47126
|
1 |
/*
|
|
2 |
* Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation. Oracle designates this
|
|
8 |
* particular file as subject to the "Classpath" exception as provided
|
|
9 |
* by Oracle in the LICENSE file that accompanied this code.
|
|
10 |
*
|
|
11 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
12 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
13 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
14 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
15 |
* accompanied this code).
|
|
16 |
*
|
|
17 |
* You should have received a copy of the GNU General Public License version
|
|
18 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
19 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
20 |
*
|
|
21 |
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
22 |
* or visit www.oracle.com if you need additional information or have any
|
|
23 |
* questions.
|
|
24 |
*/
|
|
25 |
|
|
26 |
package sun.java2d.marlin;
|
|
27 |
|
|
28 |
import java.util.Arrays;
|
|
29 |
|
|
30 |
// TODO: some of the arithmetic here is too verbose and prone to hard to
|
|
31 |
// debug typos. We should consider making a small Point/Vector class that
|
|
32 |
// has methods like plus(Point), minus(Point), dot(Point), cross(Point)and such
|
|
33 |
final class DStroker implements DPathConsumer2D, MarlinConst {
|
|
34 |
|
|
35 |
private static final int MOVE_TO = 0;
|
|
36 |
private static final int DRAWING_OP_TO = 1; // ie. curve, line, or quad
|
|
37 |
private static final int CLOSE = 2;
|
|
38 |
|
|
39 |
/**
|
|
40 |
* Constant value for join style.
|
|
41 |
*/
|
|
42 |
public static final int JOIN_MITER = 0;
|
|
43 |
|
|
44 |
/**
|
|
45 |
* Constant value for join style.
|
|
46 |
*/
|
|
47 |
public static final int JOIN_ROUND = 1;
|
|
48 |
|
|
49 |
/**
|
|
50 |
* Constant value for join style.
|
|
51 |
*/
|
|
52 |
public static final int JOIN_BEVEL = 2;
|
|
53 |
|
|
54 |
/**
|
|
55 |
* Constant value for end cap style.
|
|
56 |
*/
|
|
57 |
public static final int CAP_BUTT = 0;
|
|
58 |
|
|
59 |
/**
|
|
60 |
* Constant value for end cap style.
|
|
61 |
*/
|
|
62 |
public static final int CAP_ROUND = 1;
|
|
63 |
|
|
64 |
/**
|
|
65 |
* Constant value for end cap style.
|
|
66 |
*/
|
|
67 |
public static final int CAP_SQUARE = 2;
|
|
68 |
|
|
69 |
// pisces used to use fixed point arithmetic with 16 decimal digits. I
|
|
70 |
// didn't want to change the values of the constant below when I converted
|
|
71 |
// it to floating point, so that's why the divisions by 2^16 are there.
|
|
72 |
private static final double ROUND_JOIN_THRESHOLD = 1000.0d/65536.0d;
|
|
73 |
|
|
74 |
private static final double C = 0.5522847498307933d;
|
|
75 |
|
|
76 |
private static final int MAX_N_CURVES = 11;
|
|
77 |
|
|
78 |
private DPathConsumer2D out;
|
|
79 |
|
|
80 |
private int capStyle;
|
|
81 |
private int joinStyle;
|
|
82 |
|
|
83 |
private double lineWidth2;
|
|
84 |
private double invHalfLineWidth2Sq;
|
|
85 |
|
|
86 |
private final double[] offset0 = new double[2];
|
|
87 |
private final double[] offset1 = new double[2];
|
|
88 |
private final double[] offset2 = new double[2];
|
|
89 |
private final double[] miter = new double[2];
|
|
90 |
private double miterLimitSq;
|
|
91 |
|
|
92 |
private int prev;
|
|
93 |
|
|
94 |
// The starting point of the path, and the slope there.
|
|
95 |
private double sx0, sy0, sdx, sdy;
|
|
96 |
// the current point and the slope there.
|
|
97 |
private double cx0, cy0, cdx, cdy; // c stands for current
|
|
98 |
// vectors that when added to (sx0,sy0) and (cx0,cy0) respectively yield the
|
|
99 |
// first and last points on the left parallel path. Since this path is
|
|
100 |
// parallel, it's slope at any point is parallel to the slope of the
|
|
101 |
// original path (thought they may have different directions), so these
|
|
102 |
// could be computed from sdx,sdy and cdx,cdy (and vice versa), but that
|
|
103 |
// would be error prone and hard to read, so we keep these anyway.
|
|
104 |
private double smx, smy, cmx, cmy;
|
|
105 |
|
|
106 |
private final PolyStack reverse;
|
|
107 |
|
|
108 |
// This is where the curve to be processed is put. We give it
|
|
109 |
// enough room to store all curves.
|
|
110 |
private final double[] middle = new double[MAX_N_CURVES * 6 + 2];
|
|
111 |
private final double[] lp = new double[8];
|
|
112 |
private final double[] rp = new double[8];
|
|
113 |
private final double[] subdivTs = new double[MAX_N_CURVES - 1];
|
|
114 |
|
|
115 |
// per-thread renderer context
|
|
116 |
final DRendererContext rdrCtx;
|
|
117 |
|
|
118 |
// dirty curve
|
|
119 |
final DCurve curve;
|
|
120 |
|
|
121 |
/**
|
|
122 |
* Constructs a <code>DStroker</code>.
|
|
123 |
* @param rdrCtx per-thread renderer context
|
|
124 |
*/
|
|
125 |
DStroker(final DRendererContext rdrCtx) {
|
|
126 |
this.rdrCtx = rdrCtx;
|
|
127 |
|
|
128 |
this.reverse = new PolyStack(rdrCtx);
|
|
129 |
this.curve = rdrCtx.curve;
|
|
130 |
}
|
|
131 |
|
|
132 |
/**
|
|
133 |
* Inits the <code>DStroker</code>.
|
|
134 |
*
|
|
135 |
* @param pc2d an output <code>DPathConsumer2D</code>.
|
|
136 |
* @param lineWidth the desired line width in pixels
|
|
137 |
* @param capStyle the desired end cap style, one of
|
|
138 |
* <code>CAP_BUTT</code>, <code>CAP_ROUND</code> or
|
|
139 |
* <code>CAP_SQUARE</code>.
|
|
140 |
* @param joinStyle the desired line join style, one of
|
|
141 |
* <code>JOIN_MITER</code>, <code>JOIN_ROUND</code> or
|
|
142 |
* <code>JOIN_BEVEL</code>.
|
|
143 |
* @param miterLimit the desired miter limit
|
|
144 |
* @return this instance
|
|
145 |
*/
|
|
146 |
DStroker init(DPathConsumer2D pc2d,
|
|
147 |
double lineWidth,
|
|
148 |
int capStyle,
|
|
149 |
int joinStyle,
|
|
150 |
double miterLimit)
|
|
151 |
{
|
|
152 |
this.out = pc2d;
|
|
153 |
|
|
154 |
this.lineWidth2 = lineWidth / 2.0d;
|
|
155 |
this.invHalfLineWidth2Sq = 1.0d / (2.0d * lineWidth2 * lineWidth2);
|
|
156 |
this.capStyle = capStyle;
|
|
157 |
this.joinStyle = joinStyle;
|
|
158 |
|
|
159 |
double limit = miterLimit * lineWidth2;
|
|
160 |
this.miterLimitSq = limit * limit;
|
|
161 |
|
|
162 |
this.prev = CLOSE;
|
|
163 |
|
|
164 |
rdrCtx.stroking = 1;
|
|
165 |
|
|
166 |
return this; // fluent API
|
|
167 |
}
|
|
168 |
|
|
169 |
/**
|
|
170 |
* Disposes this stroker:
|
|
171 |
* clean up before reusing this instance
|
|
172 |
*/
|
|
173 |
void dispose() {
|
|
174 |
reverse.dispose();
|
|
175 |
|
|
176 |
if (DO_CLEAN_DIRTY) {
|
|
177 |
// Force zero-fill dirty arrays:
|
|
178 |
Arrays.fill(offset0, 0.0d);
|
|
179 |
Arrays.fill(offset1, 0.0d);
|
|
180 |
Arrays.fill(offset2, 0.0d);
|
|
181 |
Arrays.fill(miter, 0.0d);
|
|
182 |
Arrays.fill(middle, 0.0d);
|
|
183 |
Arrays.fill(lp, 0.0d);
|
|
184 |
Arrays.fill(rp, 0.0d);
|
|
185 |
Arrays.fill(subdivTs, 0.0d);
|
|
186 |
}
|
|
187 |
}
|
|
188 |
|
|
189 |
private static void computeOffset(final double lx, final double ly,
|
|
190 |
final double w, final double[] m)
|
|
191 |
{
|
|
192 |
double len = lx*lx + ly*ly;
|
|
193 |
if (len == 0.0d) {
|
|
194 |
m[0] = 0.0d;
|
|
195 |
m[1] = 0.0d;
|
|
196 |
} else {
|
|
197 |
len = Math.sqrt(len);
|
|
198 |
m[0] = (ly * w) / len;
|
|
199 |
m[1] = -(lx * w) / len;
|
|
200 |
}
|
|
201 |
}
|
|
202 |
|
|
203 |
// Returns true if the vectors (dx1, dy1) and (dx2, dy2) are
|
|
204 |
// clockwise (if dx1,dy1 needs to be rotated clockwise to close
|
|
205 |
// the smallest angle between it and dx2,dy2).
