28380
+ − 1
/*
+ − 2
* Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
+ − 3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ − 4
*
+ − 5
* This code is free software; you can redistribute it and/or modify it
+ − 6
* under the terms of the GNU General Public License version 2 only, as
+ − 7
* published by the Free Software Foundation.
+ − 8
*
+ − 9
* This code is distributed in the hope that it will be useful, but WITHOUT
+ − 10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ − 11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ − 12
* version 2 for more details (a copy is included in the LICENSE file that
+ − 13
* accompanied this code).
+ − 14
*
+ − 15
* You should have received a copy of the GNU General Public License version
+ − 16
* 2 along with this work; if not, write to the Free Software Foundation,
+ − 17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ − 18
*
+ − 19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ − 20
* or visit www.oracle.com if you need additional information or have any
+ − 21
* questions.
+ − 22
*/
+ − 23
+ − 24
/*
+ − 25
* @test TestGCOld
+ − 26
* @key gc
+ − 27
* @key stress
+ − 28
* @requires vm.gc=="null"
+ − 29
* @summary Stress the GC by trying to make old objects more likely to be garbage than young objects.
+ − 30
* @run main/othervm -Xmx384M -XX:+UseSerialGC TestGCOld 50 1 20 10 10000
+ − 31
* @run main/othervm -Xmx384M -XX:+UseParallelGC TestGCOld 50 1 20 10 10000
+ − 32
* @run main/othervm -Xmx384M -XX:+UseParallelGC -XX:-UseParallelOldGC TestGCOld 50 1 20 10 10000
+ − 33
* @run main/othervm -Xmx384M -XX:+UseConcMarkSweepGC TestGCOld 50 1 20 10 10000
+ − 34
* @run main/othervm -Xmx384M -XX:+UseG1GC TestGCOld 50 1 20 10 10000
+ − 35
*/
+ − 36
+ − 37
import java.text.*;
+ − 38
import java.util.Random;
+ − 39
+ − 40
class TreeNode {
+ − 41
public TreeNode left, right;
+ − 42
public int val; // will always be the height of the tree
+ − 43
}
+ − 44
+ − 45
+ − 46
/* Args:
+ − 47
live-data-size: in megabytes (approximate, will be rounded down).
+ − 48
work: units of mutator non-allocation work per byte allocated,
+ − 49
(in unspecified units. This will affect the promotion rate
+ − 50
printed at the end of the run: more mutator work per step implies
+ − 51
fewer steps per second implies fewer bytes promoted per second.)
+ − 52
short/long ratio: ratio of short-lived bytes allocated to long-lived
+ − 53
bytes allocated.
+ − 54
pointer mutation rate: number of pointer mutations per step.
+ − 55
steps: number of steps to do.
+ − 56
*/
+ − 57
+ − 58
public class TestGCOld {
+ − 59
+ − 60
// Command-line parameters.
+ − 61
+ − 62
private static int size, workUnits, promoteRate, ptrMutRate, steps;
+ − 63
+ − 64
// Constants.
+ − 65
+ − 66
private static final int MEG = 1000000;
+ − 67
private static final int INSIGNIFICANT = 999; // this many bytes don't matter
+ − 68
private static final int BYTES_PER_WORD = 4;
+ − 69
private static final int BYTES_PER_NODE = 20; // bytes per TreeNode
+ − 70
private static final int WORDS_DEAD = 100; // size of young garbage object
+ − 71
+ − 72
private final static int treeHeight = 14;
+ − 73
private final static long treeSize = heightToBytes(treeHeight);
+ − 74
+ − 75
private static final String msg1
+ − 76
= "Usage: java TestGCOld <size> <work> <ratio> <mutation> <steps>";
+ − 77
private static final String msg2
+ − 78
= " where <size> is the live storage in megabytes";
+ − 79
private static final String msg3
+ − 80
= " <work> is the mutator work per step (arbitrary units)";
+ − 81
private static final String msg4
+ − 82
= " <ratio> is the ratio of short-lived to long-lived allocation";
+ − 83
private static final String msg5
+ − 84
= " <mutation> is the mutations per step";
+ − 85
private static final String msg6
+ − 86
= " <steps> is the number of steps";
+ − 87
+ − 88
// Counters (and global variables that discourage optimization)
+ − 89
+ − 90
private static long youngBytes = 0; // total young bytes allocated
+ − 91
private static long nodes = 0; // total tree nodes allocated
+ − 92
private static long actuallyMut = 0; // pointer mutations in old trees
+ − 93
private static long mutatorSum = 0; // checksum to discourage optimization
+ − 94
public static int[] aexport; // exported array to discourage opt
+ − 95
+ − 96
// Global variables.
