2
|
1 |
/*
|
5506
|
2 |
* Copyright (c) 1998, 2001, Oracle and/or its affiliates. All rights reserved.
|
2
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
5506
|
7 |
* published by the Free Software Foundation. Oracle designates this
|
2
|
8 |
* particular file as subject to the "Classpath" exception as provided
|
5506
|
9 |
* by Oracle in the LICENSE file that accompanied this code.
|
2
|
10 |
*
|
|
11 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
12 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
13 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
14 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
15 |
* accompanied this code).
|
|
16 |
*
|
|
17 |
* You should have received a copy of the GNU General Public License version
|
|
18 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
19 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
20 |
*
|
5506
|
21 |
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
22 |
* or visit www.oracle.com if you need additional information or have any
|
|
23 |
* questions.
|
2
|
24 |
*/
|
|
25 |
|
|
26 |
/* expm1(x)
|
|
27 |
* Returns exp(x)-1, the exponential of x minus 1.
|
|
28 |
*
|
|
29 |
* Method
|
|
30 |
* 1. Argument reduction:
|
|
31 |
* Given x, find r and integer k such that
|
|
32 |
*
|
|
33 |
* x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658
|
|
34 |
*
|
|
35 |
* Here a correction term c will be computed to compensate
|
|
36 |
* the error in r when rounded to a floating-point number.
|
|
37 |
*
|
|
38 |
* 2. Approximating expm1(r) by a special rational function on
|
|
39 |
* the interval [0,0.34658]:
|
|
40 |
* Since
|
|
41 |
* r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
|
|
42 |
* we define R1(r*r) by
|
|
43 |
* r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
|
|
44 |
* That is,
|
|
45 |
* R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
|
|
46 |
* = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
|
|
47 |
* = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
|
|
48 |
* We use a special Reme algorithm on [0,0.347] to generate
|
|
49 |
* a polynomial of degree 5 in r*r to approximate R1. The
|
|
50 |
* maximum error of this polynomial approximation is bounded
|
|
51 |
* by 2**-61. In other words,
|
|
52 |
* R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
|
|
53 |
* where Q1 = -1.6666666666666567384E-2,
|
|
54 |
* Q2 = 3.9682539681370365873E-4,
|
|
55 |
* Q3 = -9.9206344733435987357E-6,
|
|
56 |
* Q4 = 2.5051361420808517002E-7,
|
|
57 |
* Q5 = -6.2843505682382617102E-9;
|
|
58 |
* (where z=r*r, and the values of Q1 to Q5 are listed below)
|
|
59 |
* with error bounded by
|
|
60 |
* | 5 | -61
|
|
61 |
* | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2
|
|
62 |
* | |
|
|
63 |
*
|
|
64 |
* expm1(r) = exp(r)-1 is then computed by the following
|
|
65 |
* specific way which minimize the accumulation rounding error:
|
|
66 |
* 2 3
|
|
67 |
* r r [ 3 - (R1 + R1*r/2) ]
|
|
68 |
* expm1(r) = r + --- + --- * [--------------------]
|
|
69 |
* 2 2 [ 6 - r*(3 - R1*r/2) ]
|
|
70 |
*
|
|
71 |
* To compensate the error in the argument reduction, we use
|
|
72 |
* expm1(r+c) = expm1(r) + c + expm1(r)*c
|
|
73 |
* ~ expm1(r) + c + r*c
|
|
74 |
* Thus c+r*c will be added in as the correction terms for
|
|
75 |
* expm1(r+c). Now rearrange the term to avoid optimization
|
|
76 |
* screw up:
|
|
77 |
* ( 2 2 )
|
|
78 |
* ({ ( r [ R1 - (3 - R1*r/2) ] ) } r )
|
|
79 |
* expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
|
|
80 |
* ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 )
|
|
81 |
* ( )
|
|
82 |
*
|
|
83 |
* = r - E
|
|
84 |
* 3. Scale back to obtain expm1(x):
|
|
85 |
* From step 1, we have
|
|
86 |
* expm1(x) = either 2^k*[expm1(r)+1] - 1
|
|
87 |
* = or 2^k*[expm1(r) + (1-2^-k)]
|
|
88 |
* 4. Implementation notes:
|
|
89 |
* (A). To save one multiplication, we scale the coefficient Qi
|
|
90 |
* to Qi*2^i, and replace z by (x^2)/2.
|
|
91 |
* (B). To achieve maximum accuracy, we compute expm1(x) by
|
|
92 |
* (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
|
|
93 |
* (ii) if k=0, return r-E
|
|
94 |
* (iii) if k=-1, return 0.5*(r-E)-0.5
|
|
95 |
* (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E)
|
|
96 |
* else return 1.0+2.0*(r-E);
|
|
97 |
* (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
|
|
98 |
* (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else
|
|
99 |
* (vii) return 2^k(1-((E+2^-k)-r))
|
|
100 |
*
|
|
101 |
* Special cases:
|
|
102 |
* expm1(INF) is INF, expm1(NaN) is NaN;
|
|
103 |
* expm1(-INF) is -1, and
|
|
104 |
* for finite argument, only expm1(0)=0 is exact.
|
|
105 |
*
|
|
106 |
* Accuracy:
|
|
107 |
* according to an error analysis, the error is always less than
|
|
108 |
* 1 ulp (unit in the last place).
|
|
109 |
*
|
|
110 |
* Misc. info.
|
|
111 |
* For IEEE double
|
|
112 |
* if x > 7.09782712893383973096e+02 then expm1(x) overflow
|
|
113 |
*
|
|
114 |
* Constants:
|
|
115 |
* The hexadecimal values are the intended ones for the following
|
|
116 |
* constants. The decimal values may be used, provided that the
|
|
117 |
* compiler will convert from decimal to binary accurately enough
|
|
118 |
* to produce the hexadecimal values shown.
