2
|
1 |
/*
|
|
2 |
* reserved comment block
|
|
3 |
* DO NOT REMOVE OR ALTER!
|
|
4 |
*/
|
|
5 |
/*
|
|
6 |
* jfdctflt.c
|
|
7 |
*
|
|
8 |
* Copyright (C) 1994-1996, Thomas G. Lane.
|
|
9 |
* This file is part of the Independent JPEG Group's software.
|
|
10 |
* For conditions of distribution and use, see the accompanying README file.
|
|
11 |
*
|
|
12 |
* This file contains a floating-point implementation of the
|
|
13 |
* forward DCT (Discrete Cosine Transform).
|
|
14 |
*
|
|
15 |
* This implementation should be more accurate than either of the integer
|
|
16 |
* DCT implementations. However, it may not give the same results on all
|
|
17 |
* machines because of differences in roundoff behavior. Speed will depend
|
|
18 |
* on the hardware's floating point capacity.
|
|
19 |
*
|
|
20 |
* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
|
|
21 |
* on each column. Direct algorithms are also available, but they are
|
|
22 |
* much more complex and seem not to be any faster when reduced to code.
|
|
23 |
*
|
|
24 |
* This implementation is based on Arai, Agui, and Nakajima's algorithm for
|
|
25 |
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
|
|
26 |
* Japanese, but the algorithm is described in the Pennebaker & Mitchell
|
|
27 |
* JPEG textbook (see REFERENCES section in file README). The following code
|
|
28 |
* is based directly on figure 4-8 in P&M.
|
|
29 |
* While an 8-point DCT cannot be done in less than 11 multiplies, it is
|
|
30 |
* possible to arrange the computation so that many of the multiplies are
|
|
31 |
* simple scalings of the final outputs. These multiplies can then be
|
|
32 |
* folded into the multiplications or divisions by the JPEG quantization
|
|
33 |
* table entries. The AA&N method leaves only 5 multiplies and 29 adds
|
|
34 |
* to be done in the DCT itself.
|
|
35 |
* The primary disadvantage of this method is that with a fixed-point
|
|
36 |
* implementation, accuracy is lost due to imprecise representation of the
|
|
37 |
* scaled quantization values. However, that problem does not arise if
|
|
38 |
* we use floating point arithmetic.
|
|
39 |
*/
|
|
40 |
|
|
41 |
#define JPEG_INTERNALS
|
|
42 |
#include "jinclude.h"
|
|
43 |
#include "jpeglib.h"
|
|
44 |
#include "jdct.h" /* Private declarations for DCT subsystem */
|
|
45 |
|
|
46 |
#ifdef DCT_FLOAT_SUPPORTED
|
|
47 |
|
|
48 |
|
|
49 |
/*
|
|
50 |
* This module is specialized to the case DCTSIZE = 8.
|
|
51 |
*/
|
|
52 |
|
|
53 |
#if DCTSIZE != 8
|
|
54 |
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
|
|
55 |
#endif
|
|
56 |
|
|
57 |
|
|
58 |
/*
|
|
59 |
* Perform the forward DCT on one block of samples.
