author | tonyp |
Thu, 22 Apr 2010 15:20:16 -0400 | |
changeset 5891 | 59044ec3fca3 |
parent 5547 | f4b087cbb361 |
child 6759 | 67b1a69ef5aa |
permissions | -rw-r--r-- |
1 | 1 |
/* |
5547
f4b087cbb361
6941466: Oracle rebranding changes for Hotspot repositories
trims
parents:
3262
diff
changeset
|
2 |
* Copyright (c) 2007, Oracle and/or its affiliates. All rights reserved. |
1 | 3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 |
* |
|
5 |
* This code is free software; you can redistribute it and/or modify it |
|
6 |
* under the terms of the GNU General Public License version 2 only, as |
|
7 |
* published by the Free Software Foundation. |
|
8 |
* |
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT |
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that |
|
13 |
* accompanied this code). |
|
14 |
* |
|
15 |
* You should have received a copy of the GNU General Public License version |
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation, |
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 |
* |
|
5547
f4b087cbb361
6941466: Oracle rebranding changes for Hotspot repositories
trims
parents:
3262
diff
changeset
|
19 |
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
f4b087cbb361
6941466: Oracle rebranding changes for Hotspot repositories
trims
parents:
3262
diff
changeset
|
20 |
* or visit www.oracle.com if you need additional information or have any |
f4b087cbb361
6941466: Oracle rebranding changes for Hotspot repositories
trims
parents:
3262
diff
changeset
|
21 |
* questions. |
1 | 22 |
* |
23 |
*/ |
|
24 |
||
25 |
# include "incls/_precompiled.incl" |
|
26 |
# include "incls/_parCardTableModRefBS.cpp.incl" |
|
27 |
||
28 |
void CardTableModRefBS::par_non_clean_card_iterate_work(Space* sp, MemRegion mr, |
|
29 |
DirtyCardToOopClosure* dcto_cl, |
|
30 |
MemRegionClosure* cl, |
|
31 |
bool clear, |
|
32 |
int n_threads) { |
|
33 |
if (n_threads > 0) { |
|
3262 | 34 |
assert((n_threads == 1 && ParallelGCThreads == 0) || |
35 |
n_threads <= (int)ParallelGCThreads, |
|
36 |
"# worker threads != # requested!"); |
|
37 |
// Make sure the LNC array is valid for the space. |
|
1 | 38 |
jbyte** lowest_non_clean; |
39 |
uintptr_t lowest_non_clean_base_chunk_index; |
|
40 |
size_t lowest_non_clean_chunk_size; |
|
41 |
get_LNC_array_for_space(sp, lowest_non_clean, |
|
42 |
lowest_non_clean_base_chunk_index, |
|
43 |
lowest_non_clean_chunk_size); |
|
44 |
||
45 |
int n_strides = n_threads * StridesPerThread; |
|
46 |
SequentialSubTasksDone* pst = sp->par_seq_tasks(); |
|
47 |
pst->set_par_threads(n_threads); |
|
48 |
pst->set_n_tasks(n_strides); |
|
49 |
||
50 |
int stride = 0; |
|
51 |
while (!pst->is_task_claimed(/* reference */ stride)) { |
|
52 |
process_stride(sp, mr, stride, n_strides, dcto_cl, cl, clear, |
|
53 |
lowest_non_clean, |
|
54 |
lowest_non_clean_base_chunk_index, |
|
55 |
lowest_non_clean_chunk_size); |
|
56 |
} |
|
57 |
if (pst->all_tasks_completed()) { |
|
58 |
// Clear lowest_non_clean array for next time. |
|
59 |
intptr_t first_chunk_index = addr_to_chunk_index(mr.start()); |
|
60 |
uintptr_t last_chunk_index = addr_to_chunk_index(mr.last()); |
|
61 |
for (uintptr_t ch = first_chunk_index; ch <= last_chunk_index; ch++) { |
|
62 |
intptr_t ind = ch - lowest_non_clean_base_chunk_index; |
|
63 |
assert(0 <= ind && ind < (intptr_t)lowest_non_clean_chunk_size, |
|
64 |
"Bounds error"); |
|
65 |
lowest_non_clean[ind] = NULL; |
|
66 |
} |
|
67 |
} |
|
68 |
} |
|
69 |
} |
|
70 |
||
71 |
void |
|
72 |
CardTableModRefBS:: |
|
73 |
process_stride(Space* sp, |
|
74 |
MemRegion used, |
|
75 |
jint stride, int n_strides, |
