1374
|
1 |
/*
|
|
2 |
* Copyright 2001-2007 Sun Microsystems, Inc. All Rights Reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation.
|
|
8 |
*
|
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
13 |
* accompanied this code).
|
|
14 |
*
|
|
15 |
* You should have received a copy of the GNU General Public License version
|
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
18 |
*
|
|
19 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
20 |
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
21 |
* have any questions.
|
|
22 |
*
|
|
23 |
*/
|
|
24 |
|
|
25 |
#include "incls/_precompiled.incl"
|
|
26 |
#include "incls/_g1BlockOffsetTable.cpp.incl"
|
|
27 |
|
|
28 |
//////////////////////////////////////////////////////////////////////
|
|
29 |
// G1BlockOffsetSharedArray
|
|
30 |
//////////////////////////////////////////////////////////////////////
|
|
31 |
|
|
32 |
G1BlockOffsetSharedArray::G1BlockOffsetSharedArray(MemRegion reserved,
|
|
33 |
size_t init_word_size) :
|
|
34 |
_reserved(reserved), _end(NULL)
|
|
35 |
{
|
|
36 |
size_t size = compute_size(reserved.word_size());
|
|
37 |
ReservedSpace rs(ReservedSpace::allocation_align_size_up(size));
|
|
38 |
if (!rs.is_reserved()) {
|
|
39 |
vm_exit_during_initialization("Could not reserve enough space for heap offset array");
|
|
40 |
}
|
|
41 |
if (!_vs.initialize(rs, 0)) {
|
|
42 |
vm_exit_during_initialization("Could not reserve enough space for heap offset array");
|
|
43 |
}
|
|
44 |
_offset_array = (u_char*)_vs.low_boundary();
|
|
45 |
resize(init_word_size);
|
|
46 |
if (TraceBlockOffsetTable) {
|
|
47 |
gclog_or_tty->print_cr("G1BlockOffsetSharedArray::G1BlockOffsetSharedArray: ");
|
|
48 |
gclog_or_tty->print_cr(" "
|
|
49 |
" rs.base(): " INTPTR_FORMAT
|
|
50 |
" rs.size(): " INTPTR_FORMAT
|
|
51 |
" rs end(): " INTPTR_FORMAT,
|
|
52 |
rs.base(), rs.size(), rs.base() + rs.size());
|
|
53 |
gclog_or_tty->print_cr(" "
|
|
54 |
" _vs.low_boundary(): " INTPTR_FORMAT
|
|
55 |
" _vs.high_boundary(): " INTPTR_FORMAT,
|
|
56 |
_vs.low_boundary(),
|
|
57 |
_vs.high_boundary());
|
|
58 |
}
|
|
59 |
}
|
|
60 |
|
|
61 |
void G1BlockOffsetSharedArray::resize(size_t new_word_size) {
|
|
62 |
assert(new_word_size <= _reserved.word_size(), "Resize larger than reserved");
|
|
63 |
size_t new_size = compute_size(new_word_size);
|
|
64 |
size_t old_size = _vs.committed_size();
|
|
65 |
size_t delta;
|
|
66 |
char* high = _vs.high();
|
|
67 |
_end = _reserved.start() + new_word_size;
|
|
68 |
if (new_size > old_size) {
|
|
69 |
delta = ReservedSpace::page_align_size_up(new_size - old_size);
|
|
70 |
assert(delta > 0, "just checking");
|
|
71 |
if (!_vs.expand_by(delta)) {
|
|
72 |
// Do better than this for Merlin
|
|
73 |
vm_exit_out_of_memory(delta, "offset table expansion");
|
|
74 |
}
|
|
75 |
assert(_vs.high() == high + delta, "invalid expansion");
|
|
76 |
// Initialization of the contents is left to the
|
|
77 |
// G1BlockOffsetArray that uses it.