|
|
206 |
// This is equivalent to detecting whether a point q is on the right side
|
|
207 |
// of a line passing through points p1, p2 where p2 = p1+(dx1,dy1) and
|
|
208 |
// q = p2+(dx2,dy2), which is the same as saying p1, p2, q are in a
|
|
209 |
// clockwise order.
|
|
210 |
// NOTE: "clockwise" here assumes coordinates with 0,0 at the bottom left.
|
|
211 |
private static boolean isCW(final double dx1, final double dy1,
|
|
212 |
final double dx2, final double dy2)
|
|
213 |
{
|
|
214 |
return dx1 * dy2 <= dy1 * dx2;
|
|
215 |
}
|
|
216 |
|
|
217 |
private void drawRoundJoin(double x, double y,
|
|
218 |
double omx, double omy, double mx, double my,
|
|
219 |
boolean rev,
|
|
220 |
double threshold)
|
|
221 |
{
|
|
222 |
if ((omx == 0.0d && omy == 0.0d) || (mx == 0.0d && my == 0.0d)) {
|
|
223 |
return;
|
|
224 |
}
|
|
225 |
|
|
226 |
double domx = omx - mx;
|
|
227 |
double domy = omy - my;
|
|
228 |
double len = domx*domx + domy*domy;
|
|
229 |
if (len < threshold) {
|
|
230 |
return;
|
|
231 |
}
|
|
232 |
|
|
233 |
if (rev) {
|
|
234 |
omx = -omx;
|
|
235 |
omy = -omy;
|
|
236 |
mx = -mx;
|
|
237 |
my = -my;
|
|
238 |
}
|
|
239 |
drawRoundJoin(x, y, omx, omy, mx, my, rev);
|
|
240 |
}
|
|
241 |
|
|
242 |
private void drawRoundJoin(double cx, double cy,
|
|
243 |
double omx, double omy,
|
|
244 |
double mx, double my,
|
|
245 |
boolean rev)
|
|
246 |
{
|
|
247 |
// The sign of the dot product of mx,my and omx,omy is equal to the
|
|
248 |
// the sign of the cosine of ext
|
|
249 |
// (ext is the angle between omx,omy and mx,my).
|
|
250 |
final double cosext = omx * mx + omy * my;
|
|
251 |
// If it is >=0, we know that abs(ext) is <= 90 degrees, so we only
|
|
252 |
// need 1 curve to approximate the circle section that joins omx,omy
|
|
253 |
// and mx,my.
|
|
254 |
final int numCurves = (cosext >= 0.0d) ? 1 : 2;
|
|
255 |
|
|
256 |
switch (numCurves) {
|
|
257 |
case 1:
|
|
258 |
drawBezApproxForArc(cx, cy, omx, omy, mx, my, rev);
|
|
259 |
break;
|
|
260 |
case 2:
|
|
261 |
// we need to split the arc into 2 arcs spanning the same angle.
|
|
262 |
// The point we want will be one of the 2 intersections of the
|
|
263 |
// perpendicular bisector of the chord (omx,omy)->(mx,my) and the
|
|
264 |
// circle. We could find this by scaling the vector
|
|
265 |
// (omx+mx, omy+my)/2 so that it has length=lineWidth2 (and thus lies
|
|
266 |
// on the circle), but that can have numerical problems when the angle
|
|
267 |
// between omx,omy and mx,my is close to 180 degrees. So we compute a
|
|
268 |
// normal of (omx,omy)-(mx,my). This will be the direction of the
|
|
269 |
// perpendicular bisector. To get one of the intersections, we just scale
|
|
270 |
// this vector that its length is lineWidth2 (this works because the
|
|
271 |
// perpendicular bisector goes through the origin). This scaling doesn't
|
|
272 |
// have numerical problems because we know that lineWidth2 divided by
|
|
273 |
// this normal's length is at least 0.5 and at most sqrt(2)/2 (because
|
|
274 |
// we know the angle of the arc is > 90 degrees).
|
|
275 |
double nx = my - omy, ny = omx - mx;
|
|
276 |
double nlen = Math.sqrt(nx*nx + ny*ny);
|
|
277 |
double scale = lineWidth2/nlen;
|
|
278 |
double mmx = nx * scale, mmy = ny * scale;
|
|
279 |
|
|
280 |
// if (isCW(omx, omy, mx, my) != isCW(mmx, mmy, mx, my)) then we've
|
|
281 |
// computed the wrong intersection so we get the other one.
|
|
282 |
// The test above is equivalent to if (rev).
|
|
283 |
if (rev) {
|
|
284 |
mmx = -mmx;
|
|
285 |
mmy = -mmy;
|
|
286 |
}
|
|
287 |
drawBezApproxForArc(cx, cy, omx, omy, mmx, mmy, rev);
|
|
288 |
drawBezApproxForArc(cx, cy, mmx, mmy, mx, my, rev);
|
|
289 |
break;
|
|
290 |
default:
|
|
291 |
}
|
|
292 |
}
|
|
293 |
|
|
294 |
// the input arc defined by omx,omy and mx,my must span <= 90 degrees.
|
|
295 |
private void drawBezApproxForArc(final double cx, final double cy,
|
|
296 |
final double omx, final double omy,
|
|
297 |
final double mx, final double my,
|
|
298 |
boolean rev)
|
|
299 |
{
|
|
300 |
final double cosext2 = (omx * mx + omy * my) * invHalfLineWidth2Sq;
|
|
301 |
|
|
302 |
// check round off errors producing cos(ext) > 1 and a NaN below
|
|
303 |
// cos(ext) == 1 implies colinear segments and an empty join anyway
|
|
304 |
if (cosext2 >= 0.5d) {
|
|
305 |
// just return to avoid generating a flat curve:
|
|
306 |
return;
|
|
307 |
}
|
|
308 |
|
|
309 |
// cv is the length of P1-P0 and P2-P3 divided by the radius of the arc
|
|
310 |
// (so, cv assumes the arc has radius 1). P0, P1, P2, P3 are the points that
|
|
311 |
// define the bezier curve we're computing.
|
|
312 |
// It is computed using the constraints that P1-P0 and P3-P2 are parallel
|
|
313 |
// to the arc tangents at the endpoints, and that |P1-P0|=|P3-P2|.
|
|
314 |
double cv = ((4.0d / 3.0d) * Math.sqrt(0.5d - cosext2) /
|
|
315 |
(1.0d + Math.sqrt(cosext2 + 0.5d)));
|
|
316 |
// if clockwise, we need to negate cv.
|
|
317 |
if (rev) { // rev is equivalent to isCW(omx, omy, mx, my)
|
|
318 |
cv = -cv;
|
|
319 |
}
|
|
320 |
final double x1 = cx + omx;
|
|
321 |
final double y1 = cy + omy;
|
|
322 |
final double x2 = x1 - cv * omy;
|
|
323 |
final double y2 = y1 + cv * omx;
|
|
324 |
|
|
325 |
final double x4 = cx + mx;
|
|
326 |
final double y4 = cy + my;
|
|
327 |
final double x3 = x4 + cv * my;
|
|
328 |
final double y3 = y4 - cv * mx;
|
|
329 |
|
|
330 |
emitCurveTo(x1, y1, x2, y2, x3, y3, x4, y4, rev);
|
|
331 |
}
|
|
332 |
|
|
333 |
private void drawRoundCap(double cx, double cy, double mx, double my) {
|
|
334 |
final double Cmx = C * mx;
|
|
335 |
final double Cmy = C * my;
|
|
336 |
emitCurveTo(cx + mx - Cmy, cy + my + Cmx,
|
|
337 |
cx - my + Cmx, cy + mx + Cmy,
|
|
338 |
cx - my, cy + mx);
|
|
339 |
emitCurveTo(cx - my - Cmx, cy + mx - Cmy,
|
|
340 |
cx - mx - Cmy, cy - my + Cmx,
|
|
341 |
cx - mx, cy - my);
|
|
342 |
}
|
|
343 |
|
|
344 |
// Return the intersection point of the lines (x0, y0) -> (x1, y1)
|
|
345 |
// and (x0p, y0p) -> (x1p, y1p) in m[off] and m[off+1]
|
|
346 |
private static void computeMiter(final double x0, final double y0,
|
|
347 |
final double x1, final double y1,
|
|
348 |
final double x0p, final double y0p,
|
|
349 |
final double x1p, final double y1p,
|
|
350 |
final double[] m, int off)
|
|
351 |
{
|
|
352 |
double x10 = x1 - x0;
|
|
353 |
double y10 = y1 - y0;
|
|
354 |
double x10p = x1p - x0p;
|
|
355 |
double y10p = y1p - y0p;
|
|
356 |
|
|
357 |
// if this is 0, the lines are parallel. If they go in the
|
|
358 |
// same direction, there is no intersection so m[off] and
|
|
359 |
// m[off+1] will contain infinity, so no miter will be drawn.
