author | erikj |
Tue, 12 Sep 2017 19:03:39 +0200 | |
changeset 47216 | 71c04702a3d5 |
parent 41750 | jdk/src/java.base/share/classes/sun/text/DictionaryBasedBreakIterator.java@25ee1c2ee27e |
permissions | -rw-r--r-- |
2 | 1 |
/* |
41750
25ee1c2ee27e
8165804: Revisit the way of loading BreakIterator rules/dictionaries
okutsu
parents:
36511
diff
changeset
|
2 |
* Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved. |
2 | 3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 |
* |
|
5 |
* This code is free software; you can redistribute it and/or modify it |
|
6 |
* under the terms of the GNU General Public License version 2 only, as |
|
5506 | 7 |
* published by the Free Software Foundation. Oracle designates this |
2 | 8 |
* particular file as subject to the "Classpath" exception as provided |
5506 | 9 |
* by Oracle in the LICENSE file that accompanied this code. |
2 | 10 |
* |
11 |
* This code is distributed in the hope that it will be useful, but WITHOUT |
|
12 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
13 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
14 |
* version 2 for more details (a copy is included in the LICENSE file that |
|
15 |
* accompanied this code). |
|
16 |
* |
|
17 |
* You should have received a copy of the GNU General Public License version |
|
18 |
* 2 along with this work; if not, write to the Free Software Foundation, |
|
19 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
20 |
* |
|
5506 | 21 |
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
22 |
* or visit www.oracle.com if you need additional information or have any |
|
23 |
* questions. |
|
2 | 24 |
*/ |
25 |
||
26 |
/* |
|
27 |
* |
|
28 |
* (C) Copyright Taligent, Inc. 1996, 1997 - All Rights Reserved |
|
29 |
* (C) Copyright IBM Corp. 1996 - 2002 - All Rights Reserved |
|
30 |
* |
|
31 |
* The original version of this source code and documentation |
|
32 |
* is copyrighted and owned by Taligent, Inc., a wholly-owned |
|
33 |
* subsidiary of IBM. These materials are provided under terms |
|
34 |
* of a License Agreement between Taligent and Sun. This technology |
|
35 |
* is protected by multiple US and International patents. |
|
36 |
* |
|
37 |
* This notice and attribution to Taligent may not be removed. |
|
38 |
* Taligent is a registered trademark of Taligent, Inc. |
|
39 |
*/ |
|
40 |
||
41750
25ee1c2ee27e
8165804: Revisit the way of loading BreakIterator rules/dictionaries
okutsu
parents:
36511
diff
changeset
|
41 |
package sun.text; |
2 | 42 |
|
13583 | 43 |
import java.text.CharacterIterator; |
44 |
import java.util.ArrayList; |
|
45 |
import java.util.List; |
|
2 | 46 |
import java.util.Stack; |
47 |
||
48 |
/** |
|
49 |
* A subclass of RuleBasedBreakIterator that adds the ability to use a dictionary |
|
50 |
* to further subdivide ranges of text beyond what is possible using just the |
|
51 |
* state-table-based algorithm. This is necessary, for example, to handle |
|
52 |
* word and line breaking in Thai, which doesn't use spaces between words. The |
|
53 |
* state-table-based algorithm used by RuleBasedBreakIterator is used to divide |
|
54 |
* up text as far as possible, and then contiguous ranges of letters are |
|
55 |
* repeatedly compared against a list of known words (i.e., the dictionary) |
|
56 |
* to divide them up into words. |
|
57 |
* |
|
58 |
* DictionaryBasedBreakIterator uses the same rule language as RuleBasedBreakIterator, |
|
59 |
* but adds one more special substitution name: <dictionary>. This substitution |
|
60 |
* name is used to identify characters in words in the dictionary. The idea is that |
|
61 |
* if the iterator passes over a chunk of text that includes two or more characters |
|
62 |
* in a row that are included in <dictionary>, it goes back through that range and |