|
|
78 |
} else {
|
|
79 |
delta = ReservedSpace::page_align_size_down(old_size - new_size);
|
|
80 |
if (delta == 0) return;
|
|
81 |
_vs.shrink_by(delta);
|
|
82 |
assert(_vs.high() == high - delta, "invalid expansion");
|
|
83 |
}
|
|
84 |
}
|
|
85 |
|
|
86 |
bool G1BlockOffsetSharedArray::is_card_boundary(HeapWord* p) const {
|
|
87 |
assert(p >= _reserved.start(), "just checking");
|
|
88 |
size_t delta = pointer_delta(p, _reserved.start());
|
|
89 |
return (delta & right_n_bits(LogN_words)) == (size_t)NoBits;
|
|
90 |
}
|
|
91 |
|
|
92 |
|
|
93 |
//////////////////////////////////////////////////////////////////////
|
|
94 |
// G1BlockOffsetArray
|
|
95 |
//////////////////////////////////////////////////////////////////////
|
|
96 |
|
|
97 |
G1BlockOffsetArray::G1BlockOffsetArray(G1BlockOffsetSharedArray* array,
|
|
98 |
MemRegion mr, bool init_to_zero) :
|
|
99 |
G1BlockOffsetTable(mr.start(), mr.end()),
|
|
100 |
_unallocated_block(_bottom),
|
|
101 |
_array(array), _csp(NULL),
|
|
102 |
_init_to_zero(init_to_zero) {
|
|
103 |
assert(_bottom <= _end, "arguments out of order");
|
|
104 |
if (!_init_to_zero) {
|
|
105 |
// initialize cards to point back to mr.start()
|
|
106 |
set_remainder_to_point_to_start(mr.start() + N_words, mr.end());
|
|
107 |
_array->set_offset_array(0, 0); // set first card to 0
|
|
108 |
}
|
|
109 |
}
|
|
110 |
|
|
111 |
void G1BlockOffsetArray::set_space(Space* sp) {
|
|
112 |
_sp = sp;
|
|
113 |
_csp = sp->toContiguousSpace();
|
|
114 |
}
|
|
115 |
|
|
116 |
// The arguments follow the normal convention of denoting
|
|
117 |
// a right-open interval: [start, end)
|
|
118 |
void
|
|
119 |
G1BlockOffsetArray:: set_remainder_to_point_to_start(HeapWord* start, HeapWord* end) {
|
|
120 |
|
|
121 |
if (start >= end) {
|
|
122 |
// The start address is equal to the end address (or to
|
|
123 |
// the right of the end address) so there are not cards
|
|
124 |
// that need to be updated..
|
|
125 |
return;
|
|
126 |
}
|
|
127 |
|
|
128 |
// Write the backskip value for each region.
|
|
129 |
//
|
|
130 |
// offset
|
|
131 |
// card 2nd 3rd
|
|
132 |
// | +- 1st | |
|
|
133 |
// v v v v
|
|
134 |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-
|
|
135 |
// |x|0|0|0|0|0|0|0|1|1|1|1|1|1| ... |1|1|1|1|2|2|2|2|2|2| ...
|
|
136 |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-
|
|
137 |
// 11 19 75
|
|
138 |
// 12
|
|
139 |
//
|
|
140 |
// offset card is the card that points to the start of an object
|
|
141 |
// x - offset value of offset card
|
|
142 |
// 1st - start of first logarithmic region
|
|
143 |
// 0 corresponds to logarithmic value N_words + 0 and 2**(3 * 0) = 1
|
|
144 |
// 2nd - start of second logarithmic region
|
|
145 |
// 1 corresponds to logarithmic value N_words + 1 and 2**(3 * 1) = 8
|
|
146 |
// 3rd - start of third logarithmic region
|
|
147 |
// 2 corresponds to logarithmic value N_words + 2 and 2**(3 * 2) = 64
|
|
148 |
//
|
|
149 |
// integer below the block offset entry is an example of
|
|
150 |
// the index of the entry
|
|
151 |
//
|
|
152 |
// Given an address,
|
|
153 |
// Find the index for the address
|
|
154 |
// Find the block offset table entry
|
|
155 |
// Convert the entry to a back slide
|
|
156 |
// (e.g., with today's, offset = 0x81 =>
|
|
157 |
// back slip = 2**(3*(0x81 - N_words)) = 2**3) = 8
|
|
158 |
// Move back N (e.g., 8) entries and repeat with the
|
|
159 |
// value of the new entry
|
|
160 |
//
|
|
161 |
size_t start_card = _array->index_for(start);
|
|
162 |
size_t end_card = _array->index_for(end-1);
|
|
163 |
assert(start ==_array->address_for_index(start_card), "Precondition");
|
|
164 |
assert(end ==_array->address_for_index(end_card)+N_words, "Precondition");
|
|
165 |
set_remainder_to_point_to_start_incl(start_card, end_card); // closed interval
|
|
166 |
}
|
|
167 |
|
|
168 |
// Unlike the normal convention in this code, the argument here denotes
|
|
169 |
// a closed, inclusive interval: [start_card, end_card], cf set_remainder_to_point_to_start()
|
|
170 |
// above.