+ − 97
+ − 98
private static TreeNode[] trees;
+ − 99
private static int where = 0; // roving index into trees
+ − 100
private static Random rnd = new Random();
+ − 101
+ − 102
// Returns the height of the given tree.
+ − 103
+ − 104
private static int height (TreeNode t) {
+ − 105
if (t == null) {
+ − 106
return 0;
+ − 107
}
+ − 108
else {
+ − 109
return 1 + Math.max (height (t.left), height (t.right));
+ − 110
}
+ − 111
}
+ − 112
+ − 113
// Returns the length of the shortest path in the given tree.
+ − 114
+ − 115
private static int shortestPath (TreeNode t) {
+ − 116
if (t == null) {
+ − 117
return 0;
+ − 118
}
+ − 119
else {
+ − 120
return 1 + Math.min (shortestPath (t.left), shortestPath (t.right));
+ − 121
}
+ − 122
}
+ − 123
+ − 124
// Returns the number of nodes in a balanced tree of the given height.
+ − 125
+ − 126
private static long heightToNodes (int h) {
+ − 127
if (h == 0) {
+ − 128
return 0;
+ − 129
}
+ − 130
else {
+ − 131
long n = 1;
+ − 132
while (h > 1) {
+ − 133
n = n + n;
+ − 134
h = h - 1;
+ − 135
}
+ − 136
return n + n - 1;
+ − 137
}
+ − 138
}
+ − 139
+ − 140
// Returns the number of bytes in a balanced tree of the given height.
+ − 141
+ − 142
private static long heightToBytes (int h) {
+ − 143
return BYTES_PER_NODE * heightToNodes (h);
+ − 144
}
+ − 145
+ − 146
// Returns the height of the largest balanced tree
+ − 147
// that has no more than the given number of nodes.
+ − 148
+ − 149
private static int nodesToHeight (long nodes) {
+ − 150
int h = 1;
+ − 151
long n = 1;
+ − 152
while (n + n - 1 <= nodes) {
+ − 153
n = n + n;
+ − 154
h = h + 1;
+ − 155
}
+ − 156
return h - 1;
+ − 157
}
+ − 158
+ − 159
// Returns the height of the largest balanced tree
+ − 160
// that occupies no more than the given number of bytes.
+ − 161
+ − 162
private static int bytesToHeight (long bytes) {
+ − 163
return nodesToHeight (bytes / BYTES_PER_NODE);
+ − 164
}
+ − 165
+ − 166
// Returns a newly allocated balanced binary tree of height h.
+ − 167
+ − 168
private static TreeNode makeTree(int h) {
+ − 169
if (h == 0) return null;
+ − 170
else {
+ − 171
TreeNode res = new TreeNode();
+ − 172
nodes++;
+ − 173
res.left = makeTree(h-1);
+ − 174
res.right = makeTree(h-1);
+ − 175
res.val = h;
+ − 176
return res;
+ − 177
}
+ − 178
}
+ − 179
+ − 180
// Allocates approximately size megabytes of trees and stores
+ − 181
// them into a global array.
+ − 182
+ − 183
private static void init() {
+ − 184
int ntrees = (int) ((size * MEG) / treeSize);
+ − 185
trees = new TreeNode[ntrees];
+ − 186
+ − 187
System.err.println("Allocating " + ntrees + " trees.");
+ − 188
System.err.println(" (" + (ntrees * treeSize) + " bytes)");
+ − 189
for (int i = 0; i < ntrees; i++) {
+ − 190
trees[i] = makeTree(treeHeight);
+ − 191
// doYoungGenAlloc(promoteRate*ntrees*treeSize, WORDS_DEAD);
+ − 192
}
+ − 193
System.err.println(" (" + nodes + " nodes)");
+ − 194
+ − 195
/* Allow any in-progress GC to catch up... */
+ − 196
// try { Thread.sleep(20000); } catch (InterruptedException x) {}
+ − 197
}
+ − 198
+ − 199
// Confirms that all trees are balanced and have the correct height.
+ − 200
+ − 201
private static void checkTrees() {
+ − 202
int ntrees = trees.length;
+ − 203
for (int i = 0; i < ntrees; i++) {
+ − 204
TreeNode t = trees[i];
+ − 205
int h1 = height(t);
+ − 206
int h2 = shortestPath(t);
+ − 207
if ((h1 != treeHeight) || (h2 != treeHeight)) {
+ − 208
System.err.println("*****BUG: " + h1 + " " + h2);
+ − 209
}
+ − 210
}
+ − 211
}
+ − 212
+ − 213
// Called only by replaceTree (below) and by itself.