|
63 |
* derives additional break positions (if possible) using the dictionary. |
|
64 |
* |
|
65 |
* DictionaryBasedBreakIterator is also constructed with the filename of a dictionary |
|
66 |
* file. It follows a prescribed search path to locate the dictionary (right now, |
|
67 |
* it looks for it in /com/ibm/text/resources in each directory in the classpath, |
|
68 |
* and won't find it in JAR files, but this location is likely to change). The |
|
69 |
* dictionary file is in a serialized binary format. We have a very primitive (and |
|
70 |
* slow) BuildDictionaryFile utility for creating dictionary files, but aren't |
|
71 |
* currently making it public. Contact us for help. |
|
72 |
*/ |
|
41750
25ee1c2ee27e
8165804: Revisit the way of loading BreakIterator rules/dictionaries
okutsu
parents:
36511
diff
changeset
|
73 |
public class DictionaryBasedBreakIterator extends RuleBasedBreakIterator { |
2 | 74 |
|
75 |
/** |
|
76 |
* a list of known words that is used to divide up contiguous ranges of letters, |
|
77 |
* stored in a compressed, indexed, format that offers fast access |
|
78 |
*/ |
|
79 |
private BreakDictionary dictionary; |
|
80 |
||
81 |
/** |
|
82 |
* a list of flags indicating which character categories are contained in |
|
83 |
* the dictionary file (this is used to determine which ranges of characters |
|
84 |
* to apply the dictionary to) |
|
85 |
*/ |
|
86 |
private boolean[] categoryFlags; |
|
87 |
||
88 |
/** |
|
89 |
* a temporary hiding place for the number of dictionary characters in the |
|
90 |
* last range passed over by next() |
|
91 |
*/ |
|
92 |
private int dictionaryCharCount; |
|
93 |
||
94 |
/** |
|
95 |
* when a range of characters is divided up using the dictionary, the break |
|
96 |
* positions that are discovered are stored here, preventing us from having |
|
97 |
* to use either the dictionary or the state table again until the iterator |
|
98 |
* leaves this range of text |
|
99 |
*/ |
|
100 |
private int[] cachedBreakPositions; |
|
101 |
||
102 |
/** |
|
103 |
* if cachedBreakPositions is not null, this indicates which item in the |
|
104 |
* cache the current iteration position refers to |
|
105 |
*/ |
|
106 |
private int positionInCache; |
|
107 |
||
108 |
/** |
|
109 |
* Constructs a DictionaryBasedBreakIterator. |
|
41750
25ee1c2ee27e
8165804: Revisit the way of loading BreakIterator rules/dictionaries
okutsu
parents:
36511
diff
changeset
|
110 |
* |
25ee1c2ee27e
8165804: Revisit the way of loading BreakIterator rules/dictionaries
okutsu
parents:
36511
diff
changeset
|
111 |
* @param ruleFile the name of the rule data file |
25ee1c2ee27e
8165804: Revisit the way of loading BreakIterator rules/dictionaries
okutsu
parents:
36511
diff
changeset
|
112 |
* @param ruleData the rule data loaded from the rule data file |
25ee1c2ee27e
8165804: Revisit the way of loading BreakIterator rules/dictionaries
okutsu
parents:
36511
diff
changeset
|
113 |
* @param dictionaryFile the name of the dictionary file |
25ee1c2ee27e
8165804: Revisit the way of loading BreakIterator rules/dictionaries
okutsu
parents:
36511
diff
changeset
|
114 |
* @param dictionartData the dictionary data loaded from the dictionary file |
25ee1c2ee27e
8165804: Revisit the way of loading BreakIterator rules/dictionaries
okutsu
parents:
36511
diff
changeset
|
115 |
* @throws MissingResourceException if rule data or dictionary initialization failed |
2 | 116 |
*/ |
41750
25ee1c2ee27e
8165804: Revisit the way of loading BreakIterator rules/dictionaries
okutsu
parents:
36511
diff
changeset
|
117 |
public DictionaryBasedBreakIterator(String ruleFile, byte[] ruleData, |
25ee1c2ee27e
8165804: Revisit the way of loading BreakIterator rules/dictionaries
okutsu
parents:
36511
diff
changeset
|
118 |