|
|
171 |
void
|
|
172 |
G1BlockOffsetArray::set_remainder_to_point_to_start_incl(size_t start_card, size_t end_card) {
|
|
173 |
if (start_card > end_card) {
|
|
174 |
return;
|
|
175 |
}
|
|
176 |
assert(start_card > _array->index_for(_bottom), "Cannot be first card");
|
|
177 |
assert(_array->offset_array(start_card-1) <= N_words,
|
|
178 |
"Offset card has an unexpected value");
|
|
179 |
size_t start_card_for_region = start_card;
|
|
180 |
u_char offset = max_jubyte;
|
|
181 |
for (int i = 0; i < BlockOffsetArray::N_powers; i++) {
|
|
182 |
// -1 so that the the card with the actual offset is counted. Another -1
|
|
183 |
// so that the reach ends in this region and not at the start
|
|
184 |
// of the next.
|
|
185 |
size_t reach = start_card - 1 + (BlockOffsetArray::power_to_cards_back(i+1) - 1);
|
|
186 |
offset = N_words + i;
|
|
187 |
if (reach >= end_card) {
|
|
188 |
_array->set_offset_array(start_card_for_region, end_card, offset);
|
|
189 |
start_card_for_region = reach + 1;
|
|
190 |
break;
|
|
191 |
}
|
|
192 |
_array->set_offset_array(start_card_for_region, reach, offset);
|
|
193 |
start_card_for_region = reach + 1;
|
|
194 |
}
|
|
195 |
assert(start_card_for_region > end_card, "Sanity check");
|
|
196 |
DEBUG_ONLY(check_all_cards(start_card, end_card);)
|
|
197 |
}
|
|
198 |
|
|
199 |
// The block [blk_start, blk_end) has been allocated;
|
|
200 |
// adjust the block offset table to represent this information;
|
|
201 |
// right-open interval: [blk_start, blk_end)
|
|
202 |
void
|
|
203 |
G1BlockOffsetArray::alloc_block(HeapWord* blk_start, HeapWord* blk_end) {
|
|
204 |
mark_block(blk_start, blk_end);
|
|
205 |
allocated(blk_start, blk_end);
|
|
206 |
}
|
|
207 |
|
|
208 |
// Adjust BOT to show that a previously whole block has been split
|
|
209 |
// into two.
|
|
210 |
void G1BlockOffsetArray::split_block(HeapWord* blk, size_t blk_size,
|
|
211 |
size_t left_blk_size) {
|
|
212 |
// Verify that the BOT shows [blk, blk + blk_size) to be one block.
|
|
213 |
verify_single_block(blk, blk_size);
|
|
214 |
// Update the BOT to indicate that [blk + left_blk_size, blk + blk_size)
|
|
215 |
// is one single block.
|
|
216 |
mark_block(blk + left_blk_size, blk + blk_size);
|
|
217 |
}
|
|
218 |
|
|
219 |
|
|
220 |
// Action_mark - update the BOT for the block [blk_start, blk_end).
|
|
221 |
// Current typical use is for splitting a block.
|
|
222 |
// Action_single - udpate the BOT for an allocation.
|
|
223 |
// Action_verify - BOT verification.
|
|
224 |
void G1BlockOffsetArray::do_block_internal(HeapWord* blk_start,
|
|
225 |
HeapWord* blk_end,
|
|
226 |
Action action) {
|
|
227 |
assert(Universe::heap()->is_in_reserved(blk_start),
|
|
228 |
"reference must be into the heap");
|
|
229 |
assert(Universe::heap()->is_in_reserved(blk_end-1),
|
|
230 |
"limit must be within the heap");
|
|
231 |
// This is optimized to make the test fast, assuming we only rarely
|
|
232 |
// cross boundaries.