+ − 214
+ − 215
private static void replaceTreeWork(TreeNode full, TreeNode partial, boolean dir) {
+ − 216
boolean canGoLeft = full.left != null && full.left.val > partial.val;
+ − 217
boolean canGoRight = full.right != null && full.right.val > partial.val;
+ − 218
if (canGoLeft && canGoRight) {
+ − 219
if (dir)
+ − 220
replaceTreeWork(full.left, partial, !dir);
+ − 221
else
+ − 222
replaceTreeWork(full.right, partial, !dir);
+ − 223
} else if (!canGoLeft && !canGoRight) {
+ − 224
if (dir)
+ − 225
full.left = partial;
+ − 226
else
+ − 227
full.right = partial;
+ − 228
} else if (!canGoLeft) {
+ − 229
full.left = partial;
+ − 230
} else {
+ − 231
full.right = partial;
+ − 232
}
+ − 233
}
+ − 234
+ − 235
// Given a balanced tree full and a smaller balanced tree partial,
+ − 236
// replaces an appropriate subtree of full by partial, taking care
+ − 237
// to preserve the shape of the full tree.
+ − 238
+ − 239
private static void replaceTree(TreeNode full, TreeNode partial) {
+ − 240
boolean dir = (partial.val % 2) == 0;
+ − 241
actuallyMut++;
+ − 242
replaceTreeWork(full, partial, dir);
+ − 243
}
+ − 244
+ − 245
// Allocates approximately n bytes of long-lived storage,
+ − 246
// replacing oldest existing long-lived storage.
+ − 247
+ − 248
private static void oldGenAlloc(long n) {
+ − 249
int full = (int) (n / treeSize);
+ − 250
long partial = n % treeSize;
+ − 251
// System.out.println("In oldGenAlloc, doing " + full + " full trees "
+ − 252
// + "and one partial tree of size " + partial);
+ − 253
for (int i = 0; i < full; i++) {
+ − 254
trees[where++] = makeTree(treeHeight);
+ − 255
if (where == trees.length) where = 0;
+ − 256
}
+ − 257
while (partial > INSIGNIFICANT) {
+ − 258
int h = bytesToHeight(partial);
+ − 259
TreeNode newTree = makeTree(h);
+ − 260
replaceTree(trees[where++], newTree);
+ − 261
if (where == trees.length) where = 0;
+ − 262
partial = partial - heightToBytes(h);
+ − 263
}
+ − 264
}
+ − 265
+ − 266
// Interchanges two randomly selected subtrees (of same size and depth).
+ − 267
+ − 268
private static void oldGenSwapSubtrees() {
+ − 269
// Randomly pick:
+ − 270
// * two tree indices
+ − 271
// * A depth
+ − 272
// * A path to that depth.
+ − 273
int index1 = rnd.nextInt(trees.length);
+ − 274
int index2 = rnd.nextInt(trees.length);
+ − 275
int depth = rnd.nextInt(treeHeight);
+ − 276
int path = rnd.nextInt();
+ − 277
TreeNode tn1 = trees[index1];
+ − 278
TreeNode tn2 = trees[index2];
+ − 279
for (int i = 0; i < depth; i++) {
+ − 280
if ((path & 1) == 0) {
+ − 281
tn1 = tn1.left;
+ − 282
tn2 = tn2.left;
+ − 283
} else {
+ − 284
tn1 = tn1.right;
+ − 285
tn2 = tn2.right;
+ − 286
}
+ − 287
path >>= 1;
+ − 288
}
+ − 289
TreeNode tmp;
+ − 290
if ((path & 1) == 0) {
+ − 291
tmp = tn1.left;
+ − 292
tn1.left = tn2.left;
+ − 293
tn2.left = tmp;
+ − 294
} else {
+ − 295
tmp = tn1.right;
+ − 296
tn1.right = tn2.right;
+ − 297
tn2.right = tmp;
+ − 298
}
+ − 299
actuallyMut += 2;
+ − 300
}
+ − 301
+ − 302
// Update "n" old-generation pointers.
+ − 303
+ − 304
private static void oldGenMut(long n) {
+ − 305
for (int i = 0; i < n/2; i++) {
+ − 306
oldGenSwapSubtrees();
+ − 307
}
+ − 308
}
+ − 309
+ − 310
// Does the amount of mutator work appropriate for n bytes of young-gen
+ − 311
// garbage allocation.
+ − 312
+ − 313
private static void doMutWork(long n) {
+ − 314
int sum = 0;
+ − 315
long limit = workUnits*n/10;
+ − 316
for (long k = 0; k < limit; k++) sum++;
+ − 317
// We don't want dead code elimination to eliminate the loop above.