|
76 |
DirtyCardToOopClosure* dcto_cl, |
|
77 |
MemRegionClosure* cl, |
|
78 |
bool clear, |
|
79 |
jbyte** lowest_non_clean, |
|
80 |
uintptr_t lowest_non_clean_base_chunk_index, |
|
81 |
size_t lowest_non_clean_chunk_size) { |
|
82 |
// We don't have to go downwards here; it wouldn't help anyway, |
|
83 |
// because of parallelism. |
|
84 |
||
85 |
// Find the first card address of the first chunk in the stride that is |
|
86 |
// at least "bottom" of the used region. |
|
87 |
jbyte* start_card = byte_for(used.start()); |
|
88 |
jbyte* end_card = byte_after(used.last()); |
|
89 |
uintptr_t start_chunk = addr_to_chunk_index(used.start()); |
|
90 |
uintptr_t start_chunk_stride_num = start_chunk % n_strides; |
|
91 |
jbyte* chunk_card_start; |
|
92 |
||
93 |
if ((uintptr_t)stride >= start_chunk_stride_num) { |
|
94 |
chunk_card_start = (jbyte*)(start_card + |
|
95 |
(stride - start_chunk_stride_num) * |
|
96 |
CardsPerStrideChunk); |
|
97 |
} else { |
|
98 |
// Go ahead to the next chunk group boundary, then to the requested stride. |
|
99 |
chunk_card_start = (jbyte*)(start_card + |
|
100 |
(n_strides - start_chunk_stride_num + stride) * |
|
101 |
CardsPerStrideChunk); |
|
102 |
} |
|
103 |
||
104 |
while (chunk_card_start < end_card) { |
|
105 |
// We don't have to go downwards here; it wouldn't help anyway, |
|
106 |
// because of parallelism. (We take care with "min_done"; see below.) |
|
107 |
// Invariant: chunk_mr should be fully contained within the "used" region. |
|
108 |
jbyte* chunk_card_end = chunk_card_start + CardsPerStrideChunk; |
|
109 |
MemRegion chunk_mr = MemRegion(addr_for(chunk_card_start), |
|
110 |
chunk_card_end >= end_card ? |
|
111 |
used.end() : addr_for(chunk_card_end)); |
|
112 |
assert(chunk_mr.word_size() > 0, "[chunk_card_start > used_end)"); |
|
113 |
assert(used.contains(chunk_mr), "chunk_mr should be subset of used"); |
|
114 |
||
115 |
// Process the chunk. |
|
116 |
process_chunk_boundaries(sp, |
|
117 |
dcto_cl, |
|
118 |
chunk_mr, |
|
119 |
used, |
|
120 |
lowest_non_clean, |
|
121 |
lowest_non_clean_base_chunk_index, |
|
122 |
lowest_non_clean_chunk_size); |
|
123 |
||
124 |
non_clean_card_iterate_work(chunk_mr, cl, clear); |
|
125 |
||
126 |
// Find the next chunk of the stride. |
|
127 |
chunk_card_start += CardsPerStrideChunk * n_strides; |
|
128 |
} |
|
129 |
} |
|
130 |
||
131 |
void |
|
132 |
CardTableModRefBS:: |
|
133 |
process_chunk_boundaries(Space* sp, |
|
134 |
DirtyCardToOopClosure* dcto_cl, |
|
135 |
MemRegion chunk_mr, |
|
136 |
MemRegion used, |
|
137 |
jbyte** lowest_non_clean, |
|
138 |
uintptr_t lowest_non_clean_base_chunk_index, |
|
139 |
size_t lowest_non_clean_chunk_size) |
|
140 |
{ |
|
141 |
// We must worry about the chunk boundaries. |
|
142 |
||
143 |
// First, set our max_to_do: |
|
144 |
HeapWord* max_to_do = NULL; |
|
145 |
uintptr_t cur_chunk_index = addr_to_chunk_index(chunk_mr.start()); |
|
146 |
cur_chunk_index = cur_chunk_index - lowest_non_clean_base_chunk_index; |
|
147 |
||
148 |
if (chunk_mr.end() < used.end()) { |
|
149 |
// This is not the last chunk in the used region. What is the last |
|
150 |
// object? |
|
151 |
HeapWord* last_block = sp->block_start(chunk_mr.end()); |
|
152 |
assert(last_block <= chunk_mr.end(), "In case this property changes."); |
|
153 |
if (last_block == chunk_mr.end() |
|
154 |
|| !sp->block_is_obj(last_block)) { |
|
155 |
max_to_do = chunk_mr.end(); |
|
156 |
||
157 |
} else { |
|
158 |
// It is an object and starts before the end of the current chunk. |
|
159 |
// last_obj_card is the card corresponding to the start of the last object |