String dictionaryFile, byte[] dictionaryData) { |
25ee1c2ee27e
8165804: Revisit the way of loading BreakIterator rules/dictionaries
okutsu
parents:
36511
diff
changeset
|
119 |
super(ruleFile, ruleData); |
2 | 120 |
byte[] tmp = super.getAdditionalData(); |
121 |
if (tmp != null) { |
|
122 |
prepareCategoryFlags(tmp); |
|
123 |
super.setAdditionalData(null); |
|
124 |
} |
|
41750
25ee1c2ee27e
8165804: Revisit the way of loading BreakIterator rules/dictionaries
okutsu
parents:
36511
diff
changeset
|
125 |
dictionary = new BreakDictionary(dictionaryFile, dictionaryData); |
2 | 126 |
} |
127 |
||
128 |
private void prepareCategoryFlags(byte[] data) { |
|
129 |
categoryFlags = new boolean[data.length]; |
|
130 |
for (int i = 0; i < data.length; i++) { |
|
131 |
categoryFlags[i] = (data[i] == (byte)1) ? true : false; |
|
132 |
} |
|
133 |
} |
|
134 |
||
13583 | 135 |
@Override |
2 | 136 |
public void setText(CharacterIterator newText) { |
137 |
super.setText(newText); |
|
138 |
cachedBreakPositions = null; |
|
139 |
dictionaryCharCount = 0; |
|
140 |
positionInCache = 0; |
|
141 |
} |
|
142 |
||
143 |
/** |
|
144 |
* Sets the current iteration position to the beginning of the text. |
|
145 |
* (i.e., the CharacterIterator's starting offset). |
|
146 |
* @return The offset of the beginning of the text. |
|
147 |
*/ |
|
13583 | 148 |
@Override |
2 | 149 |
public int first() { |
150 |
cachedBreakPositions = null; |
|
151 |
dictionaryCharCount = 0; |
|
152 |
positionInCache = 0; |
|
153 |
return super.first(); |
|
154 |
} |
|
155 |
||
156 |
/** |
|
157 |
* Sets the current iteration position to the end of the text. |
|
158 |
* (i.e., the CharacterIterator's ending offset). |
|
159 |
* @return The text's past-the-end offset. |
|
160 |
*/ |
|
13583 | 161 |
@Override |
2 | 162 |
public int last() { |
163 |
cachedBreakPositions = null; |
|
164 |
dictionaryCharCount = 0; |
|
165 |
positionInCache = 0; |
|
166 |
return super.last(); |
|
167 |
} |
|
168 |
||
169 |
/** |
|
170 |
* Advances the iterator one step backwards. |
|
171 |
* @return The position of the last boundary position before the |
|
172 |
* current iteration position |
|
173 |
*/ |
|
13583 | 174 |
@Override |
2 | 175 |
public int previous() { |
176 |
CharacterIterator text = getText(); |
|
177 |
||
178 |
// if we have cached break positions and we're still in the range |
|
179 |
// covered by them, just move one step backward in the cache |
|
180 |
if (cachedBreakPositions != null && positionInCache > 0) { |
|
181 |
--positionInCache; |
|
182 |
text.setIndex(cachedBreakPositions[positionInCache]); |
|
183 |
return cachedBreakPositions[positionInCache]; |
|
184 |
} |
|
185 |
||
186 |
// otherwise, dump the cache and use the inherited previous() method to move |
|
187 |
// backward. This may fill up the cache with new break positions, in which |
|
188 |
// case we have to mark our position in the cache |
|
189 |
else { |
|
190 |
cachedBreakPositions = null; |
|
191 |
int result = super.previous(); |
|
192 |
if (cachedBreakPositions != null) { |
|
193 |
positionInCache = cachedBreakPositions.length - 2; |
|
194 |
} |
|
195 |
return result; |
|
196 |
} |
|
197 |
} |
|
198 |
||
199 |
/** |
|
200 |
* Sets the current iteration position to the last boundary position |
|
201 |
* before the specified position. |
|
202 |
* @param offset The position to begin searching from |
|
203 |
* @return The position of the last boundary before "offset" |
|
204 |
*/ |
|
13583 | 205 |
@Override |
2 | 206 |
public int preceding(int offset) { |
207 |
CharacterIterator text = getText(); |
|
208 |
checkOffset(offset, text); |
|
209 |
||
210 |
// if we have no cached break positions, or "offset" is outside the |
|
211 |
// range covered by the cache, we can just call the inherited routine |
|
212 |