|
|
360 |
// If they go in the same direction that means that the start of the
|
|
361 |
// current segment and the end of the previous segment have the same
|
|
362 |
// tangent, in which case this method won't even be involved in
|
|
363 |
// miter drawing because it won't be called by drawMiter (because
|
|
364 |
// (mx == omx && my == omy) will be true, and drawMiter will return
|
|
365 |
// immediately).
|
|
366 |
double den = x10*y10p - x10p*y10;
|
|
367 |
double t = x10p*(y0-y0p) - y10p*(x0-x0p);
|
|
368 |
t /= den;
|
|
369 |
m[off++] = x0 + t*x10;
|
|
370 |
m[off] = y0 + t*y10;
|
|
371 |
}
|
|
372 |
|
|
373 |
// Return the intersection point of the lines (x0, y0) -> (x1, y1)
|
|
374 |
// and (x0p, y0p) -> (x1p, y1p) in m[off] and m[off+1]
|
|
375 |
private static void safeComputeMiter(final double x0, final double y0,
|
|
376 |
final double x1, final double y1,
|
|
377 |
final double x0p, final double y0p,
|
|
378 |
final double x1p, final double y1p,
|
|
379 |
final double[] m, int off)
|
|
380 |
{
|
|
381 |
double x10 = x1 - x0;
|
|
382 |
double y10 = y1 - y0;
|
|
383 |
double x10p = x1p - x0p;
|
|
384 |
double y10p = y1p - y0p;
|
|
385 |
|
|
386 |
// if this is 0, the lines are parallel. If they go in the
|
|
387 |
// same direction, there is no intersection so m[off] and
|
|
388 |
// m[off+1] will contain infinity, so no miter will be drawn.
|
|
389 |
// If they go in the same direction that means that the start of the
|
|
390 |
// current segment and the end of the previous segment have the same
|
|
391 |
// tangent, in which case this method won't even be involved in
|
|
392 |
// miter drawing because it won't be called by drawMiter (because
|
|
393 |
// (mx == omx && my == omy) will be true, and drawMiter will return
|
|
394 |
// immediately).
|
|
395 |
double den = x10*y10p - x10p*y10;
|
|
396 |
if (den == 0.0d) {
|
|
397 |
m[off++] = (x0 + x0p) / 2.0d;
|
|
398 |
m[off] = (y0 + y0p) / 2.0d;
|
|
399 |
return;
|
|
400 |
}
|
|
401 |
double t = x10p*(y0-y0p) - y10p*(x0-x0p);
|
|
402 |
t /= den;
|
|
403 |
m[off++] = x0 + t*x10;
|
|
404 |
m[off] = y0 + t*y10;
|
|
405 |
}
|
|
406 |
|
|
407 |
private void drawMiter(final double pdx, final double pdy,
|
|
408 |
final double x0, final double y0,
|
|
409 |
final double dx, final double dy,
|
|
410 |
double omx, double omy, double mx, double my,
|
|
411 |
boolean rev)
|
|
412 |
{
|
|
413 |
if ((mx == omx && my == omy) ||
|
|
414 |
(pdx == 0.0d && pdy == 0.0d) ||
|
|
415 |
(dx == 0.0d && dy == 0.0d))
|
|
416 |
{
|
|
417 |
return;
|
|
418 |
}
|
|
419 |
|
|
420 |
if (rev) {
|
|
421 |
omx = -omx;
|
|
422 |
omy = -omy;
|
|
423 |
mx = -mx;
|
|
424 |
my = -my;
|
|
425 |
}
|
|
426 |
|
|
427 |
computeMiter((x0 - pdx) + omx, (y0 - pdy) + omy, x0 + omx, y0 + omy,
|
|
428 |
(dx + x0) + mx, (dy + y0) + my, x0 + mx, y0 + my,
|
|
429 |
miter, 0);
|
|
430 |
|
|
431 |
final double miterX = miter[0];
|
|
432 |
final double miterY = miter[1];
|
|
433 |
double lenSq = (miterX-x0)*(miterX-x0) + (miterY-y0)*(miterY-y0);
|
|
434 |
|
|
435 |
// If the lines are parallel, lenSq will be either NaN or +inf
|
|
436 |
// (actually, I'm not sure if the latter is possible. The important
|
|
437 |
// thing is that -inf is not possible, because lenSq is a square).
|
|
438 |
// For both of those values, the comparison below will fail and
|
|
439 |
// no miter will be drawn, which is correct.
|
|
440 |
if (lenSq < miterLimitSq) {
|
|
441 |
emitLineTo(miterX, miterY, rev);
|
|
442 |
}
|
|
443 |
}
|
|
444 |
|
|
445 |
@Override
|
|
446 |
public void moveTo(double x0, double y0) {
|
|
447 |
if (prev == DRAWING_OP_TO) {
|
|
448 |
finish();
|
|
449 |
}
|
|
450 |
this.sx0 = this.cx0 = x0;
|
|
451 |
this.sy0 = this.cy0 = y0;
|
|
452 |
this.cdx = this.sdx = 1.0d;
|
|
453 |
this.cdy = this.sdy = 0.0d;
|
|
454 |
this.prev = MOVE_TO;
|
|
455 |
}
|
|
456 |
|
|
457 |
@Override
|
|
458 |
public void lineTo(double x1, double y1) {
|
|
459 |
double dx = x1 - cx0;
|
|
460 |
double dy = y1 - cy0;
|
|
461 |
if (dx == 0.0d && dy == 0.0d) {
|
|
462 |
dx = 1.0d;
|
|
463 |
}
|
|
464 |
computeOffset(dx, dy, lineWidth2, offset0);
|
|
465 |
final double mx = offset0[0];
|
|
466 |
final double my = offset0[1];
|
|
467 |
|
|
468 |
drawJoin(cdx, cdy, cx0, cy0, dx, dy, cmx, cmy, mx, my);
|
|
469 |
|
|
470 |
emitLineTo(cx0 + mx, cy0 + my);
|
|
471 |
emitLineTo( x1 + mx, y1 + my);
|
|
472 |
|
|
473 |
emitLineToRev(cx0 - mx, cy0 - my);
|
|
474 |
emitLineToRev( x1 - mx, y1 - my);
|
|
475 |
|
|
476 |
this.cmx = mx;
|
|
477 |
this.cmy = my;
|
|
478 |
this.cdx = dx;
|
|
479 |
this.cdy = dy;
|
|
480 |
this.cx0 = x1;
|
|
481 |
this.cy0 = y1;
|
|
482 |
this.prev = DRAWING_OP_TO;
|
|
483 |
}
|
|
484 |
|
|
485 |
@Override
|
|
486 |
public void closePath() {
|
|
487 |
if (prev != DRAWING_OP_TO) {
|
|
488 |
if (prev == CLOSE) {
|
|
489 |
return;
|
|
490 |
}
|
|
491 |
emitMoveTo(cx0, cy0 - lineWidth2);
|
|
492 |
this.cmx = this.smx = 0.0d;
|
|
493 |
this.cmy = this.smy = -lineWidth2;
|
|
494 |
this.cdx = this.sdx = 1.0d;
|
|
495 |
this.cdy = this.sdy = 0.0d;
|
|
496 |
finish();
|
|
497 |
return;
|
|
498 |
}
|
|
499 |
|
|
500 |
if (cx0 != sx0 || cy0 != sy0) {
|
|
501 |
lineTo(sx0, sy0);
|
|
502 |
}
|
|
503 |
|
|
504 |
drawJoin(cdx, cdy, cx0, cy0, sdx, sdy, cmx, cmy, smx, smy);
|
|
505 |
|
|
506 |
emitLineTo(sx0 + smx, sy0 + smy);
|
|
507 |
|
|
508 |
emitMoveTo(sx0 - smx, sy0 - smy);
|
|
509 |
emitReverse();
|
|
510 |
|
|
511 |
this.prev = CLOSE;
|
|
512 |
emitClose();
|
|
513 |
}
|
|
514 |
|
|
515 |
private void emitReverse() {
|
|
516 |
reverse.popAll(out);
|
|
517 |
}
|
|
518 |
|
|
519 |
@Override
|
|
520 |
public void pathDone() {
|
|
521 |
if (prev == DRAWING_OP_TO) {
|
|
522 |
finish();
|
|
523 |
}
|
|
524 |
|
|
525 |
out.pathDone();
|
|
526 |
|
|
527 |
// this shouldn't matter since this object won't be used
|
|
528 |
// after the call to this method.
