1
+ − 1
/*
+ − 2
* Copyright 2005-2006 Sun Microsystems, Inc. All Rights Reserved.
+ − 3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ − 4
*
+ − 5
* This code is free software; you can redistribute it and/or modify it
+ − 6
* under the terms of the GNU General Public License version 2 only, as
+ − 7
* published by the Free Software Foundation.
+ − 8
*
+ − 9
* This code is distributed in the hope that it will be useful, but WITHOUT
+ − 10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ − 11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ − 12
* version 2 for more details (a copy is included in the LICENSE file that
+ − 13
* accompanied this code).
+ − 14
*
+ − 15
* You should have received a copy of the GNU General Public License version
+ − 16
* 2 along with this work; if not, write to the Free Software Foundation,
+ − 17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ − 18
*
+ − 19
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ − 20
* CA 95054 USA or visit www.sun.com if you need additional information or
+ − 21
* have any questions.
+ − 22
*
+ − 23
*/
+ − 24
+ − 25
class DebugInfoCache;
+ − 26
class FpuStackAllocator;
+ − 27
class IRScopeDebugInfo;
+ − 28
class Interval;
+ − 29
class IntervalWalker;
+ − 30
class LIRGenerator;
+ − 31
class LinearScan;
+ − 32
class MoveResolver;
+ − 33
class Range;
+ − 34
+ − 35
define_array(IntervalArray, Interval*)
+ − 36
define_stack(IntervalList, IntervalArray)
+ − 37
+ − 38
define_array(IntervalsArray, IntervalList*)
+ − 39
define_stack(IntervalsList, IntervalsArray)
+ − 40
+ − 41
define_array(OopMapArray, OopMap*)
+ − 42
define_stack(OopMapList, OopMapArray)
+ − 43
+ − 44
define_array(ScopeValueArray, ScopeValue*)
+ − 45
+ − 46
define_array(LIR_OpListArray, LIR_OpList*);
+ − 47
define_stack(LIR_OpListStack, LIR_OpListArray);
+ − 48
+ − 49
+ − 50
enum IntervalUseKind {
+ − 51
// priority of use kinds must be ascending
+ − 52
noUse = 0,
+ − 53
loopEndMarker = 1,
+ − 54
shouldHaveRegister = 2,
+ − 55
mustHaveRegister = 3,
+ − 56
+ − 57
firstValidKind = 1,
+ − 58
lastValidKind = 3
+ − 59
};
+ − 60
define_array(UseKindArray, IntervalUseKind)
+ − 61
define_stack(UseKindStack, UseKindArray)
+ − 62
+ − 63
+ − 64
enum IntervalKind {
+ − 65
fixedKind = 0, // interval pre-colored by LIR_Generator
+ − 66
anyKind = 1, // no register/memory allocated by LIR_Generator
+ − 67
nofKinds,
+ − 68
firstKind = fixedKind
+ − 69
};
+ − 70
+ − 71
+ − 72
// during linear scan an interval is in one of four states in
+ − 73
enum IntervalState {
+ − 74
unhandledState = 0, // unhandled state (not processed yet)
+ − 75
activeState = 1, // life and is in a physical register
+ − 76
inactiveState = 2, // in a life time hole and is in a physical register
+ − 77
handledState = 3, // spilled or not life again
+ − 78
invalidState = -1
+ − 79
};
+ − 80
+ − 81
+ − 82
enum IntervalSpillState {
+ − 83
noDefinitionFound, // starting state of calculation: no definition found yet
+ − 84
oneDefinitionFound, // one definition has already been found.
+ − 85
// Note: two consecutive definitions are treated as one (e.g. consecutive move and add because of two-operand LIR form)
+ − 86
// the position of this definition is stored in _definition_pos
+ − 87
oneMoveInserted, // one spill move has already been inserted.
+ − 88
storeAtDefinition, // the interval should be stored immediately after its definition because otherwise
+ − 89
// there would be multiple redundant stores
+ − 90
startInMemory, // the interval starts in memory (e.g. method parameter), so a store is never necessary
+ − 91
noOptimization // the interval has more then one definition (e.g. resulting from phi moves), so stores to memory are not optimized
+ − 92
};
+ − 93
+ − 94
+ − 95
#define for_each_interval_kind(kind) \
+ − 96
for (IntervalKind kind = firstKind; kind < nofKinds; kind = (IntervalKind)(kind + 1))
+ − 97
+ − 98
#define for_each_visitor_mode(mode) \
+ − 99
for (LIR_OpVisitState::OprMode mode = LIR_OpVisitState::firstMode; mode < LIR_OpVisitState::numModes; mode = (LIR_OpVisitState::OprMode)(mode + 1))
+ − 100
+ − 101
+ − 102
class LinearScan : public CompilationResourceObj {
+ − 103
// declare classes used by LinearScan as friends because they
+ − 104
// need a wide variety of functions declared here
+ − 105
//
+ − 106
// Only the small interface to the rest of the compiler is public
+ − 107
friend class Interval;
+ − 108
friend class IntervalWalker;
+ − 109
friend class LinearScanWalker;
+ − 110
friend class FpuStackAllocator;
+ − 111
friend class MoveResolver;
+ − 112
friend class LinearScanStatistic;
+ − 113
friend class LinearScanTimers;
+ − 114
friend class RegisterVerifier;
+ − 115
+ − 116
public:
+ − 117
enum {
+ − 118
any_reg = -1,
+ − 119
nof_cpu_regs = pd_nof_cpu_regs_linearscan,
+ − 120
nof_fpu_regs = pd_nof_fpu_regs_linearscan,
+ − 121
nof_xmm_regs = pd_nof_xmm_regs_linearscan,
+ − 122
nof_regs = nof_cpu_regs + nof_fpu_regs + nof_xmm_regs
+ − 123
};
+ − 124
+ − 125
private:
+ − 126
Compilation* _compilation;
+ − 127
IR* _ir;
+ − 128
LIRGenerator* _gen;
+ − 129
FrameMap* _frame_map;
+ − 130
+ − 131
BlockList _cached_blocks; // cached list with all blocks in linear-scan order (only correct if original list keeps unchanged)
+ − 132
int _num_virtual_regs; // number of virtual registers (without new registers introduced because of splitting intervals)
+ − 133
bool _has_fpu_registers; // true if this method uses any floating point registers (and so fpu stack allocation is necessary)
+ − 134
int _num_calls; // total number of calls in this method
+ − 135
int _max_spills; // number of stack slots used for intervals allocated to memory
+ − 136
