author | lana |
Mon, 19 Mar 2018 21:52:50 +0000 | |
changeset 49266 | 778e4516409c |
parent 47216 | 71c04702a3d5 |
permissions | -rw-r--r-- |
2 | 1 |
/* |
23010
6dadb192ad81
8029235: Update copyright year to match last edit in jdk8 jdk repository for 2013
lana
parents:
21805
diff
changeset
|
2 |
* Copyright (c) 2002, 2013, Oracle and/or its affiliates. All rights reserved. |
2 | 3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 |
* |
|
5 |
* This code is free software; you can redistribute it and/or modify it |
|
6 |
* under the terms of the GNU General Public License version 2 only, as |
|
5506 | 7 |
* published by the Free Software Foundation. Oracle designates this |
2 | 8 |
* particular file as subject to the "Classpath" exception as provided |
5506 | 9 |
* by Oracle in the LICENSE file that accompanied this code. |
2 | 10 |
* |
11 |
* This code is distributed in the hope that it will be useful, but WITHOUT |
|
12 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
13 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
14 |
* version 2 for more details (a copy is included in the LICENSE file that |
|
15 |
* accompanied this code). |
|
16 |
* |
|
17 |
* You should have received a copy of the GNU General Public License version |
|
18 |
* 2 along with this work; if not, write to the Free Software Foundation, |
|
19 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
20 |
* |
|
5506 | 21 |
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
22 |
* or visit www.oracle.com if you need additional information or have any |
|
23 |
* questions. |
|
2 | 24 |
*/ |
25 |
||
26 |
package build.tools.generatecharacter; |
|
27 |
||
28 |
import java.text.*; |
|
29 |
import java.util.*; |
|
30 |
||
31 |
public class Utility { |
|
32 |
static byte peekByte(String s, int index) { |
|
33 |
char c = s.charAt(index/2); |
|
34 |
return ((index&1)==0)?(byte)(c>>8):(byte)c; |
|
35 |
} |
|
36 |
||
37 |
static short peekShort(String s, int index) { |
|
38 |
return (short)s.charAt(index); |
|
39 |
} |
|
40 |
||
41 |
static int peekInt(String s, int index) { |
|
42 |
index *= 2; |
|
43 |
return (((int)s.charAt(index)) << 16) | s.charAt(index+1); |
|
44 |
} |
|
45 |
||
46 |
static void poke(String s, int index, byte value) { |
|
47 |
int mask = 0xFF00; |
|
48 |
int ivalue = value; |
|
49 |
if ((index&1)==0) { |
|
50 |
ivalue <<= 8; |
|
51 |
mask = 0x00FF; |
|
52 |
} |
|
53 |
index /= 2; |
|
54 |
if (index == s.length()) { |
|
55 |
s = s + (char)ivalue; |
|
56 |
} |
|
57 |
else if (index == 0) { |
|
58 |
s = (char)(ivalue|(s.charAt(0)&mask)) + s.substring(1); |
|
59 |
} |
|
60 |
else { |
|
61 |
s = s.substring(0, index) + (char)(ivalue|(s.charAt(index)&mask)) |
|
62 |
+ s.substring(index+1); |
|
63 |
} |
|
64 |
} |
|
65 |
||
66 |
static void poke(String s, int index, short value) { |
|
67 |
if (index == s.length()) { |
|
68 |
s = s + (char)value; |
|
69 |
} |
|
70 |
else if (index == 0) { |
|
71 |
s = (char)value + s.substring(1); |
|
72 |
} |
|
73 |
else { |
|
74 |
s = s.substring(0, index) + (char)value + s.substring(index+1); |
|
75 |
} |
|
76 |
} |
|
77 |
||
