at the fork or join.
|
|
1282 |
// For example, other things being equal, it may be better to place this
|
|
1283 |
// trace at the join point if the "src" trace ends in a two-way, but
|
|
1284 |
// the insertion point is one-way.
|
|
1285 |
assert(src_block->num_fall_throughs() == 2, "unexpected diamond");
|
|
1286 |
e->set_state(CFGEdge::connected);
|
|
1287 |
src_trace->insert_after(src_block, targ_trace);
|
|
1288 |
union_traces(src_trace, targ_trace);
|
|
1289 |
} else if (src_at_tail) {
|
|
1290 |
if (src_trace != trace(_cfg._broot)) {
|
|
1291 |
e->set_state(CFGEdge::connected);
|
|
1292 |
targ_trace->insert_before(targ_block, src_trace);
|
|
1293 |
union_traces(targ_trace, src_trace);
|
|
1294 |
}
|
|
1295 |
}
|
|
1296 |
} else if (e->state() == CFGEdge::open) {
|
|
1297 |
// Append traces, even without a fall-thru connection.
|
|
1298 |
// But leave root entry at the begining of the block list.
|
|
1299 |
if (targ_trace != trace(_cfg._broot)) {
|
|
1300 |
e->set_state(CFGEdge::connected);
|
|
1301 |
src_trace->append(targ_trace);
|
|
1302 |
union_traces(src_trace, targ_trace);
|
|
1303 |
}
|
|
1304 |
}
|
|
1305 |
}
|
|
1306 |
}
|
|
1307 |
|
|
1308 |
//----------------------------reorder_traces-----------------------------------
|
|
1309 |
// Order the sequence of the traces in some desirable way, and fixup the
|
|
1310 |
// jumps at the end of each block.
|
|
1311 |
void PhaseBlockLayout::reorder_traces(int count)
|
|
1312 |
{
|
|
1313 |
ResourceArea *area = Thread::current()->resource_area();
|
|
1314 |
Trace ** new_traces = NEW_ARENA_ARRAY(area, Trace *, count);
|
|
1315 |
Block_List worklist;
|
|
1316 |
int new_count = 0;
|
|
1317 |
|
|
1318 |
// Compact the traces.
|
|
1319 |
for (int i = 0; i < count; i++) {
|
|
1320 |
Trace *tr = traces[i];
|
|
1321 |
if (tr != NULL) {
|
|
1322 |
new_traces[new_count++] = tr;
|
|
1323 |
}
|
|
1324 |
}
|
|
1325 |
|
|
1326 |
// The entry block should be first on the new trace list.
|
|
1327 |
Trace *tr = trace(_cfg._broot);
|
|
1328 |
assert(tr == new_traces[0], "entry trace misplaced");
|
|
1329 |
|
|
1330 |
// Sort the new trace list by frequency
|
|
1331 |
qsort(new_traces + 1, new_count - 1, sizeof(new_traces[0]), trace_frequency_order);
|
|
1332 |
|
|
1333 |
// Patch up the successor blocks
|
|
1334 |
_cfg._blocks.reset();
|
|
1335 |
_cfg._num_blocks = 0;
|
|
1336 |
for (int i = 0; i < new_count; i++) {
|
|
1337 |
Trace *tr = new_traces[i];
|
|
1338 |
if (tr != NULL) {
|
|
1339 |
tr->fixup_blocks(_cfg);
|
|
1340 |
}
|
|
1341 |
}
|
|
1342 |
}
|
|
1343 |
|
|
1344 |
//------------------------------PhaseBlockLayout-------------------------------
|
|
1345 |
// Order basic blocks based on frequency
|
|
1346 |
PhaseBlockLayout::PhaseBlockLayout(PhaseCFG &cfg) :
|
|
1347 |
Phase(BlockLayout),
|
|
1348 |
_cfg(cfg)
|
|
1349 |
{
|
|
1350 |
ResourceMark rm;
|
|
1351 |
ResourceArea *area = Thread::current()->resource_area();
|
|
1352 |
|
|
1353 |
// List of traces
|
|
1354 |
int size = _cfg._num_blocks + 1;
|
|
1355 |
traces = NEW_ARENA_ARRAY(area, Trace *, size);
|
|
1356 |
memset(traces, 0, size*sizeof(Trace*));
|
|
1357 |
next = NEW_ARENA_ARRAY(area, Block *, size);
|
|
1358 |
memset(next, 0, size*sizeof(Block *));
|
|
1359 |
prev = NEW_ARENA_ARRAY(area, Block *, size);
|
|
1360 |
memset(prev , 0, size*sizeof(Block *));
|
|
1361 |
|
|
1362 |
// List of edges
|
|
1363 |
edges = new GrowableArray<CFGEdge*>;
|
|
1364 |
|
|
1365 |
// Mapping block index --> block_trace
|
|
1366 |
uf = new UnionFind(size);
|
|
1367 |
uf->reset(size);
|
|
1368 |
|
|
1369 |
// Find edges and create traces.
|
|
1370 |
find_edges();
|
|
1371 |
|
|
1372 |
// Grow traces at their ends via most frequent edges.
|
|
1373 |
grow_traces();
|
|
1374 |
|
|
1375 |
// Merge one trace into another, but only at fall-through points.
|
|
1376 |
// This may make diamonds and other related shapes in a trace.