int _unused_spill_slot; // unused spill slot for a single-word value because of alignment of a double-word value
+ − 137
+ − 138
IntervalList _intervals; // mapping from register number to interval
+ − 139
IntervalList* _new_intervals_from_allocation; // list with all intervals created during allocation when an existing interval is split
+ − 140
IntervalArray* _sorted_intervals; // intervals sorted by Interval::from()
+ − 141
+ − 142
LIR_OpArray _lir_ops; // mapping from LIR_Op id to LIR_Op node
+ − 143
BlockBeginArray _block_of_op; // mapping from LIR_Op id to the BlockBegin containing this instruction
+ − 144
BitMap _has_info; // bit set for each LIR_Op id that has a CodeEmitInfo
+ − 145
BitMap _has_call; // bit set for each LIR_Op id that destroys all caller save registers
+ − 146
BitMap2D _interval_in_loop; // bit set for each virtual register that is contained in each loop
+ − 147
+ − 148
// cached debug info to prevent multiple creation of same object
+ − 149
// TODO: cached scope values for registers could be static
+ − 150
ScopeValueArray _scope_value_cache;
+ − 151
+ − 152
static ConstantOopWriteValue _oop_null_scope_value;
+ − 153
static ConstantIntValue _int_m1_scope_value;
+ − 154
static ConstantIntValue _int_0_scope_value;
+ − 155
static ConstantIntValue _int_1_scope_value;
+ − 156
static ConstantIntValue _int_2_scope_value;
+ − 157
+ − 158
// accessors
+ − 159
IR* ir() const { return _ir; }
+ − 160
Compilation* compilation() const { return _compilation; }
+ − 161
LIRGenerator* gen() const { return _gen; }
+ − 162
FrameMap* frame_map() const { return _frame_map; }
+ − 163
+ − 164
// unified bailout support
+ − 165
void bailout(const char* msg) const { compilation()->bailout(msg); }
+ − 166
bool bailed_out() const { return compilation()->bailed_out(); }
+ − 167
+ − 168
// access to block list (sorted in linear scan order)
+ − 169
int block_count() const { assert(_cached_blocks.length() == ir()->linear_scan_order()->length(), "invalid cached block list"); return _cached_blocks.length(); }
+ − 170
BlockBegin* block_at(int idx) const { assert(_cached_blocks.at(idx) == ir()->linear_scan_order()->at(idx), "invalid cached block list"); return _cached_blocks.at(idx); }
+ − 171
+ − 172
int num_virtual_regs() const { return _num_virtual_regs; }
+ − 173
// size of live_in and live_out sets of BasicBlocks (BitMap needs rounded size for iteration)
+ − 174
int live_set_size() const { return round_to(_num_virtual_regs, BitsPerWord); }
+ − 175
bool has_fpu_registers() const { return _has_fpu_registers; }
+ − 176
int num_loops() const { return ir()->num_loops(); }
+ − 177
bool is_interval_in_loop(int interval, int loop) const { return _interval_in_loop.at(interval, loop); }
+ − 178
+ − 179
// handling of fpu stack allocation (platform dependent, needed for debug information generation)
+ − 180
#ifdef IA32
+ − 181
FpuStackAllocator* _fpu_stack_allocator;
+ − 182
bool use_fpu_stack_allocation() const { return UseSSE < 2 && has_fpu_registers(); }
+ − 183
#else
+ − 184
bool use_fpu_stack_allocation() const { return false; }
+ − 185
#endif
+ − 186
+ − 187
+ − 188
// access to interval list
+ − 189
int interval_count() const { return _intervals.length(); }
+ − 190
Interval* interval_at(int reg_num) const { return _intervals.at(reg_num); }
+ − 191
+ − 192
IntervalList* new_intervals_from_allocation() const { return _new_intervals_from_allocation; }
+ − 193
+ − 194
// access to LIR_Ops and Blocks indexed by op_id
+ − 195
int max_lir_op_id() const { assert(_lir_ops.length() > 0, "no operations"); return (_lir_ops.length() - 1) << 1; }
+ − 196
LIR_Op* lir_op_with_id(int op_id) const { assert(op_id >= 0 && op_id <= max_lir_op_id() && op_id % 2 == 0, "op_id out of range or not even"); return _lir_ops.at(op_id >> 1); }
+ − 197
BlockBegin* block_of_op_with_id(int op_id) const { assert(_block_of_op.length() > 0 && op_id >= 0 && op_id <= max_lir_op_id() + 1, "op_id out of range"); return _block_of_op.at(op_id >> 1); }
+ − 198
+ − 199
bool is_block_begin(int op_id) { return op_id == 0 || block_of_op_with_id(op_id) != block_of_op_with_id(op_id - 1); }
+ − 200
bool covers_block_begin(int op_id_1, int op_id_2) { return block_of_op_with_id(op_id_1) != block_of_op_with_id(op_id_2); }
+ − 201
+ − 202
bool has_call(int op_id) { assert(op_id % 2 == 0, "must be even"); return _has_call.at(op_id >> 1); }
+ − 203
bool has_info(int op_id) { assert(op_id % 2 == 0, "must be even"); return _has_info.at(op_id >> 1); }
+ − 204
+ − 205
+ − 206
// functions for converting LIR-Operands to register numbers
+ − 207
static bool is_valid_reg_num(int reg_num) { return reg_num >= 0; }
+ − 208
static int reg_num(LIR_Opr opr);
+ − 209
static int reg_numHi(LIR_Opr opr);
+ − 210
+ − 211
// functions for classification of intervals
+ − 212
static bool is_precolored_interval(const Interval* i);
+ − 213
static bool is_virtual_interval(const Interval* i);
+ − 214
+ − 215
static bool is_precolored_cpu_interval(const Interval* i);
+ − 216
static bool is_virtual_cpu_interval(const Interval* i);
+ − 217
static bool is_precolored_fpu_interval(const Interval* i);
+ − 218
static bool is_virtual_fpu_interval(const Interval* i);
+ − 219
+ − 220
static bool is_in_fpu_register(const Interval* i);
+ − 221
static bool is_oop_interval(const Interval* i);
+ − 222
+ − 223
+ − 224
// General helper functions
+ − 225
int allocate_spill_slot(bool double_word);
+ − 226
void assign_spill_slot(Interval* it);
+ − 227
void propagate_spill_slots();
+ − 228
+ − 229
Interval* create_interval(int reg_num);
+ − 230
void append_interval(Interval* it);
+ − 231
void copy_register_flags(Interval* from, Interval* to);
+ − 232
+ − 233
// platform dependent functions
