1
|
1 |
/*
|
|
2 |
* Copyright 2005-2006 Sun Microsystems, Inc. All Rights Reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation.
|
|
8 |
*
|
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
13 |
* accompanied this code).
|
|
14 |
*
|
|
15 |
* You should have received a copy of the GNU General Public License version
|
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
18 |
*
|
|
19 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
20 |
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
21 |
* have any questions.
|
|
22 |
*
|
|
23 |
*/
|
|
24 |
|
1374
|
25 |
|
|
26 |
inline void BitMap::set_bit(idx_t bit) {
|
|
27 |
verify_index(bit);
|
|
28 |
*word_addr(bit) |= bit_mask(bit);
|
|
29 |
}
|
|
30 |
|
|
31 |
inline void BitMap::clear_bit(idx_t bit) {
|
|
32 |
verify_index(bit);
|
|
33 |
*word_addr(bit) &= ~bit_mask(bit);
|
|
34 |
}
|
|
35 |
|
1
|
36 |
inline bool BitMap::par_set_bit(idx_t bit) {
|
|
37 |
verify_index(bit);
|
|
38 |
volatile idx_t* const addr = word_addr(bit);
|
|
39 |
const idx_t mask = bit_mask(bit);
|
|
40 |
idx_t old_val = *addr;
|
|
41 |
|
|
42 |
do {
|
|
43 |
const idx_t new_val = old_val | mask;
|
|
44 |
if (new_val == old_val) {
|
|
45 |
return false; // Someone else beat us to it.
|
|
46 |
}
|
|
47 |
const idx_t cur_val = (idx_t) Atomic::cmpxchg_ptr((void*) new_val,
|
|
48 |
(volatile void*) addr,
|
|
49 |
(void*) old_val);
|
|
50 |
if (cur_val == old_val) {
|
|
51 |
return true; // Success.
|
|
52 |
}
|
|
53 |
old_val = cur_val; // The value changed, try again.
|
|
54 |
} while (true);
|
|
55 |
}
|
|
56 |
|
|
57 |
inline bool BitMap::par_clear_bit(idx_t bit) {
|
|
58 |
verify_index(bit);
|
|
59 |
volatile idx_t* const addr = word_addr(bit);
|
|
60 |
const idx_t mask = ~bit_mask(bit);
|
|
61 |
idx_t old_val = *addr;
|
|
62 |
|
|
63 |
do {
|
|
64 |
const idx_t new_val = old_val & mask;
|
|
65 |
if (new_val == old_val) {
|
|
66 |
return false; // Someone else beat us to it.
|
|
67 |
}
|
|
68 |
const idx_t cur_val = (idx_t) Atomic::cmpxchg_ptr((void*) new_val,
|
|
69 |
(volatile void*) addr,
|
|
70 |
(void*) old_val);
|
|
71 |
if (cur_val == old_val) {
|
|
72 |
return true; // Success.
|
|
73 |
}
|
|
74 |
old_val = cur_val; // The value changed, try again.
|
|
75 |
} while (true);
|
|
76 |
}
|
|
77 |
|
1374
|
78 |
inline void BitMap::set_range(idx_t beg, idx_t end, RangeSizeHint hint) {
|
|
79 |
if (hint == small_range && end - beg == 1) {
|
|
80 |
set_bit(beg);
|
|
81 |
} else {
|
|
82 |
if (hint == large_range) {
|
|
83 |
set_large_range(beg, end);
|
|
84 |
} else {
|
|
85 |
set_range(beg, end);
|
|
86 |
}
|
|
87 |
}
|
|
88 |
}
|
|
89 |
|
|
90 |
inline void BitMap::clear_range(idx_t beg, idx_t end, RangeSizeHint hint) {
|
|
91 |
if (hint == small_range && end - beg == 1) {
|
|
92 |
clear_bit(beg);
|
|
93 |
} else {
|
|
94 |
if (hint == large_range) {
|
|
95 |
clear_large_range(beg, end);
|
|
96 |
} else {
|
|
97 |
clear_range(beg, end);
|
|
98 |
}
|
|
99 |
}
|
|
100 |
}
|
|
101 |
|
|
102 |
inline void BitMap::par_set_range(idx_t beg, idx_t end, RangeSizeHint hint) {
|
|
103 |
if (hint == small_range && end - beg == 1) {
|
|
104 |
par_at_put(beg, true);
|
|
105 |
} else {
|
|
106 |
if (hint == large_range) {
|
|
107 |
par_at_put_large_range(beg, end, true);
|
|
108 |
} else {
|
|
109 |
par_at_put_range(beg, end, true);
|
|
110 |
}
|
|
111 |
}
|
|
112 |
}
|
1
|
113 |
|
1374
|
114 |
inline void BitMap::set_range_of_words(idx_t beg, idx_t end) {
|
|
115 |
bm_word_t* map = _map;
|
|
116 |
for (idx_t i = beg; i < end; ++i) map[i] = ~(uintptr_t)0;
|
|
117 |
}
|
|
118 |
|
|
119 |
|
|
120 |
inline void BitMap::clear_range_of_words(idx_t beg, idx_t end) {
|
|
121 |
bm_word_t* map = _map;