+ − 318
mutatorSum = mutatorSum + sum;
+ − 319
}
+ − 320
+ − 321
// Allocate n bytes of young-gen garbage, in units of "nwords"
+ − 322
// words.
+ − 323
+ − 324
private static void doYoungGenAlloc(long n, int nwords) {
+ − 325
final int nbytes = nwords*BYTES_PER_WORD;
+ − 326
int allocated = 0;
+ − 327
while (allocated < n) {
+ − 328
aexport = new int[nwords];
+ − 329
/* System.err.println("Step"); */
+ − 330
allocated += nbytes;
+ − 331
}
+ − 332
youngBytes = youngBytes + allocated;
+ − 333
}
+ − 334
+ − 335
// Allocate "n" bytes of young-gen data; and do the
+ − 336
// corresponding amount of old-gen allocation and pointer
+ − 337
// mutation.
+ − 338
+ − 339
// oldGenAlloc may perform some mutations, so this code
+ − 340
// takes those mutations into account.
+ − 341
+ − 342
private static void doStep(long n) {
+ − 343
long mutations = actuallyMut;
+ − 344
+ − 345
doYoungGenAlloc(n, WORDS_DEAD);
+ − 346
doMutWork(n);
+ − 347
oldGenAlloc(n / promoteRate);
+ − 348
oldGenMut(Math.max(0L, (mutations + ptrMutRate) - actuallyMut));
+ − 349
}
+ − 350
+ − 351
public static void main(String[] args) {
+ − 352
if (args.length != 5) {
+ − 353
System.err.println(msg1);
+ − 354
System.err.println(msg2);
+ − 355
System.err.println(msg3);
+ − 356
System.err.println(msg4);
+ − 357
System.err.println(msg5);
+ − 358
System.err.println(msg6);
+ − 359
return;
+ − 360
}
+ − 361
+ − 362
size = Integer.parseInt(args[0]);
+ − 363
workUnits = Integer.parseInt(args[1]);
+ − 364
promoteRate = Integer.parseInt(args[2]);
+ − 365
ptrMutRate = Integer.parseInt(args[3]);
+ − 366
steps = Integer.parseInt(args[4]);
+ − 367
+ − 368
System.out.println(size + " megabytes of live storage");
+ − 369
System.out.println(workUnits + " work units per step");
+ − 370
System.out.println("promotion ratio is 1:" + promoteRate);
+ − 371
System.out.println("pointer mutation rate is " + ptrMutRate);
+ − 372
System.out.println(steps + " steps");
+ − 373
+ − 374
init();
+ − 375
// checkTrees();
+ − 376
youngBytes = 0;
+ − 377
nodes = 0;
+ − 378
+ − 379
System.err.println("Initialization complete...");
+ − 380
+ − 381
long start = System.currentTimeMillis();
+ − 382
+ − 383
for (int step = 0; step < steps; step++) {
+ − 384
doStep(MEG);
+ − 385
}
+ − 386
+ − 387
long end = System.currentTimeMillis();
+ − 388
float secs = ((float)(end-start))/1000.0F;
+ − 389
+ − 390
// checkTrees();
+ − 391
+ − 392
NumberFormat nf = NumberFormat.getInstance();
+ − 393
nf.setMaximumFractionDigits(1);
+ − 394
System.out.println("\nTook " + nf.format(secs) + " sec in steady state.");
+ − 395
nf.setMaximumFractionDigits(2);
+ − 396
System.out.println("Allocated " + steps + " Mb of young gen garbage"
+ − 397
+ " (= " + nf.format(((float)steps)/secs) +
+ − 398
" Mb/sec)");
+ − 399
System.out.println(" (actually allocated " +
+ − 400
nf.format(((float) youngBytes)/MEG) + " megabytes)");
+ − 401
float promoted = ((float)steps) / (float)promoteRate;
+ − 402
System.out.println("Promoted " + promoted +
+ − 403
" Mb (= " + nf.format(promoted/secs) + " Mb/sec)");
+ − 404
System.out.println(" (actually promoted " +
+ − 405
nf.format(((float) (nodes * BYTES_PER_NODE))/MEG) +
+ − 406
" megabytes)");
+ − 407
if (ptrMutRate != 0) {
+ − 408
System.out.println("Mutated " + actuallyMut +
+ − 409
" pointers (= " +
+ − 410
nf.format(actuallyMut/secs) + " ptrs/sec)");
+ − 411
+ − 412
}
+ − 413
// This output serves mainly to discourage optimization.
+ − 414
System.out.println("Checksum = " + (mutatorSum + aexport.length));
+ − 415
+ − 416
}
+ − 417
}