|
|
233 |
uintptr_t end_ui = (uintptr_t)(blk_end - 1);
|
|
234 |
uintptr_t start_ui = (uintptr_t)blk_start;
|
|
235 |
// Calculate the last card boundary preceding end of blk
|
|
236 |
intptr_t boundary_before_end = (intptr_t)end_ui;
|
|
237 |
clear_bits(boundary_before_end, right_n_bits(LogN));
|
|
238 |
if (start_ui <= (uintptr_t)boundary_before_end) {
|
|
239 |
// blk starts at or crosses a boundary
|
|
240 |
// Calculate index of card on which blk begins
|
|
241 |
size_t start_index = _array->index_for(blk_start);
|
|
242 |
// Index of card on which blk ends
|
|
243 |
size_t end_index = _array->index_for(blk_end - 1);
|
|
244 |
// Start address of card on which blk begins
|
|
245 |
HeapWord* boundary = _array->address_for_index(start_index);
|
|
246 |
assert(boundary <= blk_start, "blk should start at or after boundary");
|
|
247 |
if (blk_start != boundary) {
|
|
248 |
// blk starts strictly after boundary
|
|
249 |
// adjust card boundary and start_index forward to next card
|
|
250 |
boundary += N_words;
|
|
251 |
start_index++;
|
|
252 |
}
|
|
253 |
assert(start_index <= end_index, "monotonicity of index_for()");
|
|
254 |
assert(boundary <= (HeapWord*)boundary_before_end, "tautology");
|
|
255 |
switch (action) {
|
|
256 |
case Action_mark: {
|
|
257 |
if (init_to_zero()) {
|
|
258 |
_array->set_offset_array(start_index, boundary, blk_start);
|
|
259 |
break;
|
|
260 |
} // Else fall through to the next case
|
|
261 |
}
|
|
262 |
case Action_single: {
|
|
263 |
_array->set_offset_array(start_index, boundary, blk_start);
|
|
264 |
// We have finished marking the "offset card". We need to now
|
|
265 |
// mark the subsequent cards that this blk spans.
|
|
266 |
if (start_index < end_index) {
|
|
267 |
HeapWord* rem_st = _array->address_for_index(start_index) + N_words;
|
|
268 |
HeapWord* rem_end = _array->address_for_index(end_index) + N_words;
|
|
269 |
set_remainder_to_point_to_start(rem_st, rem_end);
|
|
270 |
}
|
|
271 |
break;
|
|
272 |
}
|
|
273 |
case Action_check: {
|
|
274 |
_array->check_offset_array(start_index, boundary, blk_start);
|
|
275 |
// We have finished checking the "offset card". We need to now
|
|
276 |
// check the subsequent cards that this blk spans.
|
|
277 |
check_all_cards(start_index + 1, end_index);
|
|
278 |
break;
|
|
279 |
}
|
|
280 |
default:
|
|
281 |
ShouldNotReachHere();
|
|
282 |
}
|
|
283 |
}
|
|
284 |
}
|
|
285 |
|
|
286 |
// The card-interval [start_card, end_card] is a closed interval; this
|
|
287 |
// is an expensive check -- use with care and only under protection of
|
|
288 |
// suitable flag.
|
|
289 |
void G1BlockOffsetArray::check_all_cards(size_t start_card, size_t end_card) const {
|
|
290 |
|
|
291 |
if (end_card < start_card) {
|
|
292 |
return;
|
|
293 |
}
|
|
294 |
guarantee(_array->offset_array(start_card) == N_words, "Wrong value in second card");
|
|
295 |
for (size_t c = start_card + 1; c <= end_card; c++ /* yeah! */) {
|
|
296 |
u_char entry = _array->offset_array(c);
|
|
297 |
if (c - start_card > BlockOffsetArray::power_to_cards_back(1)) {
|
|
298 |
guarantee(entry > N_words, "Should be in logarithmic region");
|
|
299 |
}
|
|
300 |
size_t backskip = BlockOffsetArray::entry_to_cards_back(entry);
|
|
301 |
size_t landing_card = c - backskip;
|
|
302 |
guarantee(landing_card >= (start_card - 1), "Inv");
|
|
303 |
if (landing_card >= start_card) {
|
|
304 |
guarantee(_array->offset_array(landing_card) <= entry, "monotonicity");
|
|
305 |
} else {
|
|
306 |
guarantee(landing_card == start_card - 1, "Tautology");
|
|
307 |
guarantee(_array->offset_array(landing_card) <= N_words, "Offset value");
|
|
308 |
}
|
|
309 |
}
|
|
310 |
}
|
|
311 |
|
|
312 |
// The range [blk_start, blk_end) represents a single contiguous block
|
|
313 |
// of storage; modify the block offset table to represent this
|
|
314 |
// information; Right-open interval: [blk_start, blk_end)
|
|
315 |
// NOTE: this method does _not_ adjust _unallocated_block.