// (which will eventually call other routines in this class that may |
|
213 |
// refresh the cache) |
|
214 |
if (cachedBreakPositions == null || offset <= cachedBreakPositions[0] || |
|
215 |
offset > cachedBreakPositions[cachedBreakPositions.length - 1]) { |
|
216 |
cachedBreakPositions = null; |
|
217 |
return super.preceding(offset); |
|
218 |
} |
|
219 |
||
220 |
// on the other hand, if "offset" is within the range covered by the cache, |
|
221 |
// then all we have to do is search the cache for the last break position |
|
222 |
// before "offset" |
|
223 |
else { |
|
224 |
positionInCache = 0; |
|
225 |
while (positionInCache < cachedBreakPositions.length |
|
226 |
&& offset > cachedBreakPositions[positionInCache]) { |
|
227 |
++positionInCache; |
|
228 |
} |
|
229 |
--positionInCache; |
|
230 |
text.setIndex(cachedBreakPositions[positionInCache]); |
|
231 |
return text.getIndex(); |
|
232 |
} |
|
233 |
} |
|
234 |
||
235 |
/** |
|
236 |
* Sets the current iteration position to the first boundary position after |
|
237 |
* the specified position. |
|
238 |
* @param offset The position to begin searching forward from |
|
239 |
* @return The position of the first boundary after "offset" |
|
240 |
*/ |
|
13583 | 241 |
@Override |
2 | 242 |
public int following(int offset) { |
243 |
CharacterIterator text = getText(); |
|
244 |
checkOffset(offset, text); |
|
245 |
||
246 |
// if we have no cached break positions, or if "offset" is outside the |
|
247 |
// range covered by the cache, then dump the cache and call our |
|
248 |
// inherited following() method. This will call other methods in this |
|
249 |
// class that may refresh the cache. |
|
250 |
if (cachedBreakPositions == null || offset < cachedBreakPositions[0] || |
|
251 |
offset >= cachedBreakPositions[cachedBreakPositions.length - 1]) { |
|
252 |
cachedBreakPositions = null; |
|
253 |
return super.following(offset); |
|
254 |
} |
|
255 |
||
256 |
// on the other hand, if "offset" is within the range covered by the |
|
257 |
// cache, then just search the cache for the first break position |
|
258 |
// after "offset" |
|
259 |
else { |
|
260 |
positionInCache = 0; |
|
261 |
while (positionInCache < cachedBreakPositions.length |
|
262 |
&& offset >= cachedBreakPositions[positionInCache]) { |
|
263 |
++positionInCache; |
|
264 |
} |
|
265 |
text.setIndex(cachedBreakPositions[positionInCache]); |
|
266 |
return text.getIndex(); |
|
267 |
} |
|
268 |
} |
|
269 |
||
270 |
/** |
|
271 |
* This is the implementation function for next(). |
|
272 |
*/ |
|
13583 | 273 |
@Override |
2 | 274 |
protected int handleNext() { |
275 |
CharacterIterator text = getText(); |
|
276 |
||
277 |
// if there are no cached break positions, or if we've just moved |
|
278 |
// off the end of the range covered by the cache, we have to dump |
|
279 |
// and possibly regenerate the cache |
|
280 |
if (cachedBreakPositions == null || |
|
281 |
positionInCache == cachedBreakPositions.length - 1) { |
|
282 |
||
283 |
// start by using the inherited handleNext() to find a tentative return |
|
284 |
// value. dictionaryCharCount tells us how many dictionary characters |
|
285 |
// we passed over on our way to the tentative return value |
|
286 |
int startPos = text.getIndex(); |
|
287 |
dictionaryCharCount = 0; |
|
288 |
int result = super.handleNext(); |
|
289 |
||
290 |
// if we passed over more than one dictionary character, then we use |
|
291 |
// divideUpDictionaryRange() to regenerate the cached break positions |
|
292 |
// for the new range |
|
293 |
if (dictionaryCharCount > 1 && result - startPos > 1) { |
|
294 |
divideUpDictionaryRange(startPos, result); |
|
295 |
} |
|
296 |
||
297 |
// otherwise, the value we got back from the inherited fuction |
|
298 |
// is our return value, and we can dump the cache |
