1
|
1 |
/*
|
|
2 |
* Copyright 2005-2006 Sun Microsystems, Inc. All Rights Reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation.
|
|
8 |
*
|
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
13 |
* accompanied this code).
|
|
14 |
*
|
|
15 |
* You should have received a copy of the GNU General Public License version
|
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
18 |
*
|
|
19 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
20 |
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
21 |
* have any questions.
|
|
22 |
*
|
|
23 |
*/
|
|
24 |
|
|
25 |
class oopDesc;
|
|
26 |
class ParMarkBitMapClosure;
|
|
27 |
|
|
28 |
class ParMarkBitMap: public CHeapObj
|
|
29 |
{
|
|
30 |
public:
|
|
31 |
typedef BitMap::idx_t idx_t;
|
|
32 |
|
|
33 |
// Values returned by the iterate() methods.
|
|
34 |
enum IterationStatus { incomplete, complete, full, would_overflow };
|
|
35 |
|
|
36 |
inline ParMarkBitMap();
|
|
37 |
inline ParMarkBitMap(MemRegion covered_region);
|
|
38 |
bool initialize(MemRegion covered_region);
|
|
39 |
|
|
40 |
// Atomically mark an object as live.
|
|
41 |
bool mark_obj(HeapWord* addr, size_t size);
|
|
42 |
inline bool mark_obj(oop obj, int size);
|
|
43 |
inline bool mark_obj(oop obj);
|
|
44 |
|
|
45 |
// Return whether the specified begin or end bit is set.
|
|
46 |
inline bool is_obj_beg(idx_t bit) const;
|
|
47 |
inline bool is_obj_end(idx_t bit) const;
|
|
48 |
|
|
49 |
// Traditional interface for testing whether an object is marked or not (these
|
|
50 |
// test only the begin bits).
|
|
51 |
inline bool is_marked(idx_t bit) const;
|
|
52 |
inline bool is_marked(HeapWord* addr) const;
|
|
53 |
inline bool is_marked(oop obj) const;
|
|
54 |
|
|
55 |
inline bool is_unmarked(idx_t bit) const;
|
|
56 |
inline bool is_unmarked(HeapWord* addr) const;
|
|
57 |
inline bool is_unmarked(oop obj) const;
|
|
58 |
|
|
59 |
// Convert sizes from bits to HeapWords and back. An object that is n bits
|
|
60 |
// long will be bits_to_words(n) words long. An object that is m words long
|
|
61 |
// will take up words_to_bits(m) bits in the bitmap.
|
|
62 |
inline static size_t bits_to_words(idx_t bits);
|
|
63 |
inline static idx_t words_to_bits(size_t words);
|
|
64 |
|
|
65 |
// Return the size in words of an object given a begin bit and an end bit, or
|
|
66 |
// the equivalent beg_addr and end_addr.
|
|
67 |
inline size_t obj_size(idx_t beg_bit, idx_t end_bit) const;
|
|
68 |
inline size_t obj_size(HeapWord* beg_addr, HeapWord* end_addr) const;
|
|
69 |
|
|
70 |
// Return the size in words of the object (a search is done for the end bit).
|
|
71 |
inline size_t obj_size(idx_t beg_bit) const;
|
|
72 |
inline size_t obj_size(HeapWord* addr) const;
|
|
73 |
inline size_t obj_size(oop obj) const;
|
|
74 |
|
|
75 |
// Synonyms for the above.
|
|
76 |
size_t obj_size_in_words(oop obj) const { return obj_size((HeapWord*)obj); }
|
|
77 |
size_t obj_size_in_words(HeapWord* addr) const { return obj_size(addr); }
|
|
78 |
|
|
79 |
// Apply live_closure to each live object that lies completely within the
|
|
80 |
// range [live_range_beg, live_range_end). This is used to iterate over the
|
|
81 |
// compacted region of the heap. Return values:
|
|
82 |
//
|
|
83 |
// incomplete The iteration is not complete. The last object that
|
|
84 |
// begins in the range does not end in the range;
|
|
85 |
// closure->source() is set to the start of that object.
|
|
86 |
//
|
|
87 |
// complete The iteration is complete. All objects in the range
|
|
88 |
// were processed and the closure is not full;
|
|
89 |
// closure->source() is set one past the end of the range.
|
|
90 |
//
|
|
91 |
// full The closure is full; closure->source() is set to one
|
|
92 |
// past the end of the last object processed.