78 |
static void poke(String s, int index, int value) { |
|
79 |
index *= 2; |
|
80 |
char hi = (char)(value >> 16); |
|
81 |
if (index == s.length()) { |
|
82 |
s = s + hi + (char)value; |
|
83 |
} |
|
84 |
else if (index == 0) { |
|
85 |
s = hi + (char)value + s.substring(2); |
|
86 |
} |
|
87 |
else { |
|
88 |
s = s.substring(0, index) + hi + (char)value + s.substring(index+2); |
|
89 |
} |
|
90 |
} |
|
91 |
||
92 |
/** |
|
93 |
* The ESCAPE character is used during run-length encoding. It signals |
|
94 |
* a run of identical chars. |
|
95 |
*/ |
|
96 |
static final char ESCAPE = '\uA5A5'; |
|
97 |
||
98 |
/** |
|
99 |
* The ESCAPE_BYTE character is used during run-length encoding. It signals |
|
100 |
* a run of identical bytes. |
|
101 |
*/ |
|
102 |
static final byte ESCAPE_BYTE = (byte)0xA5; |
|
103 |
||
104 |
/** |
|
105 |
* Construct a string representing a short array. Use run-length encoding. |
|
106 |
* A character represents itself, unless it is the ESCAPE character. Then |
|
107 |
* the following notations are possible: |
|
108 |
* ESCAPE ESCAPE ESCAPE literal |
|
109 |
* ESCAPE n c n instances of character c |
|
110 |
* Since an encoded run occupies 3 characters, we only encode runs of 4 or |
|
111 |
* more characters. Thus we have n > 0 and n != ESCAPE and n <= 0xFFFF. |
|
112 |
* If we encounter a run where n == ESCAPE, we represent this as: |
|
113 |
* c ESCAPE n-1 c |
|
114 |
* The ESCAPE value is chosen so as not to collide with commonly |
|
115 |
* seen values. |
|
116 |
*/ |
|
117 |
static final String arrayToRLEString(short[] a) { |
|
118 |
StringBuffer buffer = new StringBuffer(); |
|
119 |
// for (int i=0; i<a.length; ++i) buffer.append((char) a[i]); |
|
120 |
buffer.append((char) (a.length >> 16)); |
|
121 |
buffer.append((char) a.length); |
|
122 |
short runValue = a[0]; |
|
123 |
int runLength = 1; |
|
124 |
for (int i=1; i<a.length; ++i) { |
|
125 |
short s = a[i]; |
|
126 |
if (s == runValue && runLength < 0xFFFF) ++runLength; |
|
127 |
else { |
|
128 |
encodeRun(buffer, runValue, runLength); |
|
129 |
runValue = s; |
|
130 |
runLength = 1; |
|
131 |
} |
|
132 |
} |
|
133 |
encodeRun(buffer, runValue, runLength); |
|
134 |
return buffer.toString(); |
|
135 |
} |
|
136 |
||
137 |
/** |
|
138 |
* Construct a string representing a byte array. Use run-length encoding. |
|
139 |
* Two bytes are packed into a single char, with a single extra zero byte at |
|
140 |
* the end if needed. A byte represents itself, unless it is the |
|
141 |
* ESCAPE_BYTE. Then the following notations are possible: |
|
142 |
* ESCAPE_BYTE ESCAPE_BYTE ESCAPE_BYTE literal |
|
143 |
* ESCAPE_BYTE n b n instances of byte b |
|
144 |
* Since an encoded run occupies 3 bytes, we only encode runs of 4 or |
|
145 |
* more bytes. Thus we have n > 0 and n != ESCAPE_BYTE and n <= 0xFF. |
|
146 |
* If we encounter a run where n == ESCAPE_BYTE, we represent this as: |
|
147 |
* b ESCAPE_BYTE n-1 b |
|
148 |
* The ESCAPE_BYTE value is chosen so as not to collide with commonly |
|
149 |
* seen values. |
|
150 |
*/ |
|
151 |
static final String arrayToRLEString(byte[] a) { |