|
299 |
else { |
|
300 |
cachedBreakPositions = null; |
|
301 |
return result; |
|
302 |
} |
|
303 |
} |
|
304 |
||
305 |
// if the cache of break positions has been regenerated (or existed all |
|
306 |
// along), then just advance to the next break position in the cache |
|
307 |
// and return it |
|
308 |
if (cachedBreakPositions != null) { |
|
309 |
++positionInCache; |
|
310 |
text.setIndex(cachedBreakPositions[positionInCache]); |
|
311 |
return cachedBreakPositions[positionInCache]; |
|
312 |
} |
|
313 |
return -9999; // SHOULD NEVER GET HERE! |
|
314 |
} |
|
315 |
||
316 |
/** |
|
317 |
* Looks up a character category for a character. |
|
318 |
*/ |
|
13583 | 319 |
@Override |
2 | 320 |
protected int lookupCategory(int c) { |
321 |
// this override of lookupCategory() exists only to keep track of whether we've |
|
322 |
// passed over any dictionary characters. It calls the inherited lookupCategory() |
|
323 |
// to do the real work, and then checks whether its return value is one of the |
|
324 |
// categories represented in the dictionary. If it is, bump the dictionary- |
|
325 |
// character count. |
|
326 |
int result = super.lookupCategory(c); |
|
327 |
if (result != RuleBasedBreakIterator.IGNORE && categoryFlags[result]) { |
|
328 |
++dictionaryCharCount; |
|
329 |
} |
|
330 |
return result; |
|
331 |
} |
|
332 |
||
333 |
/** |
|
334 |
* This is the function that actually implements the dictionary-based |
|
335 |
* algorithm. Given the endpoints of a range of text, it uses the |
|
336 |
* dictionary to determine the positions of any boundaries in this |
|
337 |
* range. It stores all the boundary positions it discovers in |
|
338 |
* cachedBreakPositions so that we only have to do this work once |
|
339 |
* for each time we enter the range. |
|
340 |
*/ |
|
13583 | 341 |
@SuppressWarnings("unchecked") |
2 | 342 |
private void divideUpDictionaryRange(int startPos, int endPos) { |
343 |
CharacterIterator text = getText(); |
|
344 |
||
345 |
// the range we're dividing may begin or end with non-dictionary characters |
|
346 |
// (i.e., for line breaking, we may have leading or trailing punctuation |
|
347 |
// that needs to be kept with the word). Seek from the beginning of the |
|
348 |
// range to the first dictionary character |
|
349 |
text.setIndex(startPos); |
|
350 |
int c = getCurrent(); |
|
351 |
int category = lookupCategory(c); |
|
352 |
while (category == IGNORE || !categoryFlags[category]) { |
|
353 |
c = getNext(); |
|
354 |
category = lookupCategory(c); |
|
355 |
} |
|
356 |
||
357 |
// initialize. We maintain two stacks: currentBreakPositions contains |
|
358 |
// the list of break positions that will be returned if we successfully |
|
359 |
// finish traversing the whole range now. possibleBreakPositions lists |
|
360 |
// all other possible word ends we've passed along the way. (Whenever |
|
361 |
// we reach an error [a sequence of characters that can't begin any word |
|
362 |
// in the dictionary], we back up, possibly delete some breaks from |
|
363 |
// currentBreakPositions, move a break from possibleBreakPositions |
|
364 |
// to currentBreakPositions, and start over from there. This process |
|
365 |
// continues in this way until we either successfully make it all the way |
|
366 |
// across the range, or exhaust all of our combinations of break |
|
367 |
// positions.) |
|
12848 | 368 |
Stack<Integer> currentBreakPositions = new Stack<>(); |
369 |
Stack<Integer> possibleBreakPositions = new Stack<>(); |
|
13583 | 370 |
List<Integer> wrongBreakPositions = new ArrayList<>(); |
2 | 371 |
|
372 |
// the dictionary is implemented as a trie, which is treated as a state |
|
373 |
// machine. -1 represents the end of a legal word. Every word in the |
|
374 |