+ − 234
static bool is_processed_reg_num(int reg_num);
+ − 235
static int num_physical_regs(BasicType type);
+ − 236
static bool requires_adjacent_regs(BasicType type);
+ − 237
static bool is_caller_save(int assigned_reg);
+ − 238
+ − 239
// spill move optimization: eliminate moves from register to stack if
+ − 240
// stack slot is known to be correct
+ − 241
void change_spill_definition_pos(Interval* interval, int def_pos);
+ − 242
void change_spill_state(Interval* interval, int spill_pos);
+ − 243
static bool must_store_at_definition(const Interval* i);
+ − 244
void eliminate_spill_moves();
+ − 245
+ − 246
// Phase 1: number all instructions in all blocks
+ − 247
void number_instructions();
+ − 248
+ − 249
// Phase 2: compute local live sets separately for each block
+ − 250
// (sets live_gen and live_kill for each block)
+ − 251
//
+ − 252
// helper methods used by compute_local_live_sets()
+ − 253
void set_live_gen_kill(Value value, LIR_Op* op, BitMap& live_gen, BitMap& live_kill);
+ − 254
+ − 255
void compute_local_live_sets();
+ − 256
+ − 257
// Phase 3: perform a backward dataflow analysis to compute global live sets
+ − 258
// (sets live_in and live_out for each block)
+ − 259
void compute_global_live_sets();
+ − 260
+ − 261
+ − 262
// Phase 4: build intervals
+ − 263
// (fills the list _intervals)
+ − 264
//
+ − 265
// helper methods used by build_intervals()
+ − 266
void add_use (Value value, int from, int to, IntervalUseKind use_kind);
+ − 267
+ − 268
void add_def (LIR_Opr opr, int def_pos, IntervalUseKind use_kind);
+ − 269
void add_use (LIR_Opr opr, int from, int to, IntervalUseKind use_kind);
+ − 270
void add_temp(LIR_Opr opr, int temp_pos, IntervalUseKind use_kind);
+ − 271
+ − 272
void add_def (int reg_num, int def_pos, IntervalUseKind use_kind, BasicType type);
+ − 273
void add_use (int reg_num, int from, int to, IntervalUseKind use_kind, BasicType type);
+ − 274
void add_temp(int reg_num, int temp_pos, IntervalUseKind use_kind, BasicType type);
+ − 275
+ − 276
// Add platform dependent kills for particular LIR ops. Can be used
+ − 277
// to add platform dependent behaviour for some operations.
+ − 278
void pd_add_temps(LIR_Op* op);
+ − 279
+ − 280
IntervalUseKind use_kind_of_output_operand(LIR_Op* op, LIR_Opr opr);
+ − 281
IntervalUseKind use_kind_of_input_operand(LIR_Op* op, LIR_Opr opr);
+ − 282
void handle_method_arguments(LIR_Op* op);
+ − 283
void handle_doubleword_moves(LIR_Op* op);
+ − 284
void add_register_hints(LIR_Op* op);
+ − 285
+ − 286
void build_intervals();
+ − 287
+ − 288
+ − 289
// Phase 5: actual register allocation
+ − 290
// (Uses LinearScanWalker)
+ − 291
//
+ − 292
// helper functions for building a sorted list of intervals
+ − 293
NOT_PRODUCT(bool is_sorted(IntervalArray* intervals);)
+ − 294
static int interval_cmp(Interval** a, Interval** b);
+ − 295
void add_to_list(Interval** first, Interval** prev, Interval* interval);
+ − 296
void create_unhandled_lists(Interval** list1, Interval** list2, bool (is_list1)(const Interval* i), bool (is_list2)(const Interval* i));
+ − 297
+ − 298
void sort_intervals_before_allocation();
+ − 299
void sort_intervals_after_allocation();
+ − 300
void allocate_registers();
+ − 301
+ − 302
+ − 303
// Phase 6: resolve data flow
+ − 304
// (insert moves at edges between blocks if intervals have been split)
+ − 305
//
+ − 306
// helper functions for resolve_data_flow()
+ − 307
Interval* split_child_at_op_id(Interval* interval, int op_id, LIR_OpVisitState::OprMode mode);
+ − 308
Interval* interval_at_block_begin(BlockBegin* block, int reg_num);
+ − 309
Interval* interval_at_block_end(BlockBegin* block, int reg_num);
+ − 310
Interval* interval_at_op_id(int reg_num, int op_id);
+ − 311
void resolve_collect_mappings(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver);
+ − 312
void resolve_find_insert_pos(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver);
+ − 313
void resolve_data_flow();
+ − 314
+ − 315
void resolve_exception_entry(BlockBegin* block, int reg_num, MoveResolver &move_resolver);
+ − 316
void resolve_exception_entry(BlockBegin* block, MoveResolver &move_resolver);
+ − 317
void resolve_exception_edge(XHandler* handler, int throwing_op_id, int reg_num, Phi* phi, MoveResolver &move_resolver);
+ − 318
void resolve_exception_edge(XHandler* handler, int throwing_op_id, MoveResolver &move_resolver);
+ − 319
void resolve_exception_handlers();
+ − 320
+ − 321
// Phase 7: assign register numbers back to LIR
+ − 322
// (includes computation of debug information and oop maps)
+ − 323
//
+ − 324
// helper functions for assign_reg_num()
+ − 325
VMReg vm_reg_for_interval(Interval* interval);
+ − 326
VMReg vm_reg_for_operand(LIR_Opr opr);
+ − 327
+ − 328
static LIR_Opr operand_for_interval(Interval* interval);
+ − 329
static LIR_Opr calc_operand_for_interval(const Interval* interval);
+ − 330
LIR_Opr canonical_spill_opr(Interval* interval);
+ − 331
+ − 332
LIR_Opr color_lir_opr(LIR_Opr opr, int id, LIR_OpVisitState::OprMode);
+ − 333
+ − 334
// methods used for oop map computation
+ − 335
IntervalWalker* init_compute_oop_maps();
+ − 336
OopMap* compute_oop_map(IntervalWalker* iw, LIR_Op* op, CodeEmitInfo* info, bool is_call_site);
+ − 337
void compute_oop_map(IntervalWalker* iw, const LIR_OpVisitState &visitor, LIR_Op* op);
+ − 338
+ − 339
// methods used for debug information computation
+ − 340
void init_compute_debug_info();
+ − 341
+ − 342
MonitorValue* location_for_monitor_index(int monitor_index);
+ − 343
LocationValue* location_for_name(int name, Location::Type loc_type);
+ − 344
+ − 345
int append_scope_value_for_constant(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values);