|
|
316 |
void
|
|
317 |
G1BlockOffsetArray::single_block(HeapWord* blk_start, HeapWord* blk_end) {
|
|
318 |
do_block_internal(blk_start, blk_end, Action_single);
|
|
319 |
}
|
|
320 |
|
|
321 |
// Mark the BOT such that if [blk_start, blk_end) straddles a card
|
|
322 |
// boundary, the card following the first such boundary is marked
|
|
323 |
// with the appropriate offset.
|
|
324 |
// NOTE: this method does _not_ adjust _unallocated_block or
|
|
325 |
// any cards subsequent to the first one.
|
|
326 |
void
|
|
327 |
G1BlockOffsetArray::mark_block(HeapWord* blk_start, HeapWord* blk_end) {
|
|
328 |
do_block_internal(blk_start, blk_end, Action_mark);
|
|
329 |
}
|
|
330 |
|
|
331 |
void G1BlockOffsetArray::join_blocks(HeapWord* blk1, HeapWord* blk2) {
|
|
332 |
HeapWord* blk1_start = Universe::heap()->block_start(blk1);
|
|
333 |
HeapWord* blk2_start = Universe::heap()->block_start(blk2);
|
|
334 |
assert(blk1 == blk1_start && blk2 == blk2_start,
|
|
335 |
"Must be block starts.");
|
|
336 |
assert(blk1 + _sp->block_size(blk1) == blk2, "Must be contiguous.");
|
|
337 |
size_t blk1_start_index = _array->index_for(blk1);
|
|
338 |
size_t blk2_start_index = _array->index_for(blk2);
|
|
339 |
assert(blk1_start_index <= blk2_start_index, "sanity");
|
|
340 |
HeapWord* blk2_card_start = _array->address_for_index(blk2_start_index);
|
|
341 |
if (blk2 == blk2_card_start) {
|
|
342 |
// blk2 starts a card. Does blk1 start on the prevous card, or futher
|
|
343 |
// back?
|
|
344 |
assert(blk1_start_index < blk2_start_index, "must be lower card.");
|
|
345 |
if (blk1_start_index + 1 == blk2_start_index) {
|
|
346 |
// previous card; new value for blk2 card is size of blk1.
|
|
347 |
_array->set_offset_array(blk2_start_index, (u_char) _sp->block_size(blk1));
|
|
348 |
} else {
|
|
349 |
// Earlier card; go back a card.
|
|
350 |
_array->set_offset_array(blk2_start_index, N_words);
|
|
351 |
}
|
|
352 |
} else {
|
|
353 |
// blk2 does not start a card. Does it cross a card? If not, nothing
|
|
354 |
// to do.
|
|
355 |
size_t blk2_end_index =
|
|
356 |
_array->index_for(blk2 + _sp->block_size(blk2) - 1);
|
|
357 |
assert(blk2_end_index >= blk2_start_index, "sanity");
|
|
358 |
if (blk2_end_index > blk2_start_index) {
|
|
359 |
// Yes, it crosses a card. The value for the next card must change.
|
|
360 |
if (blk1_start_index + 1 == blk2_start_index) {
|
|
361 |
// previous card; new value for second blk2 card is size of blk1.
|
|
362 |
_array->set_offset_array(blk2_start_index + 1,
|
|
363 |
(u_char) _sp->block_size(blk1));
|
|
364 |
} else {
|
|
365 |
// Earlier card; go back a card.
|
|
366 |
_array->set_offset_array(blk2_start_index + 1, N_words);
|
|
367 |
}
|
|
368 |
}
|
|
369 |
}
|
|
370 |
}
|
|
371 |
|
|
372 |
HeapWord* G1BlockOffsetArray::block_start_unsafe(const void* addr) {
|
|
373 |
assert(_bottom <= addr && addr < _end,
|
|
374 |
"addr must be covered by this Array");
|
|
375 |
// Must read this exactly once because it can be modified by parallel
|
|
376 |
// allocation.
|
|
377 |
HeapWord* ub = _unallocated_block;
|
|
378 |
if (BlockOffsetArrayUseUnallocatedBlock && addr >= ub) {
|
|
379 |
assert(ub < _end, "tautology (see above)");
|
|
380 |
return ub;
|
|
381 |
}
|
|
382 |
// Otherwise, find the block start using the table.
|
|
383 |
HeapWord* q = block_at_or_preceding(addr, false, 0);
|
|
384 |
return forward_to_block_containing_addr(q, addr);
|
|
385 |
}
|
|
386 |
|
|
387 |
// This duplicates a little code from the above: unavoidable.