|
|
60 |
*/
|
|
61 |
|
|
62 |
GLOBAL(void)
|
|
63 |
jpeg_fdct_float (FAST_FLOAT * data)
|
|
64 |
{
|
|
65 |
FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
|
|
66 |
FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
|
|
67 |
FAST_FLOAT z1, z2, z3, z4, z5, z11, z13;
|
|
68 |
FAST_FLOAT *dataptr;
|
|
69 |
int ctr;
|
|
70 |
|
|
71 |
/* Pass 1: process rows. */
|
|
72 |
|
|
73 |
dataptr = data;
|
|
74 |
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
|
|
75 |
tmp0 = dataptr[0] + dataptr[7];
|
|
76 |
tmp7 = dataptr[0] - dataptr[7];
|
|
77 |
tmp1 = dataptr[1] + dataptr[6];
|
|
78 |
tmp6 = dataptr[1] - dataptr[6];
|
|
79 |
tmp2 = dataptr[2] + dataptr[5];
|
|
80 |
tmp5 = dataptr[2] - dataptr[5];
|
|
81 |
tmp3 = dataptr[3] + dataptr[4];
|
|
82 |
tmp4 = dataptr[3] - dataptr[4];
|
|
83 |
|
|
84 |
/* Even part */
|
|
85 |
|
|
86 |
tmp10 = tmp0 + tmp3; /* phase 2 */
|
|
87 |
tmp13 = tmp0 - tmp3;
|
|
88 |
tmp11 = tmp1 + tmp2;
|
|
89 |
tmp12 = tmp1 - tmp2;
|
|
90 |
|
|
91 |
dataptr[0] = tmp10 + tmp11; /* phase 3 */
|
|
92 |
dataptr[4] = tmp10 - tmp11;
|
|
93 |
|
|
94 |
z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
|
|
95 |
dataptr[2] = tmp13 + z1; /* phase 5 */
|
|
96 |
dataptr[6] = tmp13 - z1;
|
|
97 |
|
|
98 |
/* Odd part */
|
|
99 |
|
|
100 |
tmp10 = tmp4 + tmp5; /* phase 2 */
|
|
101 |
tmp11 = tmp5 + tmp6;
|
|
102 |
tmp12 = tmp6 + tmp7;
|
|
103 |
|
|
104 |
/* The rotator is modified from fig 4-8 to avoid extra negations. */
|
|
105 |
z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
|
|
106 |
z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
|
|
107 |
z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
|
|
108 |
z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
|
|
109 |
|
|
110 |
z11 = tmp7 + z3; /* phase 5 */
|
|
111 |
z13 = tmp7 - z3;
|
|
112 |
|
|
113 |
dataptr[5] = z13 + z2; /* phase 6 */
|
|
114 |
dataptr[3] = z13 - z2;
|
|
115 |
dataptr[1] = z11 + z4;
|
|
116 |
dataptr[7] = z11 - z4;
|
|
117 |
|
|
118 |
dataptr += DCTSIZE; /* advance pointer to next row */
|
|
119 |
}
|
|
120 |
|
|
121 |
/* Pass 2: process columns. */
|
|
122 |
|
|
123 |
dataptr = data;
|
|
124 |
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
|
|
125 |
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
|
|
126 |
tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
|
|
127 |
tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
|
|
128 |
tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
|
|
129 |
tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
|
|
130 |
tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
|
|
131 |
tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
|
|
132 |
tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
|
|
133 |
|
|
134 |
/* Even part */
|
|
135 |
|
|
136 |
tmp10 = tmp0 + tmp3; /* phase 2 */
|
|
137 |
tmp13 = tmp0 - tmp3;
|
|
138 |
tmp11 = tmp1 + tmp2;
|
|
139 |
tmp12 = tmp1 - tmp2;
|
|
140 |
|
|
141 |
dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
|
|
142 |
dataptr[DCTSIZE*4] = tmp10 - tmp11;
|
|
143 |
|
|
144 |
z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
|
|
145 |
dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
|
|
146 |
dataptr[DCTSIZE*6] = tmp13 - z1;
|
|
147 |
|
|
148 |
/* Odd part */
|
|
149 |
|
|
150 |
tmp10 = tmp4 + tmp5; /* phase 2 */
|
|
151 |
tmp11 = tmp5 + tmp6;
|
|
152 |
tmp12 = tmp6 + tmp7;
|
|
153 |
|
|
154 |
/* The rotator is modified from fig 4-8 to avoid extra negations. */
|
|
155 |
z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
|
|
156 |
z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
|
|
157 |
z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
|
|
158 |
z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
|
|
159 |
|
|
160 |
z11 = tmp7 + z3; /* phase 5 */
|
|
161 |
z13 = tmp7 - z3;
|
|
162 |
|
|
163 |
dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
|
|
164 |
dataptr[DCTSIZE*3] = z13 - z2;
|
|
165 |
dataptr[DCTSIZE*1] = z11 + z4;
|
|
166 |
dataptr[DCTSIZE*7] = z11 - z4;
|
|
167 |
|
|
168 |
dataptr++; /* advance pointer to next column */
|
|
169 |
}
|
|
170 |
}
|
|
171 |
|
|
172 |
#endif /* DCT_FLOAT_SUPPORTED */
|