+ − 346
int append_scope_value_for_operand(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values);
+ − 347
int append_scope_value(int op_id, Value value, GrowableArray<ScopeValue*>* scope_values);
+ − 348
+ − 349
IRScopeDebugInfo* compute_debug_info_for_scope(int op_id, IRScope* cur_scope, ValueStack* cur_state, ValueStack* innermost_state, int cur_bci, int stack_end, int locks_end);
+ − 350
void compute_debug_info(CodeEmitInfo* info, int op_id);
+ − 351
+ − 352
void assign_reg_num(LIR_OpList* instructions, IntervalWalker* iw);
+ − 353
void assign_reg_num();
+ − 354
+ − 355
+ − 356
// Phase 8: fpu stack allocation
+ − 357
// (Used only on x86 when fpu operands are present)
+ − 358
void allocate_fpu_stack();
+ − 359
+ − 360
+ − 361
// helper functions for printing state
+ − 362
#ifndef PRODUCT
+ − 363
static void print_bitmap(BitMap& bitmap);
+ − 364
void print_intervals(const char* label);
+ − 365
void print_lir(int level, const char* label, bool hir_valid = true);
+ − 366
#endif
+ − 367
+ − 368
#ifdef ASSERT
+ − 369
// verification functions for allocation
+ − 370
// (check that all intervals have a correct register and that no registers are overwritten)
+ − 371
void verify();
+ − 372
void verify_intervals();
+ − 373
void verify_no_oops_in_fixed_intervals();
+ − 374
void verify_constants();
+ − 375
void verify_registers();
+ − 376
#endif
+ − 377
+ − 378
public:
+ − 379
// creation
+ − 380
LinearScan(IR* ir, LIRGenerator* gen, FrameMap* frame_map);
+ − 381
+ − 382
// main entry function: perform linear scan register allocation
+ − 383
void do_linear_scan();
+ − 384
+ − 385
// accessors used by Compilation
+ − 386
int max_spills() const { return _max_spills; }
+ − 387
int num_calls() const { assert(_num_calls >= 0, "not set"); return _num_calls; }
+ − 388
+ − 389
// entry functions for printing
+ − 390
#ifndef PRODUCT
+ − 391
static void print_statistics();
+ − 392
static void print_timers(double total);
+ − 393
#endif
+ − 394
};
+ − 395
+ − 396
+ − 397
// Helper class for ordering moves that are inserted at the same position in the LIR
+ − 398
// When moves between registers are inserted, it is important that the moves are
+ − 399
// ordered such that no register is overwritten. So moves from register to stack
+ − 400
// are processed prior to moves from stack to register. When moves have circular
+ − 401
// dependencies, a temporary stack slot is used to break the circle.
+ − 402
// The same logic is used in the LinearScanWalker and in LinearScan during resolve_data_flow
+ − 403
// and therefore factored out in a separate class
+ − 404
class MoveResolver: public StackObj {
+ − 405
private:
+ − 406
LinearScan* _allocator;
+ − 407
+ − 408
LIR_List* _insert_list;
+ − 409
int _insert_idx;
+ − 410
LIR_InsertionBuffer _insertion_buffer; // buffer where moves are inserted
+ − 411
+ − 412
IntervalList _mapping_from;
+ − 413
LIR_OprList _mapping_from_opr;
+ − 414
IntervalList _mapping_to;
+ − 415
bool _multiple_reads_allowed;
+ − 416
int _register_blocked[LinearScan::nof_regs];
+ − 417
+ − 418
int register_blocked(int reg) { assert(reg >= 0 && reg < LinearScan::nof_regs, "out of bounds"); return _register_blocked[reg]; }
+ − 419
void set_register_blocked(int reg, int direction) { assert(reg >= 0 && reg < LinearScan::nof_regs, "out of bounds"); assert(direction == 1 || direction == -1, "out of bounds"); _register_blocked[reg] += direction; }
+ − 420
+ − 421
void block_registers(Interval* it);
+ − 422
void unblock_registers(Interval* it);
+ − 423
bool save_to_process_move(Interval* from, Interval* to);
+ − 424
+ − 425
void create_insertion_buffer(LIR_List* list);
+ − 426
void append_insertion_buffer();
+ − 427
void insert_move(Interval* from_interval, Interval* to_interval);
+ − 428
void insert_move(LIR_Opr from_opr, Interval* to_interval);
+ − 429
+ − 430
DEBUG_ONLY(void verify_before_resolve();)
+ − 431
void resolve_mappings();
+ − 432
public:
+ − 433
MoveResolver(LinearScan* allocator);
+ − 434
+ − 435
DEBUG_ONLY(void check_empty();)
+ − 436
void set_multiple_reads_allowed() { _multiple_reads_allowed = true; }
+ − 437
void set_insert_position(LIR_List* insert_list, int insert_idx);
+ − 438
void move_insert_position(LIR_List* insert_list, int insert_idx);
+ − 439
void add_mapping(Interval* from, Interval* to);
+ − 440
void add_mapping(LIR_Opr from, Interval* to);
+ − 441
void resolve_and_append_moves();
+ − 442
+ − 443
LinearScan* allocator() { return _allocator; }
+ − 444
bool has_mappings() { return _mapping_from.length() > 0; }
+ − 445
};
+ − 446
+ − 447
+ − 448
class Range : public CompilationResourceObj {
+ − 449
friend class Interval;
+ − 450
+ − 451
private:
+ − 452
static Range* _end; // sentinel (from == to == max_jint)
+ − 453
+ − 454
int _from; // from (inclusive)
+ − 455
int _to; // to (exclusive)
+ − 456
Range* _next; // linear list of Ranges
+ − 457
+ − 458
// used only by class Interval, so hide them
+ − 459
bool intersects(Range* r) const { return intersects_at(r) != -1; }
+ − 460
int intersects_at(Range* r) const;
+ − 461
+ − 462
public:
+ − 463
Range(int from, int to, Range* next);
+ − 464
+ − 465
static void initialize();
+ − 466
static Range* end() { return _end; }
+ − 467
+ − 468
int from() const { return _from; }
+ − 469
int to() const { return _to; }
+ − 470
Range* next() const { return _next; }
+ − 471
void set_from(int from) { _from = from; }
+ − 472
void set_to(int to) { _to = to; }
+ − 473
void set_next(Range* next) { _next = next; }
+ − 474
+ − 475
// for testing
+ − 476
void print(outputStream* out = tty) const PRODUCT_RETURN;
+ − 477
};
+ − 478
+ − 479
+ − 480
// Interval is an ordered list of disjoint ranges.