|
|
388 |
HeapWord*
|
|
389 |
G1BlockOffsetArray::block_start_unsafe_const(const void* addr) const {
|
|
390 |
assert(_bottom <= addr && addr < _end,
|
|
391 |
"addr must be covered by this Array");
|
|
392 |
// Must read this exactly once because it can be modified by parallel
|
|
393 |
// allocation.
|
|
394 |
HeapWord* ub = _unallocated_block;
|
|
395 |
if (BlockOffsetArrayUseUnallocatedBlock && addr >= ub) {
|
|
396 |
assert(ub < _end, "tautology (see above)");
|
|
397 |
return ub;
|
|
398 |
}
|
|
399 |
// Otherwise, find the block start using the table.
|
|
400 |
HeapWord* q = block_at_or_preceding(addr, false, 0);
|
|
401 |
HeapWord* n = q + _sp->block_size(q);
|
|
402 |
return forward_to_block_containing_addr_const(q, n, addr);
|
|
403 |
}
|
|
404 |
|
|
405 |
|
|
406 |
HeapWord*
|
|
407 |
G1BlockOffsetArray::forward_to_block_containing_addr_slow(HeapWord* q,
|
|
408 |
HeapWord* n,
|
|
409 |
const void* addr) {
|
|
410 |
// We're not in the normal case. We need to handle an important subcase
|
|
411 |
// here: LAB allocation. An allocation previously recorded in the
|
|
412 |
// offset table was actually a lab allocation, and was divided into
|
|
413 |
// several objects subsequently. Fix this situation as we answer the
|
|
414 |
// query, by updating entries as we cross them.
|
|
415 |
size_t next_index = _array->index_for(n) + 1;
|
|
416 |
HeapWord* next_boundary = _array->address_for_index(next_index);
|
|
417 |
if (csp() != NULL) {
|
|
418 |
if (addr >= csp()->top()) return csp()->top();
|
|
419 |
while (next_boundary < addr) {
|
|
420 |
while (n <= next_boundary) {
|
|
421 |
q = n;
|
|
422 |
oop obj = oop(q);
|
|
423 |
if (obj->klass() == NULL) return q;
|
|
424 |
n += obj->size();
|
|
425 |
}
|
|
426 |
assert(q <= next_boundary && n > next_boundary, "Consequence of loop");
|
|
427 |
// [q, n) is the block that crosses the boundary.
|
|
428 |
alloc_block_work2(&next_boundary, &next_index, q, n);
|
|
429 |
}
|
|
430 |
} else {
|
|
431 |
while (next_boundary < addr) {
|
|
432 |
while (n <= next_boundary) {
|
|
433 |
q = n;
|
|
434 |
oop obj = oop(q);
|
|
435 |
if (obj->klass() == NULL) return q;
|
|
436 |
n += _sp->block_size(q);
|
|
437 |
}
|
|
438 |
assert(q <= next_boundary && n > next_boundary, "Consequence of loop");
|
|
439 |
// [q, n) is the block that crosses the boundary.
|
|
440 |
alloc_block_work2(&next_boundary, &next_index, q, n);
|
|
441 |
}
|
|
442 |
}
|
|
443 |
return forward_to_block_containing_addr_const(q, n, addr);
|
|
444 |
}
|
|
445 |
|
|
446 |
HeapWord* G1BlockOffsetArray::block_start_careful(const void* addr) const {
|
|
447 |
assert(_array->offset_array(0) == 0, "objects can't cross covered areas");
|
|
448 |
|
|
449 |
assert(_bottom <= addr && addr < _end,
|
|
450 |
"addr must be covered by this Array");
|
|
451 |
// Must read this exactly once because it can be modified by parallel
|
|
452 |
// allocation.
|
|
453 |
HeapWord* ub = _unallocated_block;
|
|
454 |
if (BlockOffsetArrayUseUnallocatedBlock && addr >= ub) {
|
|
455 |
assert(ub < _end, "tautology (see above)");
|
|
456 |
return ub;
|
|
457 |
}
|
|
458 |
|
|
459 |
// Otherwise, find the block start using the table, but taking
|
|
460 |
// care (cf block_start_unsafe() above) not to parse any objects/blocks
|
|
461 |
// on the cards themsleves.