|
160 |
// in the chunk. Note that the last object may not start in |
|
161 |
// the chunk. |
|
162 |
jbyte* last_obj_card = byte_for(last_block); |
|
163 |
if (!card_may_have_been_dirty(*last_obj_card)) { |
|
164 |
// The card containing the head is not dirty. Any marks in |
|
165 |
// subsequent cards still in this chunk must have been made |
|
166 |
// precisely; we can cap processing at the end. |
|
167 |
max_to_do = chunk_mr.end(); |
|
168 |
} else { |
|
169 |
// The last object must be considered dirty, and extends onto the |
|
170 |
// following chunk. Look for a dirty card in that chunk that will |
|
171 |
// bound our processing. |
|
172 |
jbyte* limit_card = NULL; |
|
173 |
size_t last_block_size = sp->block_size(last_block); |
|
174 |
jbyte* last_card_of_last_obj = |
|
175 |
byte_for(last_block + last_block_size - 1); |
|
176 |
jbyte* first_card_of_next_chunk = byte_for(chunk_mr.end()); |
|
177 |
// This search potentially goes a long distance looking |
|
178 |
// for the next card that will be scanned. For example, |
|
179 |
// an object that is an array of primitives will not |
|
180 |
// have any cards covering regions interior to the array |
|
181 |
// that will need to be scanned. The scan can be terminated |
|
182 |
// at the last card of the next chunk. That would leave |
|
183 |
// limit_card as NULL and would result in "max_to_do" |
|
184 |
// being set with the LNC value or with the end |
|
185 |
// of the last block. |
|
186 |
jbyte* last_card_of_next_chunk = first_card_of_next_chunk + |
|
187 |
CardsPerStrideChunk; |
|
188 |
assert(byte_for(chunk_mr.end()) - byte_for(chunk_mr.start()) |
|
189 |
== CardsPerStrideChunk, "last card of next chunk may be wrong"); |
|
190 |
jbyte* last_card_to_check = (jbyte*) MIN2(last_card_of_last_obj, |
|
191 |
last_card_of_next_chunk); |
|
192 |
for (jbyte* cur = first_card_of_next_chunk; |
|
193 |
cur <= last_card_to_check; cur++) { |
|
194 |
if (card_will_be_scanned(*cur)) { |
|
195 |
limit_card = cur; break; |
|
196 |
} |
|
197 |
} |
|
198 |
assert(0 <= cur_chunk_index+1 && |
|
199 |
cur_chunk_index+1 < lowest_non_clean_chunk_size, |
|
200 |
"Bounds error."); |
|
201 |
// LNC for the next chunk |
|
202 |
jbyte* lnc_card = lowest_non_clean[cur_chunk_index+1]; |
|
203 |
if (limit_card == NULL) { |
|
204 |
limit_card = lnc_card; |
|
205 |
} |
|
206 |
if (limit_card != NULL) { |
|
207 |
if (lnc_card != NULL) { |
|
208 |
limit_card = (jbyte*)MIN2((intptr_t)limit_card, |
|
209 |
(intptr_t)lnc_card); |
|
210 |
} |
|
211 |
max_to_do = addr_for(limit_card); |
|
212 |
} else { |
|
213 |
max_to_do = last_block + last_block_size; |
|
214 |
} |
|
215 |
} |
|
216 |
} |
|
217 |
assert(max_to_do != NULL, "OOPS!"); |
|
218 |
} else { |
|
219 |
max_to_do = used.end(); |
|
220 |
} |
|
221 |
// Now we can set the closure we're using so it doesn't to beyond |
|
222 |
// max_to_do. |
|
223 |
dcto_cl->set_min_done(max_to_do); |
|
224 |
#ifndef PRODUCT |
|
225 |
dcto_cl->set_last_bottom(max_to_do); |
|
226 |
#endif |
|
227 |
||
228 |
// Now we set *our" lowest_non_clean entry. |
|
229 |
// Find the object that spans our boundary, if one exists. |
|
230 |
// Nothing to do on the first chunk. |
|
231 |
if (chunk_mr.start() > used.start()) { |
|
232 |
// first_block is the block possibly spanning the chunk start |
|
233 |
HeapWord* first_block = sp->block_start(chunk_mr.start()); |
|
234 |
// Does the block span the start of the chunk and is it |
|
235 |
// an object? |
|
236 |
if (first_block < chunk_mr.start() && |
|
237 |
sp->block_is_obj(first_block)) { |
|
238 |
jbyte* first_dirty_card = NULL; |