+ − 481
+ − 482
// For pre-colored double word LIR_Oprs, one interval is created for
+ − 483
// the low word register and one is created for the hi word register.
+ − 484
// On Intel for FPU double registers only one interval is created. At
+ − 485
// all times assigned_reg contains the reg. number of the physical
+ − 486
// register.
+ − 487
+ − 488
// For LIR_Opr in virtual registers a single interval can represent
+ − 489
// single and double word values. When a physical register is
+ − 490
// assigned to the interval, assigned_reg contains the
+ − 491
// phys. reg. number and for double word values assigned_regHi the
+ − 492
// phys. reg. number of the hi word if there is any. For spilled
+ − 493
// intervals assigned_reg contains the stack index. assigned_regHi is
+ − 494
// always -1.
+ − 495
+ − 496
class Interval : public CompilationResourceObj {
+ − 497
private:
+ − 498
static Interval* _end; // sentinel (interval with only range Range::end())
+ − 499
+ − 500
int _reg_num;
+ − 501
BasicType _type; // valid only for virtual registers
+ − 502
Range* _first; // sorted list of Ranges
+ − 503
intStack _use_pos_and_kinds; // sorted list of use-positions and their according use-kinds
+ − 504
+ − 505
Range* _current; // interval iteration: the current Range
+ − 506
Interval* _next; // interval iteration: sorted list of Intervals (ends with sentinel)
+ − 507
IntervalState _state; // interval iteration: to which set belongs this interval
+ − 508
+ − 509
+ − 510
int _assigned_reg;
+ − 511
int _assigned_regHi;
+ − 512
+ − 513
int _cached_to; // cached value: to of last range (-1: not cached)
+ − 514
LIR_Opr _cached_opr;
+ − 515
VMReg _cached_vm_reg;
+ − 516
+ − 517
Interval* _split_parent; // the original interval where this interval is derived from
+ − 518
IntervalList _split_children; // list of all intervals that are split off from this interval (only available for split parents)
+ − 519
Interval* _current_split_child; // the current split child that has been active or inactive last (always stored in split parents)
+ − 520
+ − 521
int _canonical_spill_slot; // the stack slot where all split parts of this interval are spilled to (always stored in split parents)
+ − 522
bool _insert_move_when_activated; // true if move is inserted between _current_split_child and this interval when interval gets active the first time
+ − 523
IntervalSpillState _spill_state; // for spill move optimization
+ − 524
int _spill_definition_pos; // position where the interval is defined (if defined only once)
+ − 525
Interval* _register_hint; // this interval should be in the same register as the hint interval
+ − 526
+ − 527
int calc_to();
+ − 528
Interval* new_split_child();
+ − 529
public:
+ − 530
Interval(int reg_num);
+ − 531
+ − 532
static void initialize();
+ − 533
static Interval* end() { return _end; }
+ − 534
+ − 535
// accessors
+ − 536
int reg_num() const { return _reg_num; }
+ − 537
void set_reg_num(int r) { assert(_reg_num == -1, "cannot change reg_num"); _reg_num = r; }
+ − 538
BasicType type() const { assert(_reg_num == -1 || _reg_num >= LIR_OprDesc::vreg_base, "cannot access type for fixed interval"); return _type; }
+ − 539
void set_type(BasicType type) { assert(_reg_num < LIR_OprDesc::vreg_base || _type == T_ILLEGAL || _type == type, "overwriting existing type"); _type = type; }
+ − 540
+ − 541
Range* first() const { return _first; }
+ − 542
int from() const { return _first->from(); }
+ − 543
int to() { if (_cached_to == -1) _cached_to = calc_to(); assert(_cached_to == calc_to(), "invalid cached value"); return _cached_to; }
+ − 544
int num_use_positions() const { return _use_pos_and_kinds.length() / 2; }
+ − 545
+ − 546
Interval* next() const { return _next; }
+ − 547
Interval** next_addr() { return &_next; }
+ − 548
void set_next(Interval* next) { _next = next; }
+ − 549
+ − 550
int assigned_reg() const { return _assigned_reg; }
+ − 551
int assigned_regHi() const { return _assigned_regHi; }
+ − 552
void assign_reg(int reg) { _assigned_reg = reg; _assigned_regHi = LinearScan::any_reg; }
+ − 553
void assign_reg(int reg,int regHi) { _assigned_reg = reg; _assigned_regHi = regHi; }
+ − 554
+ − 555
Interval* register_hint(bool search_split_child = true) const; // calculation needed
+ − 556
void set_register_hint(Interval* i) { _register_hint = i; }
+ − 557
+ − 558
int state() const { return _state; }
+ − 559
void set_state(IntervalState s) { _state = s; }
+ − 560
+ − 561
// access to split parent and split children
+ − 562
bool is_split_parent() const { return _split_parent == this; }
+ − 563
bool is_split_child() const { return _split_parent != this; }
+ − 564
Interval* split_parent() const { assert(_split_parent->is_split_parent(), "must be"); return _split_parent; }
+ − 565
Interval* split_child_at_op_id(int op_id, LIR_OpVisitState::OprMode mode);
+ − 566
Interval* split_child_before_op_id(int op_id);
+ − 567
bool split_child_covers(int op_id, LIR_OpVisitState::OprMode mode);
+ − 568
DEBUG_ONLY(void check_split_children();)
+ − 569
+ − 570
// information stored in split parent, but available for all children
+ − 571
int canonical_spill_slot() const { return split_parent()->_canonical_spill_slot; }
+ − 572
void set_canonical_spill_slot(int slot) { assert(split_parent()->_canonical_spill_slot == -1, "overwriting existing value"); split_parent()->_canonical_spill_slot = slot; }
+ − 573
Interval* current_split_child() const { return split_parent()->_current_split_child; }
+ − 574
void make_current_split_child() { split_parent()->_current_split_child = this; }
+ − 575
+ − 576
bool insert_move_when_activated() const { return _insert_move_when_activated; }
+ − 577