|
|
93 |
//
|
|
94 |
// would_overflow The next object in the range would overflow the closure;
|
|
95 |
// closure->source() is set to the start of that object.
|
|
96 |
IterationStatus iterate(ParMarkBitMapClosure* live_closure,
|
|
97 |
idx_t range_beg, idx_t range_end) const;
|
|
98 |
inline IterationStatus iterate(ParMarkBitMapClosure* live_closure,
|
|
99 |
HeapWord* range_beg,
|
|
100 |
HeapWord* range_end) const;
|
|
101 |
|
|
102 |
// Apply live closure as above and additionally apply dead_closure to all dead
|
|
103 |
// space in the range [range_beg, dead_range_end). Note that dead_range_end
|
|
104 |
// must be >= range_end. This is used to iterate over the dense prefix.
|
|
105 |
//
|
|
106 |
// This method assumes that if the first bit in the range (range_beg) is not
|
|
107 |
// marked, then dead space begins at that point and the dead_closure is
|
|
108 |
// applied. Thus callers must ensure that range_beg is not in the middle of a
|
|
109 |
// live object.
|
|
110 |
IterationStatus iterate(ParMarkBitMapClosure* live_closure,
|
|
111 |
ParMarkBitMapClosure* dead_closure,
|
|
112 |
idx_t range_beg, idx_t range_end,
|
|
113 |
idx_t dead_range_end) const;
|
|
114 |
inline IterationStatus iterate(ParMarkBitMapClosure* live_closure,
|
|
115 |
ParMarkBitMapClosure* dead_closure,
|
|
116 |
HeapWord* range_beg,
|
|
117 |
HeapWord* range_end,
|
|
118 |
HeapWord* dead_range_end) const;
|
|
119 |
|
|
120 |
// Return the number of live words in the range [beg_addr, end_addr) due to
|
|
121 |
// objects that start in the range. If a live object extends onto the range,
|
|
122 |
// the caller must detect and account for any live words due to that object.
|
|
123 |
// If a live object extends beyond the end of the range, only the words within
|
|
124 |
// the range are included in the result.
|
|
125 |
size_t live_words_in_range(HeapWord* beg_addr, HeapWord* end_addr) const;
|
|
126 |
|
|
127 |
// Same as the above, except the end of the range must be a live object, which
|
|
128 |
// is the case when updating pointers. This allows a branch to be removed
|
|
129 |
// from inside the loop.
|
|
130 |
size_t live_words_in_range(HeapWord* beg_addr, oop end_obj) const;
|
|
131 |
|
|
132 |
inline HeapWord* region_start() const;
|
|
133 |
inline HeapWord* region_end() const;
|
|
134 |
inline size_t region_size() const;
|
|
135 |
inline size_t size() const;
|
|
136 |
|
|
137 |
// Convert a heap address to/from a bit index.
|
|
138 |
inline idx_t addr_to_bit(HeapWord* addr) const;
|
|
139 |
inline HeapWord* bit_to_addr(idx_t bit) const;
|
|
140 |
|
|
141 |
// Return the bit index of the first marked object that begins (or ends,
|
|
142 |
// respectively) in the range [beg, end). If no object is found, return end.
|
|
143 |
inline idx_t find_obj_beg(idx_t beg, idx_t end) const;
|
|
144 |
inline idx_t find_obj_end(idx_t beg, idx_t end) const;
|
|
145 |
|
|
146 |
inline HeapWord* find_obj_beg(HeapWord* beg, HeapWord* end) const;
|
|
147 |
inline HeapWord* find_obj_end(HeapWord* beg, HeapWord* end) const;
|
|
148 |
|
|
149 |
// Clear a range of bits or the entire bitmap (both begin and end bits are
|
|
150 |
// cleared).
|
|
151 |
inline void clear_range(idx_t beg, idx_t end);
|
|
152 |
inline void clear() { clear_range(0, size()); }
|
|
153 |
|
|
154 |
// Return the number of bits required to represent the specified number of
|
|
155 |
// HeapWords, or the specified region.
|
|
156 |
static inline idx_t bits_required(size_t words);
|
|
157 |
static inline idx_t bits_required(MemRegion covered_region);
|
|
158 |
static inline idx_t words_required(MemRegion covered_region);
|
|
159 |
|
|
160 |
#ifndef PRODUCT
|
|
161 |
// CAS statistics.