|
|
462 |
size_t index = _array->index_for(addr);
|
|
463 |
assert(_array->address_for_index(index) == addr,
|
|
464 |
"arg should be start of card");
|
|
465 |
|
|
466 |
HeapWord* q = (HeapWord*)addr;
|
|
467 |
uint offset;
|
|
468 |
do {
|
|
469 |
offset = _array->offset_array(index--);
|
|
470 |
q -= offset;
|
|
471 |
} while (offset == N_words);
|
|
472 |
assert(q <= addr, "block start should be to left of arg");
|
|
473 |
return q;
|
|
474 |
}
|
|
475 |
|
|
476 |
// Note that the committed size of the covered space may have changed,
|
|
477 |
// so the table size might also wish to change.
|
|
478 |
void G1BlockOffsetArray::resize(size_t new_word_size) {
|
|
479 |
HeapWord* new_end = _bottom + new_word_size;
|
|
480 |
if (_end < new_end && !init_to_zero()) {
|
|
481 |
// verify that the old and new boundaries are also card boundaries
|
|
482 |
assert(_array->is_card_boundary(_end),
|
|
483 |
"_end not a card boundary");
|
|
484 |
assert(_array->is_card_boundary(new_end),
|
|
485 |
"new _end would not be a card boundary");
|
|
486 |
// set all the newly added cards
|
|
487 |
_array->set_offset_array(_end, new_end, N_words);
|
|
488 |
}
|
|
489 |
_end = new_end; // update _end
|
|
490 |
}
|
|
491 |
|
|
492 |
void G1BlockOffsetArray::set_region(MemRegion mr) {
|
|
493 |
_bottom = mr.start();
|
|
494 |
_end = mr.end();
|
|
495 |
}
|
|
496 |
|
|
497 |
//
|
|
498 |
// threshold_
|
|
499 |
// | _index_
|
|
500 |
// v v
|
|
501 |
// +-------+-------+-------+-------+-------+
|
|
502 |
// | i-1 | i | i+1 | i+2 | i+3 |
|
|
503 |
// +-------+-------+-------+-------+-------+
|
|
504 |
// ( ^ ]
|
|
505 |
// block-start
|
|
506 |
//
|
|
507 |
void G1BlockOffsetArray::alloc_block_work2(HeapWord** threshold_, size_t* index_,
|
|
508 |
HeapWord* blk_start, HeapWord* blk_end) {
|
|
509 |
// For efficiency, do copy-in/copy-out.
|
|
510 |
HeapWord* threshold = *threshold_;
|
|
511 |
size_t index = *index_;
|
|
512 |
|
|
513 |
assert(blk_start != NULL && blk_end > blk_start,
|
|
514 |
"phantom block");
|
|
515 |
assert(blk_end > threshold, "should be past threshold");
|
|
516 |
assert(blk_start <= threshold, "blk_start should be at or before threshold")
|
|
517 |
assert(pointer_delta(threshold, blk_start) <= N_words,
|
|
518 |
"offset should be <= BlockOffsetSharedArray::N");
|
|
519 |
assert(Universe::heap()->is_in_reserved(blk_start),
|
|
520 |
"reference must be into the heap");
|
|
521 |
assert(Universe::heap()->is_in_reserved(blk_end-1),
|
|
522 |
"limit must be within the heap");
|
|
523 |
assert(threshold == _array->_reserved.start() + index*N_words,
|
|
524 |
"index must agree with threshold");
|
|
525 |
|
|
526 |
DEBUG_ONLY(size_t orig_index = index;)
|
|
527 |
|
|
528 |
// Mark the card that holds the offset into the block. Note
|
|
529 |
// that _next_offset_index and _next_offset_threshold are not
|
|
530 |
// updated until the end of this method.
|
|
531 |
_array->set_offset_array(index, threshold, blk_start);
|
|
532 |
|
|
533 |
// We need to now mark the subsequent cards that this blk spans.
|
|
534 |
|
|
535 |
// Index of card on which blk ends.
|
|
536 |
size_t end_index = _array->index_for(blk_end - 1);
|
|
537 |
|
|
538 |
// Are there more cards left to be updated?
|
|
539 |
if (index + 1 <= end_index) {
|
|
540 |
HeapWord* rem_st = _array->address_for_index(index + 1);
|
|
541 |
// Calculate rem_end this way because end_index
|
|
542 |
// may be the last valid index in the covered region.
|
|
543 |
HeapWord* rem_end = _array->address_for_index(end_index) + N_words;
|
|
544 |
set_remainder_to_point_to_start(rem_st, rem_end);
|
|
545 |
}
|
|
546 |
|
|
547 |
index = end_index + 1;
|
|
548 |
// Calculate threshold_ this way because end_index
|
|
549 |
// may be the last valid index in the covered region.