|
|
529 |
this.prev = CLOSE;
|
|
530 |
|
|
531 |
// Dispose this instance:
|
|
532 |
dispose();
|
|
533 |
}
|
|
534 |
|
|
535 |
private void finish() {
|
|
536 |
if (capStyle == CAP_ROUND) {
|
|
537 |
drawRoundCap(cx0, cy0, cmx, cmy);
|
|
538 |
} else if (capStyle == CAP_SQUARE) {
|
|
539 |
emitLineTo(cx0 - cmy + cmx, cy0 + cmx + cmy);
|
|
540 |
emitLineTo(cx0 - cmy - cmx, cy0 + cmx - cmy);
|
|
541 |
}
|
|
542 |
|
|
543 |
emitReverse();
|
|
544 |
|
|
545 |
if (capStyle == CAP_ROUND) {
|
|
546 |
drawRoundCap(sx0, sy0, -smx, -smy);
|
|
547 |
} else if (capStyle == CAP_SQUARE) {
|
|
548 |
emitLineTo(sx0 + smy - smx, sy0 - smx - smy);
|
|
549 |
emitLineTo(sx0 + smy + smx, sy0 - smx + smy);
|
|
550 |
}
|
|
551 |
|
|
552 |
emitClose();
|
|
553 |
}
|
|
554 |
|
|
555 |
private void emitMoveTo(final double x0, final double y0) {
|
|
556 |
out.moveTo(x0, y0);
|
|
557 |
}
|
|
558 |
|
|
559 |
private void emitLineTo(final double x1, final double y1) {
|
|
560 |
out.lineTo(x1, y1);
|
|
561 |
}
|
|
562 |
|
|
563 |
private void emitLineToRev(final double x1, final double y1) {
|
|
564 |
reverse.pushLine(x1, y1);
|
|
565 |
}
|
|
566 |
|
|
567 |
private void emitLineTo(final double x1, final double y1,
|
|
568 |
final boolean rev)
|
|
569 |
{
|
|
570 |
if (rev) {
|
|
571 |
emitLineToRev(x1, y1);
|
|
572 |
} else {
|
|
573 |
emitLineTo(x1, y1);
|
|
574 |
}
|
|
575 |
}
|
|
576 |
|
|
577 |
private void emitQuadTo(final double x1, final double y1,
|
|
578 |
final double x2, final double y2)
|
|
579 |
{
|
|
580 |
out.quadTo(x1, y1, x2, y2);
|
|
581 |
}
|
|
582 |
|
|
583 |
private void emitQuadToRev(final double x0, final double y0,
|
|
584 |
final double x1, final double y1)
|
|
585 |
{
|
|
586 |
reverse.pushQuad(x0, y0, x1, y1);
|
|
587 |
}
|
|
588 |
|
|
589 |
private void emitCurveTo(final double x1, final double y1,
|
|
590 |
final double x2, final double y2,
|
|
591 |
final double x3, final double y3)
|
|
592 |
{
|
|
593 |
out.curveTo(x1, y1, x2, y2, x3, y3);
|
|
594 |
}
|
|
595 |
|
|
596 |
private void emitCurveToRev(final double x0, final double y0,
|
|
597 |
final double x1, final double y1,
|
|
598 |
final double x2, final double y2)
|
|
599 |
{
|
|
600 |
reverse.pushCubic(x0, y0, x1, y1, x2, y2);
|
|
601 |
}
|
|
602 |
|
|
603 |
private void emitCurveTo(final double x0, final double y0,
|
|
604 |
final double x1, final double y1,
|
|
605 |
final double x2, final double y2,
|
|
606 |
final double x3, final double y3, final boolean rev)
|
|
607 |
{
|
|
608 |
if (rev) {
|
|
609 |
reverse.pushCubic(x0, y0, x1, y1, x2, y2);
|
|
610 |
} else {
|
|
611 |
out.curveTo(x1, y1, x2, y2, x3, y3);
|
|
612 |
}
|
|
613 |
}
|
|
614 |
|
|
615 |
private void emitClose() {
|
|
616 |
out.closePath();
|
|
617 |
}
|
|
618 |
|
|
619 |
private void drawJoin(double pdx, double pdy,
|
|
620 |
double x0, double y0,
|
|
621 |
double dx, double dy,
|
|
622 |
double omx, double omy,
|
|
623 |
double mx, double my)
|
|
624 |
{
|
|
625 |
if (prev != DRAWING_OP_TO) {
|
|
626 |
emitMoveTo(x0 + mx, y0 + my);
|
|
627 |
this.sdx = dx;
|
|
628 |
this.sdy = dy;
|
|
629 |
this.smx = mx;
|
|
630 |
this.smy = my;
|
|
631 |
} else {
|
|
632 |
boolean cw = isCW(pdx, pdy, dx, dy);
|
|
633 |
if (joinStyle == JOIN_MITER) {
|
|
634 |
drawMiter(pdx, pdy, x0, y0, dx, dy, omx, omy, mx, my, cw);
|
|
635 |
} else if (joinStyle == JOIN_ROUND) {
|
|
636 |
drawRoundJoin(x0, y0,
|
|
637 |
omx, omy,
|
|
638 |
mx, my, cw,
|
|
639 |
ROUND_JOIN_THRESHOLD);
|
|
640 |
}
|
|
641 |
emitLineTo(x0, y0, !cw);
|
|
642 |
}
|
|
643 |
prev = DRAWING_OP_TO;
|
|
644 |
}
|
|
645 |
|
|
646 |
private static boolean within(final double x1, final double y1,
|
|
647 |
final double x2, final double y2,
|
|
648 |
final double ERR)
|
|
649 |
{
|
|
650 |
assert ERR > 0 : "";
|
|
651 |
// compare taxicab distance. ERR will always be small, so using
|
|
652 |
// true distance won't give much benefit
|
|
653 |
return (DHelpers.within(x1, x2, ERR) && // we want to avoid calling Math.abs
|
|
654 |
DHelpers.within(y1, y2, ERR)); // this is just as good.
|
|
655 |
}
|
|
656 |
|
|
657 |
private void getLineOffsets(double x1, double y1,
|
|
658 |
double x2, double y2,
|
|
659 |
double[] left, double[] right) {
|
|
660 |
computeOffset(x2 - x1, y2 - y1, lineWidth2, offset0);
|
|
661 |
final double mx = offset0[0];
|
|
662 |
final double my = offset0[1];
|
|
663 |
left[0] = x1 + mx;
|
|
664 |
left[1] = y1 + my;
|
|
665 |
left[2] = x2 + mx;
|
|
666 |
left[3] = y2 + my;
|
|
667 |
right[0] = x1 - mx;
|
|
668 |
right[1] = y1 - my;
|
|
669 |
right[2] = x2 - mx;
|
|
670 |
right[3] = y2 - my;
|
|
671 |
}
|
|
672 |
|
|
673 |
private int computeOffsetCubic(double[] pts, final int off,
|
|
674 |
double[] leftOff, double[] rightOff)
|
|
675 |
{
|
|
676 |
// if p1=p2 or p3=p4 it means that the derivative at the endpoint
|
|
677 |
// vanishes, which creates problems with computeOffset. Usually
|
|
678 |
// this happens when this stroker object is trying to widen
|
|
679 |
// a curve with a cusp. What happens is that curveTo splits
|
|
680 |
// the input curve at the cusp, and passes it to this function.
|
|
681 |
// because of inaccuracies in the splitting, we consider points
|
|
682 |
// equal if they're very close to each other.
|
|
683 |
final double x1 = pts[off + 0], y1 = pts[off + 1];
|
|
684 |
final double x2 = pts[off + 2], y2 = pts[off + 3];
|
|
685 |
final double x3 = pts[off + 4], y3 = pts[off + 5];
|
|
686 |
final double x4 = pts[off + 6], y4 = pts[off + 7];
|
|
687 |
|
|
688 |
double dx4 = x4 - x3;
|
|
689 |
double dy4 = y4 - y3;
|
|
690 |
double dx1 = x2 - x1;
|
|
691 |
double dy1 = y2 - y1;
|
|
692 |
|
|
693 |
// if p1 == p2 && p3 == p4: draw line from p1->p4, unless p1 == p4,
|
|
694 |
// in which case ignore if p1 == p2
|
|
695 |
final boolean p1eqp2 = within(x1, y1, x2, y2, 6.0d * Math.ulp(y2));
|
|
696 |
final boolean p3eqp4 = within(x3, y3, x4, y4, 6.0d * Math.ulp(y4));
|
|
697 |
if (p1eqp2 && p3eqp4) {
|
|
698 |
getLineOffsets(x1, y1, x4, y4, leftOff, rightOff);
|
|
699 |
return 4;
|
|
700 |
} else if (p1eqp2) {
|
|
701 |
dx1 = x3 - x1;
|
|
702 |
dy1 = y3 - y1;
|
|
703 |
} else if (p3eqp4) {
|
|
704 |
dx4 = x4 - x2;
|
|
705 |
dy4 = y4 - y2;
|
|
706 |
}
|
|
707 |
|
|
708 |
// if p2-p1 and p4-p3 are parallel, that must mean this curve is a line
|
|
709 |
double dotsq = (dx1 * dx4 + dy1 * dy4);
|
|
710 |
dotsq *= dotsq;
|
|
711 |
double l1sq = dx1 * dx1 + dy1 * dy1, l4sq = dx4 * dx4 + dy4 * dy4;
|
|
712 |
if (DHelpers.within(dotsq, l1sq * l4sq, 4.0d * Math.ulp(dotsq))) {
|
|
713 |
getLineOffsets(x1, y1, x4, y4, leftOff, rightOff);
|
|
714 |
return 4;
|
|
715 |
}
|
|
716 |
|
|
717 |
// What we're trying to do in this function is to approximate an ideal
|
|
718 |
// offset curve (call it I) of the input curve B using a bezier curve Bp.