|
|
162 |
size_t cas_tries() { return _cas_tries; }
|
|
163 |
size_t cas_retries() { return _cas_retries; }
|
|
164 |
size_t cas_by_another() { return _cas_by_another; }
|
|
165 |
|
|
166 |
void reset_counters();
|
|
167 |
#endif // #ifndef PRODUCT
|
|
168 |
|
|
169 |
#ifdef ASSERT
|
|
170 |
void verify_clear() const;
|
|
171 |
inline void verify_bit(idx_t bit) const;
|
|
172 |
inline void verify_addr(HeapWord* addr) const;
|
|
173 |
#endif // #ifdef ASSERT
|
|
174 |
|
|
175 |
private:
|
|
176 |
// Each bit in the bitmap represents one unit of 'object granularity.' Objects
|
|
177 |
// are double-word aligned in 32-bit VMs, but not in 64-bit VMs, so the 32-bit
|
|
178 |
// granularity is 2, 64-bit is 1.
|
|
179 |
static inline size_t obj_granularity() { return size_t(MinObjAlignment); }
|
|
180 |
|
|
181 |
HeapWord* _region_start;
|
|
182 |
size_t _region_size;
|
|
183 |
BitMap _beg_bits;
|
|
184 |
BitMap _end_bits;
|
|
185 |
PSVirtualSpace* _virtual_space;
|
|
186 |
|
|
187 |
#ifndef PRODUCT
|
|
188 |
size_t _cas_tries;
|
|
189 |
size_t _cas_retries;
|
|
190 |
size_t _cas_by_another;
|
|
191 |
#endif // #ifndef PRODUCT
|
|
192 |
};
|
|
193 |
|
|
194 |
inline ParMarkBitMap::ParMarkBitMap():
|
1374
|
195 |
_beg_bits(),
|
|
196 |
_end_bits()
|
1
|
197 |
{
|
|
198 |
_region_start = 0;
|
|
199 |
_virtual_space = 0;
|
|
200 |
}
|
|
201 |
|
|
202 |
inline ParMarkBitMap::ParMarkBitMap(MemRegion covered_region):
|
1374
|
203 |
_beg_bits(),
|
|
204 |
_end_bits()
|
1
|
205 |
{
|
|
206 |
initialize(covered_region);
|
|
207 |
}
|
|
208 |
|
|
209 |
inline void ParMarkBitMap::clear_range(idx_t beg, idx_t end)
|
|
210 |
{
|
|
211 |
_beg_bits.clear_range(beg, end);
|
|
212 |
_end_bits.clear_range(beg, end);
|
|
213 |
}
|
|
214 |
|
|
215 |
inline ParMarkBitMap::idx_t
|
|
216 |
ParMarkBitMap::bits_required(size_t words)
|
|
217 |
{
|
|
218 |
// Need two bits (one begin bit, one end bit) for each unit of 'object
|
|
219 |
// granularity' in the heap.
|
|
220 |
return words_to_bits(words * 2);
|
|
221 |
}
|
|
222 |
|
|
223 |
inline ParMarkBitMap::idx_t
|
|
224 |
ParMarkBitMap::bits_required(MemRegion covered_region)
|
|
225 |
{
|
|
226 |
return bits_required(covered_region.word_size());
|
|
227 |
}
|
|
228 |
|
|
229 |
inline ParMarkBitMap::idx_t
|
|
230 |
ParMarkBitMap::words_required(MemRegion covered_region)
|
|
231 |
{
|
|
232 |
return bits_required(covered_region) / BitsPerWord;
|
|
233 |
}
|
|
234 |
|
|
235 |
inline HeapWord*
|
|
236 |
ParMarkBitMap::region_start() const
|
|
237 |
{
|
|
238 |
return _region_start;
|
|
239 |
}
|
|
240 |
|
|
241 |
inline HeapWord*
|
|
242 |
ParMarkBitMap::region_end() const
|
|
243 |
{
|
|
244 |
return region_start() + region_size();
|
|
245 |
}
|
|
246 |
|
|
247 |
inline size_t
|
|
248 |
ParMarkBitMap::region_size() const
|
|
249 |
{
|
|
250 |
return _region_size;
|
|
251 |
}
|
|
252 |
|
|
253 |
inline size_t
|
|
254 |
ParMarkBitMap::size() const
|
|
255 |
{
|
|
256 |