|
152 |
StringBuffer buffer = new StringBuffer(); |
|
153 |
buffer.append((char) (a.length >> 16)); |
|
154 |
buffer.append((char) a.length); |
|
155 |
byte runValue = a[0]; |
|
156 |
int runLength = 1; |
|
157 |
byte[] state = new byte[2]; |
|
158 |
for (int i=1; i<a.length; ++i) { |
|
159 |
byte b = a[i]; |
|
160 |
if (b == runValue && runLength < 0xFF) ++runLength; |
|
161 |
else { |
|
162 |
encodeRun(buffer, runValue, runLength, state); |
|
163 |
runValue = b; |
|
164 |
runLength = 1; |
|
165 |
} |
|
166 |
} |
|
167 |
encodeRun(buffer, runValue, runLength, state); |
|
168 |
||
169 |
// We must save the final byte, if there is one, by padding |
|
170 |
// an extra zero. |
|
171 |
if (state[0] != 0) appendEncodedByte(buffer, (byte)0, state); |
|
172 |
||
173 |
return buffer.toString(); |
|
174 |
} |
|
175 |
||
176 |
/** |
|
177 |
* Encode a run, possibly a degenerate run (of < 4 values). |
|
178 |
* @param length The length of the run; must be > 0 && <= 0xFFFF. |
|
179 |
*/ |
|
180 |
private static final void encodeRun(StringBuffer buffer, short value, int length) { |
|
181 |
if (length < 4) { |
|
182 |
for (int j=0; j<length; ++j) { |
|
183 |
if (value == (int) ESCAPE) buffer.append(ESCAPE); |
|
184 |
buffer.append((char) value); |
|
185 |
} |
|
186 |
} |
|
187 |
else { |
|
188 |
if (length == (int) ESCAPE) { |
|
189 |
if (value == (int) ESCAPE) buffer.append(ESCAPE); |
|
190 |
buffer.append((char) value); |
|
191 |
--length; |
|
192 |
} |
|
193 |
buffer.append(ESCAPE); |
|
194 |
buffer.append((char) length); |
|
195 |
buffer.append((char) value); // Don't need to escape this value |
|
196 |
} |
|
197 |
} |
|
198 |
||
199 |
/** |
|
200 |
* Encode a run, possibly a degenerate run (of < 4 values). |
|
201 |
* @param length The length of the run; must be > 0 && <= 0xFF. |
|
202 |
*/ |
|
203 |
private static final void encodeRun(StringBuffer buffer, byte value, int length, |
|
204 |
byte[] state) { |
|
205 |
if (length < 4) { |
|
206 |
for (int j=0; j<length; ++j) { |
|
207 |
if (value == ESCAPE_BYTE) appendEncodedByte(buffer, ESCAPE_BYTE, state); |
|
208 |
appendEncodedByte(buffer, value, state); |
|
209 |
} |
|
210 |
} |
|
211 |
else { |
|
212 |
if (length == ESCAPE_BYTE) { |
|
213 |
if (value == ESCAPE_BYTE) appendEncodedByte(buffer, ESCAPE_BYTE, state); |
|
214 |
appendEncodedByte(buffer, value, state); |
|
215 |
--length; |
|
216 |
} |
|
217 |
appendEncodedByte(buffer, ESCAPE_BYTE, state); |
|
218 |
appendEncodedByte(buffer, (byte)length, state); |
|
219 |
appendEncodedByte(buffer, value, state); // Don't need to escape this value |
|
220 |
} |
|
221 |
} |
|
222 |
||
223 |
/** |
|
224 |
* Append a byte to the given StringBuffer, packing two bytes into each |
|
225 |
* character. The state parameter maintains intermediary data between |
|
226 |
* calls. |
|
227 |
* @param state A two-element array, with state[0] == 0 if this is the |
|
228 |
* first byte of a pair, or state[0] != 0 if this is the second byte |
|
229 |
* of a pair, in which case state[1] is the first byte. |
|
230 |
*/ |
|
231 |