|
|
550 |
threshold = _array->address_for_index(end_index) + N_words;
|
|
551 |
assert(threshold >= blk_end, "Incorrect offset threshold");
|
|
552 |
|
|
553 |
// index_ and threshold_ updated here.
|
|
554 |
*threshold_ = threshold;
|
|
555 |
*index_ = index;
|
|
556 |
|
|
557 |
#ifdef ASSERT
|
|
558 |
// The offset can be 0 if the block starts on a boundary. That
|
|
559 |
// is checked by an assertion above.
|
|
560 |
size_t start_index = _array->index_for(blk_start);
|
|
561 |
HeapWord* boundary = _array->address_for_index(start_index);
|
|
562 |
assert((_array->offset_array(orig_index) == 0 &&
|
|
563 |
blk_start == boundary) ||
|
|
564 |
(_array->offset_array(orig_index) > 0 &&
|
|
565 |
_array->offset_array(orig_index) <= N_words),
|
|
566 |
"offset array should have been set");
|
|
567 |
for (size_t j = orig_index + 1; j <= end_index; j++) {
|
|
568 |
assert(_array->offset_array(j) > 0 &&
|
|
569 |
_array->offset_array(j) <=
|
|
570 |
(u_char) (N_words+BlockOffsetArray::N_powers-1),
|
|
571 |
"offset array should have been set");
|
|
572 |
}
|
|
573 |
#endif
|
|
574 |
}
|
|
575 |
|
|
576 |
//////////////////////////////////////////////////////////////////////
|
|
577 |
// G1BlockOffsetArrayContigSpace
|
|
578 |
//////////////////////////////////////////////////////////////////////
|
|
579 |
|
|
580 |
HeapWord*
|
|
581 |
G1BlockOffsetArrayContigSpace::block_start_unsafe(const void* addr) {
|
|
582 |
assert(_bottom <= addr && addr < _end,
|
|
583 |
"addr must be covered by this Array");
|
|
584 |
HeapWord* q = block_at_or_preceding(addr, true, _next_offset_index-1);
|
|
585 |
return forward_to_block_containing_addr(q, addr);
|
|
586 |
}
|
|
587 |
|
|
588 |
HeapWord*
|
|
589 |
G1BlockOffsetArrayContigSpace::
|
|
590 |
block_start_unsafe_const(const void* addr) const {
|
|
591 |
assert(_bottom <= addr && addr < _end,
|
|
592 |
"addr must be covered by this Array");
|
|
593 |
HeapWord* q = block_at_or_preceding(addr, true, _next_offset_index-1);
|
|
594 |
HeapWord* n = q + _sp->block_size(q);
|
|
595 |
return forward_to_block_containing_addr_const(q, n, addr);
|
|
596 |
}
|
|
597 |
|
|
598 |
G1BlockOffsetArrayContigSpace::
|
|
599 |
G1BlockOffsetArrayContigSpace(G1BlockOffsetSharedArray* array,
|
|
600 |
MemRegion mr) :
|
|
601 |
G1BlockOffsetArray(array, mr, true)
|
|
602 |
{
|
|
603 |
_next_offset_threshold = NULL;
|
|
604 |
_next_offset_index = 0;
|
|
605 |
}
|
|
606 |
|
|
607 |
HeapWord* G1BlockOffsetArrayContigSpace::initialize_threshold() {
|
|
608 |
assert(!Universe::heap()->is_in_reserved(_array->_offset_array),
|
|
609 |
"just checking");
|
|
610 |
_next_offset_index = _array->index_for(_bottom);
|
|
611 |
_next_offset_index++;
|
|
612 |
_next_offset_threshold =
|
|
613 |
_array->address_for_index(_next_offset_index);
|
|
614 |
return _next_offset_threshold;
|
|
615 |
}
|
|
616 |
|
|
617 |
void G1BlockOffsetArrayContigSpace::zero_bottom_entry() {
|
|
618 |
assert(!Universe::heap()->is_in_reserved(_array->_offset_array),
|
|
619 |
"just checking");
|
|
620 |
size_t bottom_index = _array->index_for(_bottom);
|
|
621 |
assert(_array->address_for_index(bottom_index) == _bottom,
|
|
622 |
"Precondition of call");
|
|
623 |
_array->set_offset_array(bottom_index, 0);
|
|
624 |
}
|