return _beg_bits.size();
|
|
257 |
}
|
|
258 |
|
|
259 |
inline bool ParMarkBitMap::is_obj_beg(idx_t bit) const
|
|
260 |
{
|
|
261 |
return _beg_bits.at(bit);
|
|
262 |
}
|
|
263 |
|
|
264 |
inline bool ParMarkBitMap::is_obj_end(idx_t bit) const
|
|
265 |
{
|
|
266 |
return _end_bits.at(bit);
|
|
267 |
}
|
|
268 |
|
|
269 |
inline bool ParMarkBitMap::is_marked(idx_t bit) const
|
|
270 |
{
|
|
271 |
return is_obj_beg(bit);
|
|
272 |
}
|
|
273 |
|
|
274 |
inline bool ParMarkBitMap::is_marked(HeapWord* addr) const
|
|
275 |
{
|
|
276 |
return is_marked(addr_to_bit(addr));
|
|
277 |
}
|
|
278 |
|
|
279 |
inline bool ParMarkBitMap::is_marked(oop obj) const
|
|
280 |
{
|
|
281 |
return is_marked((HeapWord*)obj);
|
|
282 |
}
|
|
283 |
|
|
284 |
inline bool ParMarkBitMap::is_unmarked(idx_t bit) const
|
|
285 |
{
|
|
286 |
return !is_marked(bit);
|
|
287 |
}
|
|
288 |
|
|
289 |
inline bool ParMarkBitMap::is_unmarked(HeapWord* addr) const
|
|
290 |
{
|
|
291 |
return !is_marked(addr);
|
|
292 |
}
|
|
293 |
|
|
294 |
inline bool ParMarkBitMap::is_unmarked(oop obj) const
|
|
295 |
{
|
|
296 |
return !is_marked(obj);
|
|
297 |
}
|
|
298 |
|
|
299 |
inline size_t
|
|
300 |
ParMarkBitMap::bits_to_words(idx_t bits)
|
|
301 |
{
|
|
302 |
return bits * obj_granularity();
|
|
303 |
}
|
|
304 |
|
|
305 |
inline ParMarkBitMap::idx_t
|
|
306 |
ParMarkBitMap::words_to_bits(size_t words)
|
|
307 |
{
|
|
308 |
return words / obj_granularity();
|
|
309 |
}
|
|
310 |
|
|
311 |
inline size_t ParMarkBitMap::obj_size(idx_t beg_bit, idx_t end_bit) const
|
|
312 |
{
|
|
313 |
DEBUG_ONLY(verify_bit(beg_bit);)
|
|
314 |
DEBUG_ONLY(verify_bit(end_bit);)
|
|
315 |
return bits_to_words(end_bit - beg_bit + 1);
|
|
316 |
}
|
|
317 |
|
|
318 |
inline size_t
|
|
319 |
ParMarkBitMap::obj_size(HeapWord* beg_addr, HeapWord* end_addr) const
|
|
320 |
{
|
|
321 |
DEBUG_ONLY(verify_addr(beg_addr);)
|
|
322 |
DEBUG_ONLY(verify_addr(end_addr);)
|
|
323 |
return pointer_delta(end_addr, beg_addr) + obj_granularity();
|
|
324 |
}
|
|
325 |
|
|
326 |
inline size_t ParMarkBitMap::obj_size(idx_t beg_bit) const
|
|
327 |
{
|
1374
|
328 |
const idx_t end_bit = _end_bits.get_next_one_offset_inline(beg_bit, size());
|
1
|
329 |
assert(is_marked(beg_bit), "obj not marked");
|
|
330 |
assert(end_bit < size(), "end bit missing");
|
|
331 |
return obj_size(beg_bit, end_bit);
|
|
332 |
}
|
|
333 |
|
|
334 |
inline size_t ParMarkBitMap::obj_size(HeapWord* addr) const
|
|
335 |
{
|
|
336 |
return obj_size(addr_to_bit(addr));
|
|
337 |
}
|
|
338 |
|
|
339 |
inline size_t ParMarkBitMap::obj_size(oop obj) const
|
|
340 |
{
|
|
341 |
return obj_size((HeapWord*)obj);
|
|
342 |
}
|
|
343 |
|
|
344 |
inline ParMarkBitMap::IterationStatus
|
|
345 |
ParMarkBitMap::iterate(ParMarkBitMapClosure* live_closure,
|
|
346 |
HeapWord* range_beg,
|
|
347 |
HeapWord* range_end) const
|
|
348 |
{
|
|
349 |
return iterate(live_closure, addr_to_bit(range_beg), addr_to_bit(range_end));
|
|