|
|
1377 |
merge_traces(true);
|
|
1378 |
|
|
1379 |
// Run merge again, allowing two traces to be catenated, even if
|
|
1380 |
// one does not fall through into the other. This appends loosely
|
|
1381 |
// related traces to be near each other.
|
|
1382 |
merge_traces(false);
|
|
1383 |
|
|
1384 |
// Re-order all the remaining traces by frequency
|
|
1385 |
reorder_traces(size);
|
|
1386 |
|
|
1387 |
assert(_cfg._num_blocks >= (uint) (size - 1), "number of blocks can not shrink");
|
|
1388 |
}
|
|
1389 |
|
|
1390 |
|
|
1391 |
//------------------------------backedge---------------------------------------
|
|
1392 |
// Edge e completes a loop in a trace. If the target block is head of the
|
|
1393 |
// loop, rotate the loop block so that the loop ends in a conditional branch.
|
|
1394 |
bool Trace::backedge(CFGEdge *e) {
|
|
1395 |
bool loop_rotated = false;
|
|
1396 |
Block *src_block = e->from();
|
|
1397 |
Block *targ_block = e->to();
|
|
1398 |
|
|
1399 |
assert(last_block() == src_block, "loop discovery at back branch");
|
|
1400 |
if (first_block() == targ_block) {
|
|
1401 |
if (BlockLayoutRotateLoops && last_block()->num_fall_throughs() < 2) {
|
|
1402 |
// Find the last block in the trace that has a conditional
|
|
1403 |
// branch.
|
|
1404 |
Block *b;
|
|
1405 |
for (b = last_block(); b != NULL; b = prev(b)) {
|
|
1406 |
if (b->num_fall_throughs() == 2) {
|
|
1407 |
break;
|
|
1408 |
}
|
|
1409 |
}
|
|
1410 |
|
|
1411 |
if (b != last_block() && b != NULL) {
|
|
1412 |
loop_rotated = true;
|
|
1413 |
|
|
1414 |
// Rotate the loop by doing two-part linked-list surgery.
|
|
1415 |
append(first_block());
|
|
1416 |
break_loop_after(b);
|
|
1417 |
}
|
|
1418 |
}
|
|
1419 |
|
|
1420 |
// Backbranch to the top of a trace
|
|
1421 |
// Scroll foward through the trace from the targ_block. If we find
|
|
1422 |
// a loop head before another loop top, use the the loop head alignment.
|
|
1423 |
for (Block *b = targ_block; b != NULL; b = next(b)) {
|
|
1424 |
if (b->has_loop_alignment()) {
|
|
1425 |
break;
|
|
1426 |
}
|
|
1427 |
if (b->head()->is_Loop()) {
|
|
1428 |
targ_block = b;
|
|
1429 |
break;
|
|
1430 |
}
|
|
1431 |
}
|
|
1432 |
|
|
1433 |
first_block()->set_loop_alignment(targ_block);
|
|
1434 |
|
|
1435 |
} else {
|
|
1436 |
// Backbranch into the middle of a trace
|
|
1437 |
targ_block->set_loop_alignment(targ_block);
|
|
1438 |
}
|
|
1439 |
|
|
1440 |
return loop_rotated;
|
|
1441 |
}
|
|
1442 |
|
|
1443 |
//------------------------------fixup_blocks-----------------------------------
|
|
1444 |
// push blocks onto the CFG list
|
|
1445 |
// ensure that blocks have the correct two-way branch sense
|
|
1446 |
void Trace::fixup_blocks(PhaseCFG &cfg) {
|
|
1447 |
Block *last = last_block();
|
|
1448 |
for (Block *b = first_block(); b != NULL; b = next(b)) {
|
|
1449 |
cfg._blocks.push(b);
|
|
1450 |
cfg._num_blocks++;
|
|
1451 |
if (!b->is_connector()) {
|
|
1452 |
int nfallthru = b->num_fall_throughs();
|
|
1453 |
if (b != last) {
|
|
1454 |
if (nfallthru == 2) {
|
|
1455 |
// Ensure that the sense of the branch is correct
|
|
1456 |
Block *bnext = next(b);
|
|
1457 |
Block *bs0 = b->non_connector_successor(0);
|
|
1458 |
|
|
1459 |
MachNode *iff = b->_nodes[b->_nodes.size()-3]->as_Mach();
|
|
1460 |
ProjNode *proj0 = b->_nodes[b->_nodes.size()-2]->as_Proj();
|
|
1461 |
ProjNode *proj1 = b->_nodes[b->_nodes.size()-1]->as_Proj();
|
|
1462 |
|
|
1463 |
if (bnext == bs0) {
|
|
1464 |
// Fall-thru case in succs[0], should be in succs[1]
|
|
1465 |
|
|
1466 |
// Flip targets in _succs map
|
|
1467 |
Block *tbs0 = b->_succs[0];
|
|
1468 |
Block *tbs1 = b->_succs[1];
|
|
1469 |
b->_succs.map( 0, tbs1 );
|
|
1470 |
b->_succs.map( 1, tbs0 );
|
|
1471 |
|
|
1472 |
// Flip projections to match targets
|
|
1473 |
b->_nodes.map(b->_nodes.size()-2, proj1);
|
|
1474 |
b->_nodes.map(b->_nodes.size()-1, proj0);
|
|
1475 |
}
|
|
1476 |
}
|
|
1477 |
}
|
|
1478 |
}
|
|
1479 |
}
|
|
1480 |
}
|