|
239 |
jbyte* last_card_of_first_obj = |
|
240 |
byte_for(first_block + sp->block_size(first_block) - 1); |
|
241 |
jbyte* first_card_of_cur_chunk = byte_for(chunk_mr.start()); |
|
242 |
jbyte* last_card_of_cur_chunk = byte_for(chunk_mr.last()); |
|
243 |
jbyte* last_card_to_check = |
|
244 |
(jbyte*) MIN2((intptr_t) last_card_of_cur_chunk, |
|
245 |
(intptr_t) last_card_of_first_obj); |
|
246 |
for (jbyte* cur = first_card_of_cur_chunk; |
|
247 |
cur <= last_card_to_check; cur++) { |
|
248 |
if (card_will_be_scanned(*cur)) { |
|
249 |
first_dirty_card = cur; break; |
|
250 |
} |
|
251 |
} |
|
252 |
if (first_dirty_card != NULL) { |
|
253 |
assert(0 <= cur_chunk_index && |
|
254 |
cur_chunk_index < lowest_non_clean_chunk_size, |
|
255 |
"Bounds error."); |
|
256 |
lowest_non_clean[cur_chunk_index] = first_dirty_card; |
|
257 |
} |
|
258 |
} |
|
259 |
} |
|
260 |
} |
|
261 |
||
262 |
void |
|
263 |
CardTableModRefBS:: |
|
264 |
get_LNC_array_for_space(Space* sp, |
|
265 |
jbyte**& lowest_non_clean, |
|
266 |
uintptr_t& lowest_non_clean_base_chunk_index, |
|
267 |
size_t& lowest_non_clean_chunk_size) { |
|
268 |
||
269 |
int i = find_covering_region_containing(sp->bottom()); |
|
270 |
MemRegion covered = _covered[i]; |
|
271 |
size_t n_chunks = chunks_to_cover(covered); |
|
272 |
||
273 |
// Only the first thread to obtain the lock will resize the |
|
274 |
// LNC array for the covered region. Any later expansion can't affect |
|
275 |
// the used_at_save_marks region. |
|
276 |
// (I observed a bug in which the first thread to execute this would |
|
277 |
// resize, and then it would cause "expand_and_allocates" that would |
|
278 |
// Increase the number of chunks in the covered region. Then a second |
|
279 |
// thread would come and execute this, see that the size didn't match, |
|
280 |
// and free and allocate again. So the first thread would be using a |
|
281 |
// freed "_lowest_non_clean" array.) |
|
282 |
||
283 |
// Do a dirty read here. If we pass the conditional then take the rare |
|
284 |
// event lock and do the read again in case some other thread had already |
|
285 |
// succeeded and done the resize. |
|
286 |
int cur_collection = Universe::heap()->total_collections(); |
|
287 |
if (_last_LNC_resizing_collection[i] != cur_collection) { |
|
288 |
MutexLocker x(ParGCRareEvent_lock); |
|
289 |
if (_last_LNC_resizing_collection[i] != cur_collection) { |
|
290 |
if (_lowest_non_clean[i] == NULL || |
|
291 |
n_chunks != _lowest_non_clean_chunk_size[i]) { |
|
292 |
||
293 |
// Should we delete the old? |
|
294 |
if (_lowest_non_clean[i] != NULL) { |
|
295 |
assert(n_chunks != _lowest_non_clean_chunk_size[i], |
|
296 |
"logical consequence"); |
|
297 |
FREE_C_HEAP_ARRAY(CardPtr, _lowest_non_clean[i]); |
|
298 |
_lowest_non_clean[i] = NULL; |
|
299 |
} |
|
300 |
// Now allocate a new one if necessary. |
|
301 |
if (_lowest_non_clean[i] == NULL) { |
|
302 |
_lowest_non_clean[i] = NEW_C_HEAP_ARRAY(CardPtr, n_chunks); |
|
303 |
_lowest_non_clean_chunk_size[i] = n_chunks; |
|
304 |
_lowest_non_clean_base_chunk_index[i] = addr_to_chunk_index(covered.start()); |
|
305 |
for (int j = 0; j < (int)n_chunks; j++) |
|
306 |
_lowest_non_clean[i][j] = NULL; |
|
307 |
} |
|
308 |
} |
|
309 |
_last_LNC_resizing_collection[i] = cur_collection; |
|
310 |
} |
|
311 |
} |
|
312 |
// In any case, now do the initialization. |
|
313 |
lowest_non_clean = _lowest_non_clean[i]; |
|
314 |
lowest_non_clean_base_chunk_index = _lowest_non_clean_base_chunk_index[i]; |
|
315 |
lowest_non_clean_chunk_size = _lowest_non_clean_chunk_size[i]; |
|
316 |
} |