|
|
122 |
for (idx_t i = beg; i < end; ++i) map[i] = 0;
|
|
123 |
}
|
|
124 |
|
|
125 |
|
|
126 |
inline void BitMap::clear() {
|
|
127 |
clear_range_of_words(0, size_in_words());
|
|
128 |
}
|
|
129 |
|
1
|
130 |
|
1374
|
131 |
inline void BitMap::par_clear_range(idx_t beg, idx_t end, RangeSizeHint hint) {
|
|
132 |
if (hint == small_range && end - beg == 1) {
|
|
133 |
par_at_put(beg, false);
|
|
134 |
} else {
|
|
135 |
if (hint == large_range) {
|
|
136 |
par_at_put_large_range(beg, end, false);
|
|
137 |
} else {
|
|
138 |
par_at_put_range(beg, end, false);
|
|
139 |
}
|
|
140 |
}
|
|
141 |
}
|
|
142 |
|
|
143 |
inline BitMap::idx_t
|
|
144 |
BitMap::get_next_one_offset_inline(idx_t l_offset, idx_t r_offset) const {
|
|
145 |
assert(l_offset <= size(), "BitMap index out of bounds");
|
|
146 |
assert(r_offset <= size(), "BitMap index out of bounds");
|
|
147 |
assert(l_offset <= r_offset, "l_offset > r_offset ?");
|
|
148 |
|
|
149 |
if (l_offset == r_offset) {
|
|
150 |
return l_offset;
|
|
151 |
}
|
|
152 |
idx_t index = word_index(l_offset);
|
|
153 |
idx_t r_index = word_index(r_offset-1) + 1;
|
|
154 |
idx_t res_offset = l_offset;
|
1
|
155 |
|
|
156 |
// check bits including and to the _left_ of offset's position
|
1374
|
157 |
idx_t pos = bit_in_word(res_offset);
|
|
158 |
idx_t res = map(index) >> pos;
|
|
159 |
if (res != (uintptr_t)NoBits) {
|
1
|
160 |
// find the position of the 1-bit
|
1374
|
161 |
for (; !(res & 1); res_offset++) {
|
1
|
162 |
res = res >> 1;
|
|
163 |
}
|
1374
|
164 |
assert(res_offset >= l_offset &&
|
|
165 |
res_offset < r_offset, "just checking");
|
|
166 |
return MIN2(res_offset, r_offset);
|
1
|
167 |
}
|
|
168 |
// skip over all word length 0-bit runs
|
|
169 |
for (index++; index < r_index; index++) {
|
|
170 |
res = map(index);
|
1374
|
171 |
if (res != (uintptr_t)NoBits) {
|
1
|
172 |
// found a 1, return the offset
|
1374
|
173 |
for (res_offset = bit_index(index); !(res & 1); res_offset++) {
|
1
|
174 |
res = res >> 1;
|
|
175 |
}
|
|
176 |
assert(res & 1, "tautology; see loop condition");
|
1374
|
177 |
assert(res_offset >= l_offset, "just checking");
|
|
178 |
return MIN2(res_offset, r_offset);
|
|
179 |
}
|
|
180 |
}
|
|
181 |
return r_offset;
|
|
182 |
}
|
|
183 |
|
|
184 |
inline BitMap::idx_t
|
|
185 |
BitMap::get_next_zero_offset_inline(idx_t l_offset, idx_t r_offset) const {
|
|
186 |
assert(l_offset <= size(), "BitMap index out of bounds");
|
|
187 |
assert(r_offset <= size(), "BitMap index out of bounds");
|
|
188 |
assert(l_offset <= r_offset, "l_offset > r_offset ?");
|
|
189 |
|
|
190 |
if (l_offset == r_offset) {
|
|
191 |
return l_offset;
|
|
192 |
}
|
|
193 |
idx_t index = word_index(l_offset);
|
|
194 |
idx_t r_index = word_index(r_offset-1) + 1;
|
|
195 |
idx_t res_offset = l_offset;
|
|
196 |
|
|
197 |
// check bits including and to the _left_ of offset's position
|
|
198 |
idx_t pos = res_offset & (BitsPerWord - 1);
|
|
199 |
idx_t res = (map(index) >> pos) | left_n_bits((int)pos);
|
|
200 |
|
|
201 |
if (res != (uintptr_t)AllBits) {
|
|
202 |
// find the position of the 0-bit
|
|
203 |
for (; res & 1; res_offset++) {
|
|
204 |
res = res >> 1;
|
|
205 |
}
|
|
206 |
assert(res_offset >= l_offset, "just checking");
|
|
207 |
return MIN2(res_offset, r_offset);
|
|
208 |
}
|
|
209 |
// skip over all word length 1-bit runs
|
|
210 |
for (index++; index < r_index; index++) {
|
|
211 |
res = map(index);
|
|
212 |
if (res != (uintptr_t)AllBits) {
|
|
213 |
// found a 0, return the offset
|
|
214 |
for (res_offset = index << LogBitsPerWord; res & 1;
|
|
215 |
res_offset++) {
|
|
216 |
res = res >> 1;
|
|
217 |
}
|
|
218 |