|
|
719 |
// The constraints I use to get the equations are:
|
|
720 |
//
|
|
721 |
// 1. The computed curve Bp should go through I(0) and I(1). These are
|
|
722 |
// x1p, y1p, x4p, y4p, which are p1p and p4p. We still need to find
|
|
723 |
// 4 variables: the x and y components of p2p and p3p (i.e. x2p, y2p, x3p, y3p).
|
|
724 |
//
|
|
725 |
// 2. Bp should have slope equal in absolute value to I at the endpoints. So,
|
|
726 |
// (by the way, the operator || in the comments below means "aligned with".
|
|
727 |
// It is defined on vectors, so when we say I'(0) || Bp'(0) we mean that
|
|
728 |
// vectors I'(0) and Bp'(0) are aligned, which is the same as saying
|
|
729 |
// that the tangent lines of I and Bp at 0 are parallel. Mathematically
|
|
730 |
// this means (I'(t) || Bp'(t)) <==> (I'(t) = c * Bp'(t)) where c is some
|
|
731 |
// nonzero constant.)
|
|
732 |
// I'(0) || Bp'(0) and I'(1) || Bp'(1). Obviously, I'(0) || B'(0) and
|
|
733 |
// I'(1) || B'(1); therefore, Bp'(0) || B'(0) and Bp'(1) || B'(1).
|
|
734 |
// We know that Bp'(0) || (p2p-p1p) and Bp'(1) || (p4p-p3p) and the same
|
|
735 |
// is true for any bezier curve; therefore, we get the equations
|
|
736 |
// (1) p2p = c1 * (p2-p1) + p1p
|
|
737 |
// (2) p3p = c2 * (p4-p3) + p4p
|
|
738 |
// We know p1p, p4p, p2, p1, p3, and p4; therefore, this reduces the number
|
|
739 |
// of unknowns from 4 to 2 (i.e. just c1 and c2).
|
|
740 |
// To eliminate these 2 unknowns we use the following constraint:
|
|
741 |
//
|
|
742 |
// 3. Bp(0.5) == I(0.5). Bp(0.5)=(x,y) and I(0.5)=(xi,yi), and I should note
|
|
743 |
// that I(0.5) is *the only* reason for computing dxm,dym. This gives us
|
|
744 |
// (3) Bp(0.5) = (p1p + 3 * (p2p + p3p) + p4p)/8, which is equivalent to
|
|
745 |
// (4) p2p + p3p = (Bp(0.5)*8 - p1p - p4p) / 3
|
|
746 |
// We can substitute (1) and (2) from above into (4) and we get:
|
|
747 |
// (5) c1*(p2-p1) + c2*(p4-p3) = (Bp(0.5)*8 - p1p - p4p)/3 - p1p - p4p
|
|
748 |
// which is equivalent to
|
|
749 |
// (6) c1*(p2-p1) + c2*(p4-p3) = (4/3) * (Bp(0.5) * 2 - p1p - p4p)
|
|
750 |
//
|
|
751 |
// The right side of this is a 2D vector, and we know I(0.5), which gives us
|
|
752 |
// Bp(0.5), which gives us the value of the right side.
|
|
753 |
// The left side is just a matrix vector multiplication in disguise. It is
|
|
754 |
//
|
|
755 |
// [x2-x1, x4-x3][c1]
|
|
756 |
// [y2-y1, y4-y3][c2]
|
|
757 |
// which, is equal to
|
|
758 |
// [dx1, dx4][c1]
|
|
759 |
// [dy1, dy4][c2]
|
|
760 |
// At this point we are left with a simple linear system and we solve it by
|
|
761 |
// getting the inverse of the matrix above. Then we use [c1,c2] to compute
|
|
762 |
// p2p and p3p.
|
|
763 |
|
|
764 |
double x = (x1 + 3.0d * (x2 + x3) + x4) / 8.0d;
|
|
765 |
double y = (y1 + 3.0d * (y2 + y3) + y4) / 8.0d;
|
|
766 |
// (dxm,dym) is some tangent of B at t=0.5. This means it's equal to
|
|
767 |
// c*B'(0.5) for some constant c.
|
|
768 |
double dxm = x3 + x4 - x1 - x2, dym = y3 + y4 - y1 - y2;
|
|
769 |
|
|
770 |
// this computes the offsets at t=0, 0.5, 1, using the property that
|
|
771 |
// for any bezier curve the vectors p2-p1 and p4-p3 are parallel to
|
|
772 |
// the (dx/dt, dy/dt) vectors at the endpoints.
|
|
773 |
computeOffset(dx1, dy1, lineWidth2, offset0);
|
|
774 |
computeOffset(dxm, dym, lineWidth2, offset1);
|
|
775 |
computeOffset(dx4, dy4, lineWidth2, offset2);
|
|
776 |
double x1p = x1 + offset0[0]; // start
|
|
777 |
double y1p = y1 + offset0[1]; // point
|
|
778 |
double xi = x + offset1[0]; // interpolation
|
|
779 |
double yi = y + offset1[1]; // point
|
|
780 |
double x4p = x4 + offset2[0]; // end
|
|
781 |
double y4p = y4 + offset2[1]; // point
|
|
782 |
|
|
783 |
double invdet43 = 4.0d / (3.0d * (dx1 * dy4 - dy1 * dx4));
|
|
784 |
|
|
785 |
double two_pi_m_p1_m_p4x = 2.0d * xi - x1p - x4p;
|
|
786 |
double two_pi_m_p1_m_p4y = 2.0d * yi - y1p - y4p;
|
|
787 |
double c1 = invdet43 * (dy4 * two_pi_m_p1_m_p4x - dx4 * two_pi_m_p1_m_p4y);
|
|
788 |
double c2 = invdet43 * (dx1 * two_pi_m_p1_m_p4y - dy1 * two_pi_m_p1_m_p4x);
|
|
789 |
|
|
790 |
double x2p, y2p, x3p, y3p;
|
|
791 |
x2p = x1p + c1*dx1;
|
|
792 |
y2p = y1p + c1*dy1;
|
|
793 |
x3p = x4p + c2*dx4;
|
|
794 |
y3p = y4p + c2*dy4;
|
|
795 |
|
|
796 |
leftOff[0] = x1p; leftOff[1] = y1p;
|
|
797 |
leftOff[2] = x2p; leftOff[3] = y2p;
|
|
798 |
leftOff[4] = x3p; leftOff[5] = y3p;
|
|
799 |
leftOff[6] = x4p; leftOff[7] = y4p;
|
|
800 |
|
|
801 |
x1p = x1 - offset0[0]; y1p = y1 - offset0[1];
|
|
802 |
xi = xi - 2.0d * offset1[0]; yi = yi - 2.0d * offset1[1];
|
|
803 |
x4p = x4 - offset2[0]; y4p = y4 - offset2[1];
|
|
804 |
|
|
805 |
two_pi_m_p1_m_p4x = 2.0d * xi - x1p - x4p;
|
|
806 |
two_pi_m_p1_m_p4y = 2.0d * yi - y1p - y4p;
|
|
807 |
c1 = invdet43 * (dy4 * two_pi_m_p1_m_p4x - dx4 * two_pi_m_p1_m_p4y);
|
|
808 |
c2 = invdet43 * (dx1 * two_pi_m_p1_m_p4y - dy1 * two_pi_m_p1_m_p4x);
|
|
809 |
|
|
810 |
x2p = x1p + c1*dx1;
|
|
811 |
y2p = y1p + c1*dy1;
|
|
812 |
x3p = x4p + c2*dx4;
|
|
813 |
y3p = y4p + c2*dy4;
|
|
814 |
|
|
815 |
rightOff[0] = x1p; rightOff[1] = y1p;
|
|
816 |
rightOff[2] = x2p; rightOff[3] = y2p;
|
|
817 |
rightOff[4] = x3p; rightOff[5] = y3p;
|
|
818 |
rightOff[6] = x4p; rightOff[7] = y4p;
|
|
819 |
return 8;
|
|
820 |
}
|
|
821 |
|
|
822 |
// compute offset curves using bezier spline through t=0.5 (i.e.
|
|
823 |
// ComputedCurve(0.5) == IdealParallelCurve(0.5))
|
|
824 |
// return the kind of curve in the right and left arrays.