// dictionary is represented by a path from the root node to -1. A path |
|
375 |
// that ends in state 0 is an illegal combination of characters. |
|
376 |
int state = 0; |
|
377 |
||
378 |
// these two variables are used for error handling. We keep track of the |
|
379 |
// farthest we've gotten through the range being divided, and the combination |
|
380 |
// of breaks that got us that far. If we use up all possible break |
|
381 |
// combinations, the text contains an error or a word that's not in the |
|
382 |
// dictionary. In this case, we "bless" the break positions that got us the |
|
383 |
// farthest as real break positions, and then start over from scratch with |
|
384 |
// the character where the error occurred. |
|
385 |
int farthestEndPoint = text.getIndex(); |
|
12848 | 386 |
Stack<Integer> bestBreakPositions = null; |
2 | 387 |
|
388 |
// initialize (we always exit the loop with a break statement) |
|
389 |
c = getCurrent(); |
|
390 |
while (true) { |
|
391 |
||
392 |
// if we can transition to state "-1" from our current state, we're |
|
393 |
// on the last character of a legal word. Push that position onto |
|
394 |
// the possible-break-positions stack |
|
395 |
if (dictionary.getNextState(state, 0) == -1) { |
|
13583 | 396 |
possibleBreakPositions.push(text.getIndex()); |
2 | 397 |
} |
398 |
||
399 |
// look up the new state to transition to in the dictionary |
|
400 |
state = dictionary.getNextStateFromCharacter(state, c); |
|
401 |
||
402 |
// if the character we're sitting on causes us to transition to |
|
403 |
// the "end of word" state, then it was a non-dictionary character |
|
404 |
// and we've successfully traversed the whole range. Drop out |
|
405 |
// of the loop. |
|
406 |
if (state == -1) { |
|
13583 | 407 |
currentBreakPositions.push(text.getIndex()); |
2 | 408 |
break; |
409 |
} |
|
410 |
||
411 |
// if the character we're sitting on causes us to transition to |
|
412 |
// the error state, or if we've gone off the end of the range |
|
413 |
// without transitioning to the "end of word" state, we've hit |
|
414 |
// an error... |
|
415 |
else if (state == 0 || text.getIndex() >= endPos) { |
|
416 |
||
417 |
// if this is the farthest we've gotten, take note of it in |
|
418 |
// case there's an error in the text |
|
419 |
if (text.getIndex() > farthestEndPoint) { |
|
420 |
farthestEndPoint = text.getIndex(); |
|
12848 | 421 |
|
422 |
@SuppressWarnings("unchecked") |
|
423 |
Stack<Integer> currentBreakPositionsCopy = (Stack<Integer>) currentBreakPositions.clone(); |
|
424 |
||
425 |
bestBreakPositions = currentBreakPositionsCopy; |
|
2 | 426 |
} |
427 |
||
428 |
// wrongBreakPositions is a list of all break positions |
|
429 |
// we've tried starting that didn't allow us to traverse |
|
430 |
// all the way through the text. Every time we pop a |
|
13583 | 431 |
// break position off of currentBreakPositions, we put it |
2 | 432 |
// into wrongBreakPositions to avoid trying it again later. |
433 |
// If we make it to this spot, we're either going to back |
|
434 |
// up to a break in possibleBreakPositions and try starting |
|
435 |
// over from there, or we've exhausted all possible break |
|
436 |
// positions and are going to do the fallback procedure. |
|
437 |
// This loop prevents us from messing with anything in |
|
438 |
// possibleBreakPositions that didn't work as a starting |
|
439 |
// point the last time we tried it (this is to prevent a bunch of |
|
440 |
// repetitive checks from slowing down some extreme cases) |
|
13583 | 441 |
while (!possibleBreakPositions.isEmpty() |
442 |
&& wrongBreakPositions.contains(possibleBreakPositions.peek())) { |
|
2 | 443 |
possibleBreakPositions.pop(); |
444 |
} |
|
445 |
||
446 |
// if we've used up all possible break-position combinations, there's |