private static final void appendEncodedByte(StringBuffer buffer, byte value, |
|
232 |
byte[] state) { |
|
233 |
if (state[0] != 0) { |
|
234 |
char c = (char) ((state[1] << 8) | (((int) value) & 0xFF)); |
|
235 |
buffer.append(c); |
|
236 |
state[0] = 0; |
|
237 |
} |
|
238 |
else { |
|
239 |
state[0] = 1; |
|
240 |
state[1] = value; |
|
241 |
} |
|
242 |
} |
|
243 |
||
244 |
/** |
|
245 |
* Construct an array of shorts from a run-length encoded string. |
|
246 |
*/ |
|
247 |
static final short[] RLEStringToShortArray(String s) { |
|
248 |
int length = (((int) s.charAt(0)) << 16) | ((int) s.charAt(1)); |
|
249 |
short[] array = new short[length]; |
|
250 |
int ai = 0; |
|
251 |
for (int i=2; i<s.length(); ++i) { |
|
252 |
char c = s.charAt(i); |
|
253 |
if (c == ESCAPE) { |
|
254 |
c = s.charAt(++i); |
|
255 |
if (c == ESCAPE) array[ai++] = (short) c; |
|
256 |
else { |
|
257 |
int runLength = (int) c; |
|
258 |
short runValue = (short) s.charAt(++i); |
|
259 |
for (int j=0; j<runLength; ++j) array[ai++] = runValue; |
|
260 |
} |
|
261 |
} |
|
262 |
else { |
|
263 |
array[ai++] = (short) c; |
|
264 |
} |
|
265 |
} |
|
266 |
||
267 |
if (ai != length) |
|
268 |
throw new InternalError("Bad run-length encoded short array"); |
|
269 |
||
270 |
return array; |
|
271 |
} |
|
272 |
||
273 |
/** |
|
274 |
* Construct an array of bytes from a run-length encoded string. |
|
275 |
*/ |
|
276 |
static final byte[] RLEStringToByteArray(String s) { |
|
277 |
int length = (((int) s.charAt(0)) << 16) | ((int) s.charAt(1)); |
|
278 |
byte[] array = new byte[length]; |
|
279 |
boolean nextChar = true; |
|
280 |
char c = 0; |
|
281 |
int node = 0; |
|
282 |
int runLength = 0; |
|
283 |
int i = 2; |
|
284 |
for (int ai=0; ai<length; ) { |
|
285 |
// This part of the loop places the next byte into the local |
|
286 |
// variable 'b' each time through the loop. It keeps the |
|
287 |
// current character in 'c' and uses the boolean 'nextChar' |
|
288 |
// to see if we've taken both bytes out of 'c' yet. |
|
289 |
byte b; |
|
290 |
if (nextChar) { |
|
291 |
c = s.charAt(i++); |
|
292 |
b = (byte) (c >> 8); |
|
293 |
nextChar = false; |
|
294 |
} |
|
295 |
else { |
|
296 |
b = (byte) (c & 0xFF); |
|
297 |
nextChar = true; |
|
298 |
} |
|
299 |
||
300 |
// This part of the loop is a tiny state machine which handles |
|
301 |
// the parsing of the run-length encoding. This would be simpler |
|
302 |
// if we could look ahead, but we can't, so we use 'node' to |
|
303 |
// move between three nodes in the state machine. |
|
304 |
switch (node) { |
|
305 |
case 0: |
|
306 |
// Normal idle node |
|
307 |
if (b == ESCAPE_BYTE) { |
|
308 |
node = 1; |
|
309 |
} |
|
310 |
else { |
|
311 |
array[ai++] = b; |
|
312 |
} |
|
313 |
break; |
|
314 |
case 1: |
|
315 |
// We have seen one ESCAPE_BYTE; we expect either a second |
|
316 |
// one, or a run length and value. |
|
317 |
if (b == ESCAPE_BYTE) { |
|
318 |
array[ai++] = ESCAPE_BYTE; |
|
319 |
node = 0; |
|
320 |
} |
|
321 |
else { |
|
322 |
runLength = b; |
|
323 |
// Interpret signed byte as unsigned |
|
324 |
if (runLength < 0) runLength += 0x100; |
|
325 |