|
|
825 |
private int computeOffsetQuad(double[] pts, final int off,
|
|
826 |
double[] leftOff, double[] rightOff)
|
|
827 |
{
|
|
828 |
final double x1 = pts[off + 0], y1 = pts[off + 1];
|
|
829 |
final double x2 = pts[off + 2], y2 = pts[off + 3];
|
|
830 |
final double x3 = pts[off + 4], y3 = pts[off + 5];
|
|
831 |
|
|
832 |
final double dx3 = x3 - x2;
|
|
833 |
final double dy3 = y3 - y2;
|
|
834 |
final double dx1 = x2 - x1;
|
|
835 |
final double dy1 = y2 - y1;
|
|
836 |
|
|
837 |
// if p1=p2 or p3=p4 it means that the derivative at the endpoint
|
|
838 |
// vanishes, which creates problems with computeOffset. Usually
|
|
839 |
// this happens when this stroker object is trying to widen
|
|
840 |
// a curve with a cusp. What happens is that curveTo splits
|
|
841 |
// the input curve at the cusp, and passes it to this function.
|
|
842 |
// because of inaccuracies in the splitting, we consider points
|
|
843 |
// equal if they're very close to each other.
|
|
844 |
|
|
845 |
// if p1 == p2 && p3 == p4: draw line from p1->p4, unless p1 == p4,
|
|
846 |
// in which case ignore.
|
|
847 |
final boolean p1eqp2 = within(x1, y1, x2, y2, 6.0d * Math.ulp(y2));
|
|
848 |
final boolean p2eqp3 = within(x2, y2, x3, y3, 6.0d * Math.ulp(y3));
|
|
849 |
if (p1eqp2 || p2eqp3) {
|
|
850 |
getLineOffsets(x1, y1, x3, y3, leftOff, rightOff);
|
|
851 |
return 4;
|
|
852 |
}
|
|
853 |
|
|
854 |
// if p2-p1 and p4-p3 are parallel, that must mean this curve is a line
|
|
855 |
double dotsq = (dx1 * dx3 + dy1 * dy3);
|
|
856 |
dotsq *= dotsq;
|
|
857 |
double l1sq = dx1 * dx1 + dy1 * dy1, l3sq = dx3 * dx3 + dy3 * dy3;
|
|
858 |
if (DHelpers.within(dotsq, l1sq * l3sq, 4.0d * Math.ulp(dotsq))) {
|
|
859 |
getLineOffsets(x1, y1, x3, y3, leftOff, rightOff);
|
|
860 |
return 4;
|
|
861 |
}
|
|
862 |
|
|
863 |
// this computes the offsets at t=0, 0.5, 1, using the property that
|
|
864 |
// for any bezier curve the vectors p2-p1 and p4-p3 are parallel to
|
|
865 |
// the (dx/dt, dy/dt) vectors at the endpoints.
|
|
866 |
computeOffset(dx1, dy1, lineWidth2, offset0);
|
|
867 |
computeOffset(dx3, dy3, lineWidth2, offset1);
|
|
868 |
|
|
869 |
double x1p = x1 + offset0[0]; // start
|
|
870 |
double y1p = y1 + offset0[1]; // point
|
|
871 |
double x3p = x3 + offset1[0]; // end
|
|
872 |
double y3p = y3 + offset1[1]; // point
|
|
873 |
safeComputeMiter(x1p, y1p, x1p+dx1, y1p+dy1, x3p, y3p, x3p-dx3, y3p-dy3, leftOff, 2);
|
|
874 |
leftOff[0] = x1p; leftOff[1] = y1p;
|
|
875 |
leftOff[4] = x3p; leftOff[5] = y3p;
|
|
876 |
|
|
877 |
x1p = x1 - offset0[0]; y1p = y1 - offset0[1];
|
|
878 |
x3p = x3 - offset1[0]; y3p = y3 - offset1[1];
|
|
879 |
safeComputeMiter(x1p, y1p, x1p+dx1, y1p+dy1, x3p, y3p, x3p-dx3, y3p-dy3, rightOff, 2);
|
|
880 |
rightOff[0] = x1p; rightOff[1] = y1p;
|
|
881 |
rightOff[4] = x3p; rightOff[5] = y3p;
|
|
882 |
return 6;
|
|
883 |
}
|
|
884 |
|
|
885 |
// finds values of t where the curve in pts should be subdivided in order
|
|
886 |
// to get good offset curves a distance of w away from the middle curve.
|
|
887 |
// Stores the points in ts, and returns how many of them there were.
|
|
888 |
private static int findSubdivPoints(final DCurve c, double[] pts, double[] ts,
|
|
889 |
final int type, final double w)
|
|
890 |
{
|
|
891 |
final double x12 = pts[2] - pts[0];
|
|
892 |
final double y12 = pts[3] - pts[1];
|
|
893 |
// if the curve is already parallel to either axis we gain nothing
|
|
894 |
// from rotating it.
|
|
895 |
if (y12 != 0.0d && x12 != 0.0d) {
|
|
896 |
// we rotate it so that the first vector in the control polygon is
|
|
897 |
// parallel to the x-axis. This will ensure that rotated quarter
|
|
898 |
// circles won't be subdivided.
|
|
899 |
final double hypot = Math.sqrt(x12 * x12 + y12 * y12);
|
|
900 |
final double cos = x12 / hypot;
|
|
901 |
final double sin = y12 / hypot;
|
|
902 |
final double x1 = cos * pts[0] + sin * pts[1];
|
|
903 |
final double y1 = cos * pts[1] - sin * pts[0];
|
|
904 |
final double x2 = cos * pts[2] + sin * pts[3];
|
|
905 |
final double y2 = cos * pts[3] - sin * pts[2];
|
|
906 |
final double x3 = cos * pts[4] + sin * pts[5];
|
|
907 |
final double y3 = cos * pts[5] - sin * pts[4];
|
|
908 |
|
|
909 |
switch(type) {
|
|
910 |
case 8:
|
|
911 |
final double x4 = cos * pts[6] + sin * pts[7];
|
|
912 |
final double y4 = cos * pts[7] - sin * pts[6];
|
|
913 |
c.set(x1, y1, x2, y2, x3, y3, x4, y4);
|
|
914 |
break;
|
|
915 |
case 6:
|
|
916 |
c.set(x1, y1, x2, y2, x3, y3);
|
|
917 |
break;
|
|
918 |
default:
|
|
919 |
}
|
|
920 |
} else {
|
|
921 |
c.set(pts, type);
|
|
922 |
}
|
|
923 |
|
|
924 |
int ret = 0;
|
|
925 |
// we subdivide at values of t such that the remaining rotated
|
|
926 |
// curves are monotonic in x and y.
|
|
927 |
ret += c.dxRoots(ts, ret);
|
|
928 |
ret += c.dyRoots(ts, ret);
|
|
929 |
// subdivide at inflection points.
|
|
930 |
if (type == 8) {
|
|
931 |
// quadratic curves can't have inflection points
|
|
932 |
ret += c.infPoints(ts, ret);
|
|
933 |
}
|
|
934 |
|
|
935 |
// now we must subdivide at points where one of the offset curves will have
|
|
936 |
// a cusp. This happens at ts where the radius of curvature is equal to w.
|
|
937 |
ret += c.rootsOfROCMinusW(ts, ret, w, 0.0001d);
|
|
938 |
|
|
939 |
ret = DHelpers.filterOutNotInAB(ts, 0, ret, 0.0001d, 0.9999d);
|
|
940 |
DHelpers.isort(ts, 0, ret);
|
|
941 |
return ret;
|
|
942 |
}
|
|
943 |
|
|
944 |
@Override public void curveTo(double x1, double y1,
|
|
945 |
double x2, double y2,
|
|
946 |
double x3, double y3)
|
|
947 |
{
|
|
948 |
final double[] mid = middle;
|
|
949 |
|
|
950 |
mid[0] = cx0; mid[1] = cy0;
|
|
951 |
mid[2] = x1; mid[3] = y1;
|
|
952 |
mid[4] = x2; mid[5] = y2;
|
|
953 |
mid[6] = x3; mid[7] = y3;
|
|
954 |
|
|
955 |
// need these so we can update the state at the end of this method
|
|
956 |
final double xf = mid[6], yf = mid[7];
|
|
957 |
double dxs = mid[2] - mid[0];
|
|
958 |
double dys = mid[3] - mid[1];
|
|
959 |
double dxf = mid[6] - mid[4];
|
|
960 |
double dyf = mid[7] - mid[5];
|
|
961 |
|
|
962 |
boolean p1eqp2 = (dxs == 0.0d && dys == 0.0d);
|
|
963 |
boolean p3eqp4 = (dxf == 0.0d && dyf == 0.0d);
|
|
964 |
if (p1eqp2) {
|
|
965 |
dxs = mid[4] - mid[0];
|
|
966 |
dys = mid[5] - mid[1];
|
|
967 |
if (dxs == 0.0d && dys == 0.0d) {
|
|
968 |
dxs = mid[6] - mid[0];
|
|
969 |
dys = mid[7] - mid[1];
|
|
970 |
}
|
|
971 |
}
|
|
972 |
if (p3eqp4) {
|
|
973 |
dxf = mid[6] - mid[2];
|
|
974 |
dyf = mid[7] - mid[3];
|
|
975 |
if (dxf == 0.0d && dyf == 0.0d) {
|
|
976 |
dxf = mid[6] - mid[0];
|
|
977 |
dyf = mid[7] - mid[1];
|
|
978 |
}
|
|
979 |
}
|
|
980 |
if (dxs == 0.0d && dys == 0.0d) {
|
|
981 |
// this happens if the "curve" is just a point
|
|
982 |
lineTo(mid[0], mid[1]);
|
|
983 |
return;
|
|
984 |
}
|
|
985 |
|
|
986 |
// if these vectors are too small, normalize them, to avoid future
|
|
987 |
// precision problems.