350 |
}
|
|
351 |
|
|
352 |
inline ParMarkBitMap::IterationStatus
|
|
353 |
ParMarkBitMap::iterate(ParMarkBitMapClosure* live_closure,
|
|
354 |
ParMarkBitMapClosure* dead_closure,
|
|
355 |
HeapWord* range_beg,
|
|
356 |
HeapWord* range_end,
|
|
357 |
HeapWord* dead_range_end) const
|
|
358 |
{
|
|
359 |
return iterate(live_closure, dead_closure,
|
|
360 |
addr_to_bit(range_beg), addr_to_bit(range_end),
|
|
361 |
addr_to_bit(dead_range_end));
|
|
362 |
}
|
|
363 |
|
|
364 |
inline bool
|
|
365 |
ParMarkBitMap::mark_obj(oop obj, int size)
|
|
366 |
{
|
|
367 |
return mark_obj((HeapWord*)obj, (size_t)size);
|
|
368 |
}
|
|
369 |
|
|
370 |
inline BitMap::idx_t
|
|
371 |
ParMarkBitMap::addr_to_bit(HeapWord* addr) const
|
|
372 |
{
|
|
373 |
DEBUG_ONLY(verify_addr(addr);)
|
|
374 |
return words_to_bits(pointer_delta(addr, region_start()));
|
|
375 |
}
|
|
376 |
|
|
377 |
inline HeapWord*
|
|
378 |
ParMarkBitMap::bit_to_addr(idx_t bit) const
|
|
379 |
{
|
|
380 |
DEBUG_ONLY(verify_bit(bit);)
|
|
381 |
return region_start() + bits_to_words(bit);
|
|
382 |
}
|
|
383 |
|
|
384 |
inline ParMarkBitMap::idx_t
|
|
385 |
ParMarkBitMap::find_obj_beg(idx_t beg, idx_t end) const
|
|
386 |
{
|
1374
|
387 |
return _beg_bits.get_next_one_offset_inline_aligned_right(beg, end);
|
1
|
388 |
}
|
|
389 |
|
|
390 |
inline ParMarkBitMap::idx_t
|
|
391 |
ParMarkBitMap::find_obj_end(idx_t beg, idx_t end) const
|
|
392 |
{
|
1374
|
393 |
return _end_bits.get_next_one_offset_inline_aligned_right(beg, end);
|
1
|
394 |
}
|
|
395 |
|
|
396 |
inline HeapWord*
|
|
397 |
ParMarkBitMap::find_obj_beg(HeapWord* beg, HeapWord* end) const
|
|
398 |
{
|
|
399 |
const idx_t beg_bit = addr_to_bit(beg);
|
|
400 |
const idx_t end_bit = addr_to_bit(end);
|
|
401 |
const idx_t search_end = BitMap::word_align_up(end_bit);
|
|
402 |
const idx_t res_bit = MIN2(find_obj_beg(beg_bit, search_end), end_bit);
|
|
403 |
return bit_to_addr(res_bit);
|
|
404 |
}
|
|
405 |
|
|
406 |
inline HeapWord*
|
|
407 |
ParMarkBitMap::find_obj_end(HeapWord* beg, HeapWord* end) const
|
|
408 |
{
|
|
409 |
const idx_t beg_bit = addr_to_bit(beg);
|
|
410 |
const idx_t end_bit = addr_to_bit(end);
|
|
411 |
const idx_t search_end = BitMap::word_align_up(end_bit);
|
|
412 |
const idx_t res_bit = MIN2(find_obj_end(beg_bit, search_end), end_bit);
|
|
413 |
return bit_to_addr(res_bit);
|
|
414 |
}
|
|
415 |
|
|
416 |
#ifdef ASSERT
|
|
417 |
inline void ParMarkBitMap::verify_bit(idx_t bit) const {
|
|
418 |
// Allow one past the last valid bit; useful for loop bounds.
|
|
419 |
assert(bit <= _beg_bits.size(), "bit out of range");
|
|
420 |
}
|
|
421 |
|
|
422 |
inline void ParMarkBitMap::verify_addr(HeapWord* addr) const {
|
|
423 |
// Allow one past the last valid address; useful for loop bounds.
|
|
424 |
assert(addr >= region_start(), "addr too small");
|
|
425 |
assert(addr <= region_start() + region_size(), "addr too big");
|
|
426 |
}
|
|
427 |
#endif // #ifdef ASSERT
|