void set_insert_move_when_activated(bool b) { _insert_move_when_activated = b; }
+ − 578
+ − 579
// for spill optimization
+ − 580
IntervalSpillState spill_state() const { return split_parent()->_spill_state; }
+ − 581
int spill_definition_pos() const { return split_parent()->_spill_definition_pos; }
+ − 582
void set_spill_state(IntervalSpillState state) { assert(state >= spill_state(), "state cannot decrease"); split_parent()->_spill_state = state; }
+ − 583
void set_spill_definition_pos(int pos) { assert(spill_definition_pos() == -1, "cannot set the position twice"); split_parent()->_spill_definition_pos = pos; }
+ − 584
// returns true if this interval has a shadow copy on the stack that is always correct
+ − 585
bool always_in_memory() const { return split_parent()->_spill_state == storeAtDefinition || split_parent()->_spill_state == startInMemory; }
+ − 586
+ − 587
// caching of values that take time to compute and are used multiple times
+ − 588
LIR_Opr cached_opr() const { return _cached_opr; }
+ − 589
VMReg cached_vm_reg() const { return _cached_vm_reg; }
+ − 590
void set_cached_opr(LIR_Opr opr) { _cached_opr = opr; }
+ − 591
void set_cached_vm_reg(VMReg reg) { _cached_vm_reg = reg; }
+ − 592
+ − 593
// access to use positions
+ − 594
int first_usage(IntervalUseKind min_use_kind) const; // id of the first operation requiring this interval in a register
+ − 595
int next_usage(IntervalUseKind min_use_kind, int from) const; // id of next usage seen from the given position
+ − 596
int next_usage_exact(IntervalUseKind exact_use_kind, int from) const;
+ − 597
int previous_usage(IntervalUseKind min_use_kind, int from) const;
+ − 598
+ − 599
// manipulating intervals
+ − 600
void add_use_pos(int pos, IntervalUseKind use_kind);
+ − 601
void add_range(int from, int to);
+ − 602
Interval* split(int split_pos);
+ − 603
Interval* split_from_start(int split_pos);
+ − 604
void remove_first_use_pos() { _use_pos_and_kinds.truncate(_use_pos_and_kinds.length() - 2); }
+ − 605
+ − 606
// test intersection
+ − 607
bool covers(int op_id, LIR_OpVisitState::OprMode mode) const;
+ − 608
bool has_hole_between(int from, int to);
+ − 609
bool intersects(Interval* i) const { return _first->intersects(i->_first); }
+ − 610
int intersects_at(Interval* i) const { return _first->intersects_at(i->_first); }
+ − 611
+ − 612
// range iteration
+ − 613
void rewind_range() { _current = _first; }
+ − 614
void next_range() { assert(this != _end, "not allowed on sentinel"); _current = _current->next(); }
+ − 615
int current_from() const { return _current->from(); }
+ − 616
int current_to() const { return _current->to(); }
+ − 617
bool current_at_end() const { return _current == Range::end(); }
+ − 618
bool current_intersects(Interval* it) { return _current->intersects(it->_current); };
+ − 619
int current_intersects_at(Interval* it) { return _current->intersects_at(it->_current); };
+ − 620
+ − 621
// printing
+ − 622
void print(outputStream* out = tty) const PRODUCT_RETURN;
+ − 623
};
+ − 624
+ − 625
+ − 626
class IntervalWalker : public CompilationResourceObj {
+ − 627
protected:
+ − 628
Compilation* _compilation;
+ − 629
LinearScan* _allocator;
+ − 630
+ − 631
Interval* _unhandled_first[nofKinds]; // sorted list of intervals, not life before the current position
+ − 632
Interval* _active_first [nofKinds]; // sorted list of intervals, life at the current position
+ − 633
Interval* _inactive_first [nofKinds]; // sorted list of intervals, intervals in a life time hole at the current position
+ − 634
+ − 635
Interval* _current; // the current interval coming from unhandled list
+ − 636
int _current_position; // the current position (intercept point through the intervals)
+ − 637
IntervalKind _current_kind; // and whether it is fixed_kind or any_kind.
+ − 638
+ − 639
+ − 640
Compilation* compilation() const { return _compilation; }
+ − 641
LinearScan* allocator() const { return _allocator; }
+ − 642
+ − 643
// unified bailout support
+ − 644
void bailout(const char* msg) const { compilation()->bailout(msg); }
+ − 645
bool bailed_out() const { return compilation()->bailed_out(); }
+ − 646
+ − 647
void check_bounds(IntervalKind kind) { assert(kind >= fixedKind && kind <= anyKind, "invalid interval_kind"); }
+ − 648
+ − 649
Interval** unhandled_first_addr(IntervalKind kind) { check_bounds(kind); return &_unhandled_first[kind]; }
+ − 650
Interval** active_first_addr(IntervalKind kind) { check_bounds(kind); return &_active_first[kind]; }
+ − 651
Interval** inactive_first_addr(IntervalKind kind) { check_bounds(kind); return &_inactive_first[kind]; }
+ − 652
+ − 653
void append_unsorted(Interval** first, Interval* interval);
+ − 654
void append_sorted(Interval** first, Interval* interval);
+ − 655
void append_to_unhandled(Interval** list, Interval* interval);
+ − 656
+ − 657
bool remove_from_list(Interval** list, Interval* i);
+ − 658
void remove_from_list(Interval* i);
+ − 659
+ − 660
void next_interval();
+ − 661
Interval* current() const { return _current; }
+ − 662
IntervalKind current_kind() const { return _current_kind; }
+ − 663
+ − 664
void walk_to(IntervalState state, int from);
+ − 665
+ − 666
// activate_current() is called when an unhandled interval becomes active (in current(), current_kind()).
+ − 667
// Return false if current() should not be moved the the active interval list.
+ − 668
// It is safe to append current to any interval list but the unhandled list.
+ − 669
virtual bool activate_current() { return true; }
+ − 670
+ − 671
// interval_moved() is called whenever an interval moves from one interval list to another.
+ − 672
// In the implementation of this method it is prohibited to move the interval to any list.