assert(!(res & 1), "tautology; see loop condition");
|
|
219 |
assert(res_offset >= l_offset, "just checking");
|
|
220 |
return MIN2(res_offset, r_offset);
|
1
|
221 |
}
|
|
222 |
}
|
1374
|
223 |
return r_offset;
|
|
224 |
}
|
|
225 |
|
|
226 |
inline BitMap::idx_t
|
|
227 |
BitMap::get_next_one_offset_inline_aligned_right(idx_t l_offset,
|
|
228 |
idx_t r_offset) const
|
|
229 |
{
|
|
230 |
verify_range(l_offset, r_offset);
|
|
231 |
assert(bit_in_word(r_offset) == 0, "r_offset not word-aligned");
|
|
232 |
|
|
233 |
if (l_offset == r_offset) {
|
|
234 |
return l_offset;
|
|
235 |
}
|
|
236 |
idx_t index = word_index(l_offset);
|
|
237 |
idx_t r_index = word_index(r_offset);
|
|
238 |
idx_t res_offset = l_offset;
|
|
239 |
|
|
240 |
// check bits including and to the _left_ of offset's position
|
|
241 |
idx_t res = map(index) >> bit_in_word(res_offset);
|
|
242 |
if (res != (uintptr_t)NoBits) {
|
|
243 |
// find the position of the 1-bit
|
|
244 |
for (; !(res & 1); res_offset++) {
|
|
245 |
res = res >> 1;
|
|
246 |
}
|
|
247 |
assert(res_offset >= l_offset &&
|
|
248 |
res_offset < r_offset, "just checking");
|
|
249 |
return res_offset;
|
|
250 |
}
|
|
251 |
// skip over all word length 0-bit runs
|
|
252 |
for (index++; index < r_index; index++) {
|
|
253 |
res = map(index);
|
|
254 |
if (res != (uintptr_t)NoBits) {
|
|
255 |
// found a 1, return the offset
|
|
256 |
for (res_offset = bit_index(index); !(res & 1); res_offset++) {
|
|
257 |
res = res >> 1;
|
|
258 |
}
|
|
259 |
assert(res & 1, "tautology; see loop condition");
|
|
260 |
assert(res_offset >= l_offset && res_offset < r_offset, "just checking");
|
|
261 |
return res_offset;
|
|
262 |
}
|
|
263 |
}
|
|
264 |
return r_offset;
|
1
|
265 |
}
|
1374
|
266 |
|
|
267 |
|
|
268 |
// Returns a bit mask for a range of bits [beg, end) within a single word. Each
|
|
269 |
// bit in the mask is 0 if the bit is in the range, 1 if not in the range. The
|
|
270 |
// returned mask can be used directly to clear the range, or inverted to set the
|
|
271 |
// range. Note: end must not be 0.
|
|
272 |
inline BitMap::bm_word_t
|
|
273 |
BitMap::inverted_bit_mask_for_range(idx_t beg, idx_t end) const {
|
|
274 |
assert(end != 0, "does not work when end == 0");
|
|
275 |
assert(beg == end || word_index(beg) == word_index(end - 1),
|
|
276 |
"must be a single-word range");
|
|
277 |
bm_word_t mask = bit_mask(beg) - 1; // low (right) bits
|
|
278 |
if (bit_in_word(end) != 0) {
|
|
279 |
mask |= ~(bit_mask(end) - 1); // high (left) bits
|
|
280 |
}
|
|
281 |
return mask;
|
|
282 |
}
|
|
283 |
|
|
284 |
inline void BitMap::set_large_range_of_words(idx_t beg, idx_t end) {
|
|
285 |
memset(_map + beg, ~(unsigned char)0, (end - beg) * sizeof(uintptr_t));
|
|
286 |
}
|
|
287 |
|
|
288 |
inline void BitMap::clear_large_range_of_words(idx_t beg, idx_t end) {
|
|
289 |
memset(_map + beg, 0, (end - beg) * sizeof(uintptr_t));
|
|
290 |
}
|
|
291 |
|
|
292 |
inline BitMap::idx_t BitMap::word_index_round_up(idx_t bit) const {
|
|
293 |
idx_t bit_rounded_up = bit + (BitsPerWord - 1);
|
|
294 |
// Check for integer arithmetic overflow.
|
|
295 |
return bit_rounded_up > bit ? word_index(bit_rounded_up) : size_in_words();
|
|
296 |
}
|
|
297 |
|
|
298 |
inline BitMap::idx_t BitMap::get_next_one_offset(idx_t l_offset,
|
|
299 |
idx_t r_offset) const {
|
|
300 |
return get_next_one_offset_inline(l_offset, r_offset);
|
|
301 |
}
|
|
302 |
|
|
303 |
inline BitMap::idx_t BitMap::get_next_zero_offset(idx_t l_offset,
|
|
304 |
idx_t r_offset) const {
|
|
305 |
return get_next_zero_offset_inline(l_offset, r_offset);
|
|
306 |
}
|
|
307 |
|
|
308 |
inline void BitMap2D::clear() {
|
|
309 |
_map.clear();
|
|
310 |
}
|