|
|
119 |
*/
|
|
120 |
|
|
121 |
#include "fdlibm.h"
|
|
122 |
|
|
123 |
#ifdef __STDC__
|
|
124 |
static const double
|
|
125 |
#else
|
|
126 |
static double
|
|
127 |
#endif
|
|
128 |
one = 1.0,
|
|
129 |
huge = 1.0e+300,
|
|
130 |
tiny = 1.0e-300,
|
|
131 |
o_threshold = 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */
|
|
132 |
ln2_hi = 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */
|
|
133 |
ln2_lo = 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */
|
|
134 |
invln2 = 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */
|
|
135 |
/* scaled coefficients related to expm1 */
|
|
136 |
Q1 = -3.33333333333331316428e-02, /* BFA11111 111110F4 */
|
|
137 |
Q2 = 1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
|
|
138 |
Q3 = -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
|
|
139 |
Q4 = 4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
|
|
140 |
Q5 = -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
|
|
141 |
|
|
142 |
#ifdef __STDC__
|
|
143 |
double expm1(double x)
|
|
144 |
#else
|
|
145 |
double expm1(x)
|
|
146 |
double x;
|
|
147 |
#endif
|
|
148 |
{
|
|
149 |
double y,hi,lo,c=0,t,e,hxs,hfx,r1;
|
|
150 |
int k,xsb;
|
|
151 |
unsigned hx;
|
|
152 |
|
|
153 |
hx = __HI(x); /* high word of x */
|
|
154 |
xsb = hx&0x80000000; /* sign bit of x */
|
|
155 |
if(xsb==0) y=x; else y= -x; /* y = |x| */
|
|
156 |
hx &= 0x7fffffff; /* high word of |x| */
|
|
157 |
|
|
158 |
/* filter out huge and non-finite argument */
|
|
159 |
if(hx >= 0x4043687A) { /* if |x|>=56*ln2 */
|
|
160 |
if(hx >= 0x40862E42) { /* if |x|>=709.78... */
|
|
161 |
if(hx>=0x7ff00000) {
|
|
162 |
if(((hx&0xfffff)|__LO(x))!=0)
|
|
163 |
return x+x; /* NaN */
|
|
164 |
else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */
|
|
165 |
}
|
|
166 |
if(x > o_threshold) return huge*huge; /* overflow */
|
|
167 |
}
|
|
168 |
if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */
|
|
169 |
if(x+tiny<0.0) /* raise inexact */
|
|
170 |
return tiny-one; /* return -1 */
|
|
171 |
}
|
|
172 |
}
|
|
173 |
|
|
174 |
/* argument reduction */
|
|
175 |
if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
|
|
176 |
if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
|
|
177 |
if(xsb==0)
|
|
178 |
{hi = x - ln2_hi; lo = ln2_lo; k = 1;}
|
|
179 |
else
|
|
180 |
{hi = x + ln2_hi; lo = -ln2_lo; k = -1;}
|
|
181 |
} else {
|
|
182 |
k = invln2*x+((xsb==0)?0.5:-0.5);
|
|
183 |
t = k;
|
|
184 |
hi = x - t*ln2_hi; /* t*ln2_hi is exact here */
|
|
185 |
lo = t*ln2_lo;
|
|
186 |
}
|
|
187 |
x = hi - lo;
|
|
188 |
c = (hi-x)-lo;
|
|
189 |
}
|
|
190 |
else if(hx < 0x3c900000) { /* when |x|<2**-54, return x */
|
|
191 |
t = huge+x; /* return x with inexact flags when x!=0 */
|
|
192 |
return x - (t-(huge+x));
|
|
193 |
}
|
|
194 |
else k = 0;
|
|
195 |
|
|
196 |
/* x is now in primary range */
|
|
197 |
hfx = 0.5*x;
|
|
198 |
hxs = x*hfx;
|
|
199 |
r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
|
|
200 |
t = 3.0-r1*hfx;
|
|
201 |
e = hxs*((r1-t)/(6.0 - x*t));
|
|
202 |
if(k==0) return x - (x*e-hxs); /* c is 0 */
|
|
203 |
else {
|
|
204 |
e = (x*(e-c)-c);
|
|
205 |
e -= hxs;
|
|
206 |
if(k== -1) return 0.5*(x-e)-0.5;
|
|
207 |
if(k==1) {
|
|
208 |
if(x < -0.25) return -2.0*(e-(x+0.5));
|
|
209 |
else return one+2.0*(x-e);
|
|
210 |
}
|
|
211 |
if (k <= -2 || k>56) { /* suffice to return exp(x)-1 */
|
|
212 |
y = one-(e-x);
|
|
213 |
__HI(y) += (k<<20); /* add k to y's exponent */
|
|
214 |
return y-one;
|
|
215 |
}
|
|
216 |
t = one;
|
|
217 |
if(k<20) {
|
|
218 |
__HI(t) = 0x3ff00000 - (0x200000>>k); /* t=1-2^-k */
|
|
219 |
y = t-(e-x);
|
|
220 |
__HI(y) += (k<<20); /* add k to y's exponent */
|
|
221 |
} else {
|
|
222 |
__HI(t) = ((0x3ff-k)<<20); /* 2^-k */
|
|
223 |
y = x-(e+t);
|
|
224 |
y += one;
|
|
225 |
__HI(y) += (k<<20); /* add k to y's exponent */
|
|
226 |
}
|
|
227 |
}
|
|
228 |
return y;
|
|
229 |
}
|