+ − 673
virtual void interval_moved(Interval* interval, IntervalKind kind, IntervalState from, IntervalState to);
+ − 674
+ − 675
public:
+ − 676
IntervalWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first);
+ − 677
+ − 678
Interval* unhandled_first(IntervalKind kind) { check_bounds(kind); return _unhandled_first[kind]; }
+ − 679
Interval* active_first(IntervalKind kind) { check_bounds(kind); return _active_first[kind]; }
+ − 680
Interval* inactive_first(IntervalKind kind) { check_bounds(kind); return _inactive_first[kind]; }
+ − 681
+ − 682
// active contains the intervals that are live after the lir_op
+ − 683
void walk_to(int lir_op_id);
+ − 684
// active contains the intervals that are live before the lir_op
+ − 685
void walk_before(int lir_op_id) { walk_to(lir_op_id-1); }
+ − 686
// walk through all intervals
+ − 687
void walk() { walk_to(max_jint); }
+ − 688
+ − 689
int current_position() { return _current_position; }
+ − 690
};
+ − 691
+ − 692
+ − 693
// The actual linear scan register allocator
+ − 694
class LinearScanWalker : public IntervalWalker {
+ − 695
enum {
+ − 696
any_reg = LinearScan::any_reg
+ − 697
};
+ − 698
+ − 699
private:
+ − 700
int _first_reg; // the reg. number of the first phys. register
+ − 701
int _last_reg; // the reg. nmber of the last phys. register
+ − 702
int _num_phys_regs; // required by current interval
+ − 703
bool _adjacent_regs; // have lo/hi words of phys. regs be adjacent
+ − 704
+ − 705
int _use_pos[LinearScan::nof_regs];
+ − 706
int _block_pos[LinearScan::nof_regs];
+ − 707
IntervalList* _spill_intervals[LinearScan::nof_regs];
+ − 708
+ − 709
MoveResolver _move_resolver; // for ordering spill moves
+ − 710
+ − 711
// accessors mapped to same functions in class LinearScan
+ − 712
int block_count() const { return allocator()->block_count(); }
+ − 713
BlockBegin* block_at(int idx) const { return allocator()->block_at(idx); }
+ − 714
BlockBegin* block_of_op_with_id(int op_id) const { return allocator()->block_of_op_with_id(op_id); }
+ − 715
+ − 716
void init_use_lists(bool only_process_use_pos);
+ − 717
void exclude_from_use(int reg);
+ − 718
void exclude_from_use(Interval* i);
+ − 719
void set_use_pos(int reg, Interval* i, int use_pos, bool only_process_use_pos);
+ − 720
void set_use_pos(Interval* i, int use_pos, bool only_process_use_pos);
+ − 721
void set_block_pos(int reg, Interval* i, int block_pos);
+ − 722
void set_block_pos(Interval* i, int block_pos);
+ − 723
+ − 724
void free_exclude_active_fixed();
+ − 725
void free_exclude_active_any();
+ − 726
void free_collect_inactive_fixed(Interval* cur);
+ − 727
void free_collect_inactive_any(Interval* cur);
+ − 728
void free_collect_unhandled(IntervalKind kind, Interval* cur);
+ − 729
void spill_exclude_active_fixed();
+ − 730
void spill_block_unhandled_fixed(Interval* cur);
+ − 731
void spill_block_inactive_fixed(Interval* cur);
+ − 732
void spill_collect_active_any();
+ − 733
void spill_collect_inactive_any(Interval* cur);
+ − 734
+ − 735
void insert_move(int op_id, Interval* src_it, Interval* dst_it);
+ − 736
int find_optimal_split_pos(BlockBegin* min_block, BlockBegin* max_block, int max_split_pos);
+ − 737
int find_optimal_split_pos(Interval* it, int min_split_pos, int max_split_pos, bool do_loop_optimization);
+ − 738
void split_before_usage(Interval* it, int min_split_pos, int max_split_pos);
+ − 739
void split_for_spilling(Interval* it);
+ − 740
void split_stack_interval(Interval* it);
+ − 741
void split_when_partial_register_available(Interval* it, int register_available_until);
+ − 742
void split_and_spill_interval(Interval* it);
+ − 743
+ − 744
int find_free_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split);
+ − 745
int find_free_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split);
+ − 746
bool alloc_free_reg(Interval* cur);
+ − 747
+ − 748
int find_locked_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split);
+ − 749
int find_locked_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split);
+ − 750
void split_and_spill_intersecting_intervals(int reg, int regHi);
+ − 751
void alloc_locked_reg(Interval* cur);
+ − 752
+ − 753
bool no_allocation_possible(Interval* cur);
+ − 754
void update_phys_reg_range(bool requires_cpu_register);
+ − 755
void init_vars_for_alloc(Interval* cur);
+ − 756
bool pd_init_regs_for_alloc(Interval* cur);
+ − 757
+ − 758
void combine_spilled_intervals(Interval* cur);
+ − 759
bool is_move(LIR_Op* op, Interval* from, Interval* to);
+ − 760
+ − 761
bool activate_current();
+ − 762
+ − 763
public:
+ − 764
LinearScanWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first);
+ − 765
+ − 766
// must be called when all intervals are allocated
+ − 767
void finish_allocation() { _move_resolver.resolve_and_append_moves(); }
+ − 768
};
+ − 769
+ − 770
+ − 771
+ − 772
/*
+ − 773
When a block has more than one predecessor, and all predecessors end with
+ − 774
the same sequence of move-instructions, than this moves can be placed once
+ − 775
at the beginning of the block instead of multiple times in the predecessors.
+ − 776
+ − 777
Similarly, when a block has more than one successor, then equal sequences of
+ − 778
moves at the beginning of the successors can be placed once at the end of
+ − 779
the block. But because the moves must be inserted before all branch
+ − 780
instructions, this works only when there is exactly one conditional branch
+ − 781
at the end of the block (because the moves must be inserted before all
+ − 782
branches, but after all compares).
+ − 783
+ − 784
This optimization affects all kind of moves (reg->reg, reg->stack and
+ − 785
stack->reg). Because this optimization works best when a block contains only
+ − 786
few moves, it has a huge impact on the number of blocks that are totally
+ − 787
empty.