node = 2; |
|
326 |
} |
|
327 |
break; |
|
328 |
case 2: |
|
329 |
// We have seen an ESCAPE_BYTE and length byte. We interpret |
|
330 |
// the next byte as the value to be repeated. |
|
331 |
for (int j=0; j<runLength; ++j) array[ai++] = b; |
|
332 |
node = 0; |
|
333 |
break; |
|
334 |
} |
|
335 |
} |
|
336 |
||
337 |
if (node != 0) |
|
338 |
throw new InternalError("Bad run-length encoded byte array"); |
|
339 |
||
340 |
if (i != s.length()) |
|
341 |
throw new InternalError("Excess data in RLE byte array string"); |
|
342 |
||
343 |
return array; |
|
344 |
} |
|
345 |
||
346 |
/** |
|
347 |
* Format a String for representation in a source file. This includes |
|
348 |
* breaking it into lines escaping characters using octal notation |
|
349 |
* when necessary (control characters and double quotes). |
|
350 |
*/ |
|
351 |
static final String formatForSource(String s) { |
|
352 |
return formatForSource(s, " "); |
|
353 |
} |
|
354 |
||
355 |
/** |
|
356 |
* Format a String for representation in a source file. This includes |
|
357 |
* breaking it into lines escaping characters using octal notation |
|
358 |
* when necessary (control characters and double quotes). |
|
359 |
*/ |
|
360 |
static final String formatForSource(String s, String indent) { |
|
361 |
StringBuffer buffer = new StringBuffer(); |
|
362 |
for (int i=0; i<s.length();) { |
|
363 |
if (i > 0) buffer.append("+\n"); |
|
364 |
int limit = buffer.length() + 78; // Leave 2 for trailing <"+> |
|
365 |
buffer.append(indent + '"'); |
|
366 |
while (i<s.length() && buffer.length()<limit) { |
|
367 |
char c = s.charAt(i++); |
|
368 |
/* This works too but it's kind of unnecessary; might as |
|
369 |
well keep things simple. |
|
370 |
if (c == '\\' || c == '"') { |
|
371 |
// Escape backslash and double-quote. Don't need to |
|
372 |
// escape single-quote. |
|
373 |
buffer.append("\\" + c); |
|
374 |
} |
|
375 |
else if (c >= '\u0020' && c <= '\u007E') { |
|
376 |
// Printable ASCII ranges from ' ' to '~' |
|
377 |
buffer.append(c); |
|
378 |
} |
|
379 |
else |
|
380 |
*/ |
|
381 |
if (c <= '\377') { |
|
382 |
// Represent control characters |
|
383 |
// using octal notation; otherwise the string we form |
|
384 |
// won't compile, since Unicode escape sequences are |
|
385 |
// processed before tokenization. |
|
386 |
buffer.append('\\'); |
|
387 |
buffer.append(HEX_DIGIT[(c & 0700) >> 6]); // HEX_DIGIT works for octal |
|
388 |
buffer.append(HEX_DIGIT[(c & 0070) >> 3]); |
|
389 |
buffer.append(HEX_DIGIT[(c & 0007)]); |
|
390 |
} |
|
391 |
else { |
|
392 |
// Handle the rest with Unicode |
|
393 |
buffer.append("\\u"); |
|
394 |
buffer.append(HEX_DIGIT[(c & 0xF000) >> 12]); |
|
395 |
buffer.append(HEX_DIGIT[(c & 0x0F00) >> 8]); |
|
396 |
buffer.append(HEX_DIGIT[(c & 0x00F0) >> 4]); |
|
397 |
buffer.append(HEX_DIGIT[(c & 0x000F)]); |
|
398 |
} |
|
399 |
} |
|
400 |
buffer.append('"'); |
|
401 |
} |
|
402 |
return buffer.toString(); |
|
403 |
} |
|
404 |
||
405 |
static final char[] HEX_DIGIT = {'0','1','2','3','4','5','6','7', |
|
406 |
'8','9','A','B','C','D','E','F'}; |
|
407 |
} |