|
|
988 |
if (Math.abs(dxs) < 0.1d && Math.abs(dys) < 0.1d) {
|
|
989 |
double len = Math.sqrt(dxs*dxs + dys*dys);
|
|
990 |
dxs /= len;
|
|
991 |
dys /= len;
|
|
992 |
}
|
|
993 |
if (Math.abs(dxf) < 0.1d && Math.abs(dyf) < 0.1d) {
|
|
994 |
double len = Math.sqrt(dxf*dxf + dyf*dyf);
|
|
995 |
dxf /= len;
|
|
996 |
dyf /= len;
|
|
997 |
}
|
|
998 |
|
|
999 |
computeOffset(dxs, dys, lineWidth2, offset0);
|
|
1000 |
drawJoin(cdx, cdy, cx0, cy0, dxs, dys, cmx, cmy, offset0[0], offset0[1]);
|
|
1001 |
|
|
1002 |
final int nSplits = findSubdivPoints(curve, mid, subdivTs, 8, lineWidth2);
|
|
1003 |
|
|
1004 |
double prevT = 0.0d;
|
|
1005 |
for (int i = 0, off = 0; i < nSplits; i++, off += 6) {
|
|
1006 |
final double t = subdivTs[i];
|
|
1007 |
DHelpers.subdivideCubicAt((t - prevT) / (1.0d - prevT),
|
|
1008 |
mid, off, mid, off, mid, off + 6);
|
|
1009 |
prevT = t;
|
|
1010 |
}
|
|
1011 |
|
|
1012 |
final double[] l = lp;
|
|
1013 |
final double[] r = rp;
|
|
1014 |
|
|
1015 |
int kind = 0;
|
|
1016 |
for (int i = 0, off = 0; i <= nSplits; i++, off += 6) {
|
|
1017 |
kind = computeOffsetCubic(mid, off, l, r);
|
|
1018 |
|
|
1019 |
emitLineTo(l[0], l[1]);
|
|
1020 |
|
|
1021 |
switch(kind) {
|
|
1022 |
case 8:
|
|
1023 |
emitCurveTo(l[2], l[3], l[4], l[5], l[6], l[7]);
|
|
1024 |
emitCurveToRev(r[0], r[1], r[2], r[3], r[4], r[5]);
|
|
1025 |
break;
|
|
1026 |
case 4:
|
|
1027 |
emitLineTo(l[2], l[3]);
|
|
1028 |
emitLineToRev(r[0], r[1]);
|
|
1029 |
break;
|
|
1030 |
default:
|
|
1031 |
}
|
|
1032 |
emitLineToRev(r[kind - 2], r[kind - 1]);
|
|
1033 |
}
|
|
1034 |
|
|
1035 |
this.cmx = (l[kind - 2] - r[kind - 2]) / 2.0d;
|
|
1036 |
this.cmy = (l[kind - 1] - r[kind - 1]) / 2.0d;
|
|
1037 |
this.cdx = dxf;
|
|
1038 |
this.cdy = dyf;
|
|
1039 |
this.cx0 = xf;
|
|
1040 |
this.cy0 = yf;
|
|
1041 |
this.prev = DRAWING_OP_TO;
|
|
1042 |
}
|
|
1043 |
|
|
1044 |
@Override public void quadTo(double x1, double y1, double x2, double y2) {
|
|
1045 |
final double[] mid = middle;
|
|
1046 |
|
|
1047 |
mid[0] = cx0; mid[1] = cy0;
|
|
1048 |
mid[2] = x1; mid[3] = y1;
|
|
1049 |
mid[4] = x2; mid[5] = y2;
|
|
1050 |
|
|
1051 |
// need these so we can update the state at the end of this method
|
|
1052 |
final double xf = mid[4], yf = mid[5];
|
|
1053 |
double dxs = mid[2] - mid[0];
|
|
1054 |
double dys = mid[3] - mid[1];
|
|
1055 |
double dxf = mid[4] - mid[2];
|
|
1056 |
double dyf = mid[5] - mid[3];
|
|
1057 |
if ((dxs == 0.0d && dys == 0.0d) || (dxf == 0.0d && dyf == 0.0d)) {
|
|
1058 |
dxs = dxf = mid[4] - mid[0];
|
|
1059 |
dys = dyf = mid[5] - mid[1];
|
|
1060 |
}
|
|
1061 |
if (dxs == 0.0d && dys == 0.0d) {
|
|
1062 |
// this happens if the "curve" is just a point
|
|
1063 |
lineTo(mid[0], mid[1]);
|
|
1064 |
return;
|
|
1065 |
}
|
|
1066 |
// if these vectors are too small, normalize them, to avoid future
|
|
1067 |
// precision problems.
|
|
1068 |
if (Math.abs(dxs) < 0.1d && Math.abs(dys) < 0.1d) {
|
|
1069 |
double len = Math.sqrt(dxs*dxs + dys*dys);
|
|
1070 |
dxs /= len;
|
|
1071 |
dys /= len;
|
|
1072 |
}
|
|
1073 |
if (Math.abs(dxf) < 0.1d && Math.abs(dyf) < 0.1d) {
|
|
1074 |
double len = Math.sqrt(dxf*dxf + dyf*dyf);
|
|
1075 |
dxf /= len;
|
|
1076 |
dyf /= len;
|
|
1077 |
}
|
|
1078 |
|
|
1079 |
computeOffset(dxs, dys, lineWidth2, offset0);
|
|
1080 |
drawJoin(cdx, cdy, cx0, cy0, dxs, dys, cmx, cmy, offset0[0], offset0[1]);
|
|
1081 |
|
|
1082 |
int nSplits = findSubdivPoints(curve, mid, subdivTs, 6, lineWidth2);
|
|
1083 |
|
|
1084 |
double prevt = 0.0d;
|
|
1085 |
for (int i = 0, off = 0; i < nSplits; i++, off += 4) {
|
|
1086 |
final double t = subdivTs[i];
|
|
1087 |
DHelpers.subdivideQuadAt((t - prevt) / (1.0d - prevt),
|
|
1088 |
mid, off, mid, off, mid, off + 4);
|
|
1089 |
prevt = t;
|
|
1090 |
}
|
|
1091 |
|
|
1092 |
final double[] l = lp;
|
|
1093 |
final double[] r = rp;
|
|
1094 |
|
|
1095 |
int kind = 0;
|
|
1096 |
for (int i = 0, off = 0; i <= nSplits; i++, off += 4) {
|
|
1097 |
kind = computeOffsetQuad(mid, off, l, r);
|
|
1098 |
|
|
1099 |
emitLineTo(l[0], l[1]);
|
|
1100 |
|
|
1101 |
switch(kind) {
|
|
1102 |
case 6:
|
|
1103 |
emitQuadTo(l[2], l[3], l[4], l[5]);
|
|
1104 |
emitQuadToRev(r[0], r[1], r[2], r[3]);
|
|
1105 |
break;
|
|
1106 |
case 4:
|
|
1107 |
emitLineTo(l[2], l[3]);
|
|
1108 |
emitLineToRev(r[0], r[1]);
|
|
1109 |
break;
|
|
1110 |
default:
|
|
1111 |
}
|
|
1112 |
emitLineToRev(r[kind - 2], r[kind - 1]);
|
|
1113 |
}
|
|
1114 |
|
|
1115 |
this.cmx = (l[kind - 2] - r[kind - 2]) / 2.0d;
|
|
1116 |
this.cmy = (l[kind - 1] - r[kind - 1]) / 2.0d;
|
|
1117 |
this.cdx = dxf;
|
|
1118 |
this.cdy = dyf;
|
|
1119 |
this.cx0 = xf;
|
|
1120 |
this.cy0 = yf;
|
|
1121 |
this.prev = DRAWING_OP_TO;
|
|
1122 |
}
|
|
1123 |
|
|
1124 |
@Override public long getNativeConsumer() {
|
|
1125 |
throw new InternalError("Stroker doesn't use a native consumer");
|
|
1126 |
}
|
|
1127 |
|
|
1128 |
// a stack of polynomial curves where each curve shares endpoints with
|
|
1129 |
// adjacent ones.