|
447 |
// an error or an unknown word in the text. In this case, we start |
|
448 |
// over, treating the farthest character we've reached as the beginning |
|
449 |
// of the range, and "blessing" the break positions that got us that |
|
450 |
// far as real break positions |
|
451 |
if (possibleBreakPositions.isEmpty()) { |
|
452 |
if (bestBreakPositions != null) { |
|
453 |
currentBreakPositions = bestBreakPositions; |
|
454 |
if (farthestEndPoint < endPos) { |
|
455 |
text.setIndex(farthestEndPoint + 1); |
|
456 |
} |
|
457 |
else { |
|
458 |
break; |
|
459 |
} |
|
460 |
} |
|
461 |
else { |
|
462 |
if ((currentBreakPositions.size() == 0 || |
|
12848 | 463 |
currentBreakPositions.peek().intValue() != text.getIndex()) |
2 | 464 |
&& text.getIndex() != startPos) { |
25522
10d789df41bb
8049892: Replace uses of 'new Integer()' with appropriate alternative across core classes
prr
parents:
13583
diff
changeset
|
465 |
currentBreakPositions.push(text.getIndex()); |
2 | 466 |
} |
467 |
getNext(); |
|
25522
10d789df41bb
8049892: Replace uses of 'new Integer()' with appropriate alternative across core classes
prr
parents:
13583
diff
changeset
|
468 |
currentBreakPositions.push(text.getIndex()); |
2 | 469 |
} |
470 |
} |
|
471 |
||
472 |
// if we still have more break positions we can try, then promote the |
|
473 |
// last break in possibleBreakPositions into currentBreakPositions, |
|
474 |
// and get rid of all entries in currentBreakPositions that come after |
|
475 |
// it. Then back up to that position and start over from there (i.e., |
|
476 |
// treat that position as the beginning of a new word) |
|
477 |
else { |
|
12848 | 478 |
Integer temp = possibleBreakPositions.pop(); |
479 |
Integer temp2 = null; |
|
2 | 480 |
while (!currentBreakPositions.isEmpty() && temp.intValue() < |
12848 | 481 |
currentBreakPositions.peek().intValue()) { |
2 | 482 |
temp2 = currentBreakPositions.pop(); |
13583 | 483 |
wrongBreakPositions.add(temp2); |
2 | 484 |
} |
485 |
currentBreakPositions.push(temp); |
|
12848 | 486 |
text.setIndex(currentBreakPositions.peek().intValue()); |
2 | 487 |
} |
488 |
||
489 |
// re-sync "c" for the next go-round, and drop out of the loop if |
|
490 |
// we've made it off the end of the range |
|
491 |
c = getCurrent(); |
|
492 |
if (text.getIndex() >= endPos) { |
|
493 |
break; |
|
494 |
} |
|
495 |
} |
|
496 |
||
497 |
// if we didn't hit any exceptional conditions on this last iteration, |
|
498 |
// just advance to the next character and loop |
|
499 |
else { |
|
500 |
c = getNext(); |
|
501 |
} |
|
502 |
} |
|
503 |
||
504 |
// dump the last break position in the list, and replace it with the actual |
|
505 |
// end of the range (which may be the same character, or may be further on |
|
506 |
// because the range actually ended with non-dictionary characters we want to |
|
507 |
// keep with the word) |
|
508 |
if (!currentBreakPositions.isEmpty()) { |
|
509 |
currentBreakPositions.pop(); |
|
510 |
} |
|
13583 | 511 |
currentBreakPositions.push(endPos); |
2 | 512 |
|
513 |
// create a regular array to hold the break positions and copy |
|
514 |
// the break positions from the stack to the array (in addition, |
|
515 |
// our starting position goes into this array as a break position). |
|
516 |
// This array becomes the cache of break positions used by next() |
|
517 |
// and previous(), so this is where we actually refresh the cache. |
|
518 |
cachedBreakPositions = new int[currentBreakPositions.size() + 1]; |
|
519 |
cachedBreakPositions[0] = startPos; |
|
520 |
||
521 |
for (int i = 0; i < currentBreakPositions.size(); i++) { |
|
12848 | 522 |
cachedBreakPositions[i + 1] = currentBreakPositions.elementAt(i).intValue(); |
2 | 523 |
} |
524 |
positionInCache = 0; |
|
525 |
} |
|
526 |
} |