+ − 788
*/
+ − 789
class EdgeMoveOptimizer : public StackObj {
+ − 790
private:
+ − 791
// the class maintains a list with all lir-instruction-list of the
+ − 792
// successors (predecessors) and the current index into the lir-lists
+ − 793
LIR_OpListStack _edge_instructions;
+ − 794
intStack _edge_instructions_idx;
+ − 795
+ − 796
void init_instructions();
+ − 797
void append_instructions(LIR_OpList* instructions, int instructions_idx);
+ − 798
LIR_Op* instruction_at(int edge);
+ − 799
void remove_cur_instruction(int edge, bool decrement_index);
+ − 800
+ − 801
bool operations_different(LIR_Op* op1, LIR_Op* op2);
+ − 802
+ − 803
void optimize_moves_at_block_end(BlockBegin* cur);
+ − 804
void optimize_moves_at_block_begin(BlockBegin* cur);
+ − 805
+ − 806
EdgeMoveOptimizer();
+ − 807
+ − 808
public:
+ − 809
static void optimize(BlockList* code);
+ − 810
};
+ − 811
+ − 812
+ − 813
+ − 814
class ControlFlowOptimizer : public StackObj {
+ − 815
private:
+ − 816
BlockList _original_preds;
+ − 817
+ − 818
enum {
+ − 819
ShortLoopSize = 5
+ − 820
};
+ − 821
void reorder_short_loop(BlockList* code, BlockBegin* header_block, int header_idx);
+ − 822
void reorder_short_loops(BlockList* code);
+ − 823
+ − 824
bool can_delete_block(BlockBegin* cur);
+ − 825
void substitute_branch_target(BlockBegin* cur, BlockBegin* target_from, BlockBegin* target_to);
+ − 826
void delete_empty_blocks(BlockList* code);
+ − 827
+ − 828
void delete_unnecessary_jumps(BlockList* code);
+ − 829
void delete_jumps_to_return(BlockList* code);
+ − 830
+ − 831
DEBUG_ONLY(void verify(BlockList* code);)
+ − 832
+ − 833
ControlFlowOptimizer();
+ − 834
public:
+ − 835
static void optimize(BlockList* code);
+ − 836
};
+ − 837
+ − 838
+ − 839
#ifndef PRODUCT
+ − 840
+ − 841
// Helper class for collecting statistics of LinearScan
+ − 842
class LinearScanStatistic : public StackObj {
+ − 843
public:
+ − 844
enum Counter {
+ − 845
// general counters
+ − 846
counter_method,
+ − 847
counter_fpu_method,
+ − 848
counter_loop_method,
+ − 849
counter_exception_method,
+ − 850
counter_loop,
+ − 851
counter_block,
+ − 852
counter_loop_block,
+ − 853
counter_exception_block,
+ − 854
counter_interval,
+ − 855
counter_fixed_interval,
+ − 856
counter_range,
+ − 857
counter_fixed_range,
+ − 858
counter_use_pos,
+ − 859
counter_fixed_use_pos,
+ − 860
counter_spill_slots,
+ − 861
blank_line_1,
+ − 862
+ − 863
// counter for classes of lir instructions
+ − 864
counter_instruction,
+ − 865
counter_label,
+ − 866
counter_entry,
+ − 867
counter_return,
+ − 868
counter_call,
+ − 869
counter_move,
+ − 870
counter_cmp,
+ − 871
counter_cond_branch,
+ − 872
counter_uncond_branch,
+ − 873
counter_stub_branch,
+ − 874
counter_alu,
+ − 875
counter_alloc,
+ − 876
counter_sync,
+ − 877
counter_throw,
+ − 878
counter_unwind,
+ − 879
counter_typecheck,
+ − 880
counter_fpu_stack,
+ − 881
counter_misc_inst,
+ − 882
counter_other_inst,
+ − 883
blank_line_2,
+ − 884
+ − 885
// counter for different types of moves
+ − 886
counter_move_total,
+ − 887
counter_move_reg_reg,
+ − 888
counter_move_reg_stack,
+ − 889
counter_move_stack_reg,
+ − 890
counter_move_stack_stack,
+ − 891
counter_move_reg_mem,
+ − 892
counter_move_mem_reg,
+ − 893
counter_move_const_any,
+ − 894
+ − 895
number_of_counters,
+ − 896
invalid_counter = -1
+ − 897
};
+ − 898
+ − 899
private:
+ − 900
int _counters_sum[number_of_counters];
+ − 901
int _counters_max[number_of_counters];
+ − 902
+ − 903
void inc_counter(Counter idx, int value = 1) { _counters_sum[idx] += value; }
+ − 904
+ − 905
const char* counter_name(int counter_idx);
+ − 906
Counter base_counter(int counter_idx);
+ − 907
+ − 908
void sum_up(LinearScanStatistic &method_statistic);
+ − 909
void collect(LinearScan* allocator);
+ − 910
+ − 911
public:
+ − 912
LinearScanStatistic();
+ − 913
void print(const char* title);
+ − 914
static void compute(LinearScan* allocator, LinearScanStatistic &global_statistic);
+ − 915
};
+ − 916
+ − 917
+ − 918
// Helper class for collecting compilation time of LinearScan
+ − 919
class LinearScanTimers : public StackObj {
+ − 920
public:
+ − 921
enum Timer {
+ − 922
timer_do_nothing,
+ − 923
timer_number_instructions,
+ − 924
timer_compute_local_live_sets,
+ − 925
timer_compute_global_live_sets,
+ − 926
timer_build_intervals,
+ − 927
timer_sort_intervals_before,
+ − 928
timer_allocate_registers,
+ − 929
timer_resolve_data_flow,
+ − 930
timer_sort_intervals_after,
+ − 931
timer_eliminate_spill_moves,
+ − 932
timer_assign_reg_num,
+ − 933
timer_allocate_fpu_stack,
+ − 934
timer_optimize_lir,
+ − 935
+ − 936
number_of_timers
+ − 937
};
+ − 938
+ − 939
private:
+ − 940
elapsedTimer _timers[number_of_timers];
+ − 941
const char* timer_name(int idx);
+ − 942
+ − 943
public:
+ − 944
LinearScanTimers();
+ − 945
+ − 946
void begin_method(); // called for each method when register allocation starts
+ − 947
void end_method(LinearScan* allocator); // called for each method when register allocation completed
+ − 948
void print(double total_time); // called before termination of VM to print global summary
+ − 949
+ − 950
elapsedTimer* timer(int idx) { return &(_timers[idx]); }
+ − 951
};
+ − 952
+ − 953
+ − 954
#endif // ifndef PRODUCT
+ − 955
+ − 956
+ − 957
// Pick up platform-dependent implementation details
+ − 958
# include "incls/_c1_LinearScan_pd.hpp.incl"