|
|
1130 |
static final class PolyStack {
|
|
1131 |
private static final byte TYPE_LINETO = (byte) 0;
|
|
1132 |
private static final byte TYPE_QUADTO = (byte) 1;
|
|
1133 |
private static final byte TYPE_CUBICTO = (byte) 2;
|
|
1134 |
|
|
1135 |
// curves capacity = edges count (8192) = edges x 2 (coords)
|
|
1136 |
private static final int INITIAL_CURVES_COUNT = INITIAL_EDGES_COUNT << 1;
|
|
1137 |
|
|
1138 |
// types capacity = edges count (4096)
|
|
1139 |
private static final int INITIAL_TYPES_COUNT = INITIAL_EDGES_COUNT;
|
|
1140 |
|
|
1141 |
double[] curves;
|
|
1142 |
int end;
|
|
1143 |
byte[] curveTypes;
|
|
1144 |
int numCurves;
|
|
1145 |
|
|
1146 |
// per-thread renderer context
|
|
1147 |
final DRendererContext rdrCtx;
|
|
1148 |
|
|
1149 |
// curves ref (dirty)
|
|
1150 |
final DoubleArrayCache.Reference curves_ref;
|
|
1151 |
// curveTypes ref (dirty)
|
|
1152 |
final ByteArrayCache.Reference curveTypes_ref;
|
|
1153 |
|
|
1154 |
// used marks (stats only)
|
|
1155 |
int curveTypesUseMark;
|
|
1156 |
int curvesUseMark;
|
|
1157 |
|
|
1158 |
/**
|
|
1159 |
* Constructor
|
|
1160 |
* @param rdrCtx per-thread renderer context
|
|
1161 |
*/
|
|
1162 |
PolyStack(final DRendererContext rdrCtx) {
|
|
1163 |
this.rdrCtx = rdrCtx;
|
|
1164 |
|
|
1165 |
curves_ref = rdrCtx.newDirtyDoubleArrayRef(INITIAL_CURVES_COUNT); // 32K
|
|
1166 |
curves = curves_ref.initial;
|
|
1167 |
|
|
1168 |
curveTypes_ref = rdrCtx.newDirtyByteArrayRef(INITIAL_TYPES_COUNT); // 4K
|
|
1169 |
curveTypes = curveTypes_ref.initial;
|
|
1170 |
numCurves = 0;
|
|
1171 |
end = 0;
|
|
1172 |
|
|
1173 |
if (DO_STATS) {
|
|
1174 |
curveTypesUseMark = 0;
|
|
1175 |
curvesUseMark = 0;
|
|
1176 |
}
|
|
1177 |
}
|
|
1178 |
|
|
1179 |
/**
|
|
1180 |
* Disposes this PolyStack:
|
|
1181 |
* clean up before reusing this instance
|
|
1182 |
*/
|
|
1183 |
void dispose() {
|
|
1184 |
end = 0;
|
|
1185 |
numCurves = 0;
|
|
1186 |
|
|
1187 |
if (DO_STATS) {
|
|
1188 |
rdrCtx.stats.stat_rdr_poly_stack_types.add(curveTypesUseMark);
|
|
1189 |
rdrCtx.stats.stat_rdr_poly_stack_curves.add(curvesUseMark);
|
|
1190 |
rdrCtx.stats.hist_rdr_poly_stack_curves.add(curvesUseMark);
|
|
1191 |
|
|
1192 |
// reset marks
|
|
1193 |
curveTypesUseMark = 0;
|
|
1194 |
curvesUseMark = 0;
|
|
1195 |
}
|
|
1196 |
|
|
1197 |
// Return arrays:
|
|
1198 |
// curves and curveTypes are kept dirty
|
|
1199 |
curves = curves_ref.putArray(curves);
|
|
1200 |
curveTypes = curveTypes_ref.putArray(curveTypes);
|
|
1201 |
}
|
|
1202 |
|
|
1203 |
private void ensureSpace(final int n) {
|
|
1204 |
// use substraction to avoid integer overflow:
|
|
1205 |
if (curves.length - end < n) {
|
|
1206 |
if (DO_STATS) {
|
|
1207 |
rdrCtx.stats.stat_array_stroker_polystack_curves
|
|
1208 |
.add(end + n);
|
|
1209 |
}
|
|
1210 |
curves = curves_ref.widenArray(curves, end, end + n);
|
|
1211 |
}
|
|
1212 |
if (curveTypes.length <= numCurves) {
|
|
1213 |
if (DO_STATS) {
|
|
1214 |
rdrCtx.stats.stat_array_stroker_polystack_curveTypes
|
|
1215 |
.add(numCurves + 1);
|
|
1216 |
}
|
|
1217 |
curveTypes = curveTypes_ref.widenArray(curveTypes,
|
|
1218 |
numCurves,
|
|
1219 |
numCurves + 1);
|
|
1220 |
}
|
|
1221 |
}
|
|
1222 |
|
|
1223 |
void pushCubic(double x0, double y0,
|
|
1224 |
double x1, double y1,
|
|
1225 |
double x2, double y2)
|
|
1226 |
{
|
|
1227 |
ensureSpace(6);
|
|
1228 |
curveTypes[numCurves++] = TYPE_CUBICTO;
|
|
1229 |
// we reverse the coordinate order to make popping easier
|
|
1230 |
final double[] _curves = curves;
|
|
1231 |
int e = end;
|
|
1232 |
_curves[e++] = x2; _curves[e++] = y2;
|
|
1233 |
_curves[e++] = x1; _curves[e++] = y1;
|
|
1234 |
_curves[e++] = x0; _curves[e++] = y0;
|
|
1235 |
end = e;
|
|
1236 |
}
|
|
1237 |
|
|
1238 |
void pushQuad(double x0, double y0,
|
|
1239 |
double x1, double y1)
|
|
1240 |
{
|
|
1241 |
ensureSpace(4);
|
|
1242 |
curveTypes[numCurves++] = TYPE_QUADTO;
|
|
1243 |
final double[] _curves = curves;
|
|
1244 |
int e = end;
|
|
1245 |
_curves[e++] = x1; _curves[e++] = y1;
|
|
1246 |
_curves[e++] = x0; _curves[e++] = y0;
|
|
1247 |
end = e;
|
|
1248 |
}
|
|
1249 |
|
|
1250 |
void pushLine(double x, double y) {
|
|
1251 |
ensureSpace(2);
|
|
1252 |
curveTypes[numCurves++] = TYPE_LINETO;
|
|
1253 |
curves[end++] = x; curves[end++] = y;
|
|
1254 |
}
|
|
1255 |
|
|
1256 |
void popAll(DPathConsumer2D io) {
|
|
1257 |
if (DO_STATS) {
|
|
1258 |
// update used marks:
|
|
1259 |
if (numCurves > curveTypesUseMark) {
|
|
1260 |
curveTypesUseMark = numCurves;
|
|
1261 |
}
|
|
1262 |
if (end > curvesUseMark) {
|
|
1263 |
curvesUseMark = end;
|
|
1264 |
}
|
|
1265 |
}
|
|
1266 |
final byte[] _curveTypes = curveTypes;
|
|
1267 |
final double[] _curves = curves;
|
|
1268 |
int nc = numCurves;
|
|
1269 |
int e = end;
|
|
1270 |
|
|
1271 |
while (nc != 0) {
|
|
1272 |
switch(_curveTypes[--nc]) {
|
|
1273 |
case TYPE_LINETO:
|
|
1274 |
e -= 2;
|
|
1275 |
io.lineTo(_curves[e], _curves[e+1]);
|
|
1276 |
continue;
|
|
1277 |
case TYPE_QUADTO:
|
|
1278 |
e -= 4;
|
|
1279 |
io.quadTo(_curves[e+0], _curves[e+1],
|
|
1280 |
_curves[e+2], _curves[e+3]);
|
|
1281 |
continue;
|
|
1282 |
case TYPE_CUBICTO:
|
|
1283 |
e -= 6;
|
|
1284 |
io.curveTo(_curves[e+0], _curves[e+1],
|
|
1285 |
_curves[e+2], _curves[e+3],
|
|
1286 |
_curves[e+4], _curves[e+5]);
|
|
1287 |
continue;
|
|
1288 |
default:
|
|
1289 |
}
|
|
1290 |
}
|
|
1291 |
numCurves = 0;
|
|
1292 |
end = 0;
|
|
1293 |
}
|
|
1294 |
|
|
1295 |
@Override
|
|
1296 |
public String toString() {
|
|
1297 |
String ret = "";
|
|
1298 |
int nc = numCurves;
|
|
1299 |
int last = end;
|
|
1300 |
int len;
|
|
1301 |
while (nc != 0) {
|
|
1302 |
switch(curveTypes[--nc]) {
|
|
1303 |
case TYPE_LINETO:
|
|
1304 |
len = 2;
|
|
1305 |
ret += "line: ";
|
|
1306 |
break;
|
|
1307 |
case TYPE_QUADTO:
|
|
1308 |
len = 4;
|
|
1309 |
ret += "quad: ";
|
|
1310 |
break;
|
|
1311 |
case TYPE_CUBICTO:
|
|
1312 |
len = 6;
|
|
1313 |
ret += "cubic: ";
|
|
1314 |
break;
|
|
1315 |
default:
|
|
1316 |
len = 0;
|
|
1317 |
}
|
|
1318 |
last -= len;
|
|
1319 |
ret += Arrays.toString(Arrays.copyOfRange(curves, last, last+len))
|
|
1320 |
+ "\n";
|
|
1321 |
}
|
|
1322 |
return ret;
|
|
1323 |
}
|
|
1324 |
}
|
|
1325 |
}
|