1
+ − 1
/*
+ − 2
* Copyright 1999-2006 Sun Microsystems, Inc. All Rights Reserved.
+ − 3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ − 4
*
+ − 5
* This code is free software; you can redistribute it and/or modify it
+ − 6
* under the terms of the GNU General Public License version 2 only, as
+ − 7
* published by the Free Software Foundation.
+ − 8
*
+ − 9
* This code is distributed in the hope that it will be useful, but WITHOUT
+ − 10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ − 11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ − 12
* version 2 for more details (a copy is included in the LICENSE file that
+ − 13
* accompanied this code).
+ − 14
*
+ − 15
* You should have received a copy of the GNU General Public License version
+ − 16
* 2 along with this work; if not, write to the Free Software Foundation,
+ − 17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ − 18
*
+ − 19
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ − 20
* CA 95054 USA or visit www.sun.com if you need additional information or
+ − 21
* have any questions.
+ − 22
*
+ − 23
*/
+ − 24
+ − 25
# include "incls/_precompiled.incl"
+ − 26
# include "incls/_c1_IR.cpp.incl"
+ − 27
+ − 28
+ − 29
// Implementation of XHandlers
+ − 30
//
+ − 31
// Note: This code could eventually go away if we are
+ − 32
// just using the ciExceptionHandlerStream.
+ − 33
+ − 34
XHandlers::XHandlers(ciMethod* method) : _list(method->exception_table_length()) {
+ − 35
ciExceptionHandlerStream s(method);
+ − 36
while (!s.is_done()) {
+ − 37
_list.append(new XHandler(s.handler()));
+ − 38
s.next();
+ − 39
}
+ − 40
assert(s.count() == method->exception_table_length(), "exception table lengths inconsistent");
+ − 41
}
+ − 42
+ − 43
// deep copy of all XHandler contained in list
+ − 44
XHandlers::XHandlers(XHandlers* other) :
+ − 45
_list(other->length())
+ − 46
{
+ − 47
for (int i = 0; i < other->length(); i++) {
+ − 48
_list.append(new XHandler(other->handler_at(i)));
+ − 49
}
+ − 50
}
+ − 51
+ − 52
// Returns whether a particular exception type can be caught. Also
+ − 53
// returns true if klass is unloaded or any exception handler
+ − 54
// classes are unloaded. type_is_exact indicates whether the throw
+ − 55
// is known to be exactly that class or it might throw a subtype.
+ − 56
bool XHandlers::could_catch(ciInstanceKlass* klass, bool type_is_exact) const {
+ − 57
// the type is unknown so be conservative
+ − 58
if (!klass->is_loaded()) {
+ − 59
return true;
+ − 60
}
+ − 61
+ − 62
for (int i = 0; i < length(); i++) {
+ − 63
XHandler* handler = handler_at(i);
+ − 64
if (handler->is_catch_all()) {
+ − 65
// catch of ANY
+ − 66
return true;
+ − 67
}
+ − 68
ciInstanceKlass* handler_klass = handler->catch_klass();
+ − 69
// if it's unknown it might be catchable
+ − 70
if (!handler_klass->is_loaded()) {
+ − 71
return true;
+ − 72
}
+ − 73
// if the throw type is definitely a subtype of the catch type
+ − 74
// then it can be caught.
+ − 75
if (klass->is_subtype_of(handler_klass)) {
+ − 76
return true;
+ − 77
}
+ − 78
if (!type_is_exact) {
+ − 79
// If the type isn't exactly known then it can also be caught by
+ − 80
// catch statements where the inexact type is a subtype of the
+ − 81
// catch type.
+ − 82
// given: foo extends bar extends Exception
+ − 83
// throw bar can be caught by catch foo, catch bar, and catch
+ − 84
// Exception, however it can't be caught by any handlers without
+ − 85
// bar in its type hierarchy.
+ − 86
if (handler_klass->is_subtype_of(klass)) {
+ − 87
return true;
+ − 88
}
+ − 89
}
+ − 90
}
+ − 91
+ − 92
return false;
+ − 93
}
+ − 94
+ − 95
+ − 96
bool XHandlers::equals(XHandlers* others) const {
+ − 97
if (others == NULL) return false;
+ − 98
if (length() != others->length()) return false;
+ − 99
+ − 100
for (int i = 0; i < length(); i++) {
+ − 101
if (!handler_at(i)->equals(others->handler_at(i))) return false;
+ − 102
}
+ − 103
return true;
+ − 104
}
+ − 105
+ − 106
bool XHandler::equals(XHandler* other) const {
+ − 107
assert(entry_pco() != -1 && other->entry_pco() != -1, "must have entry_pco");
+ − 108
+ − 109
if (entry_pco() != other->entry_pco()) return false;
+ − 110
if (scope_count() != other->scope_count()) return false;
+ − 111
if (_desc != other->_desc) return false;
+ − 112
+ − 113
assert(entry_block() == other->entry_block(), "entry_block must be equal when entry_pco is equal");
+ − 114
return true;
+ − 115
}
+ − 116
+ − 117
+ − 118
// Implementation of IRScope
+ − 119
+ − 120
BlockBegin* IRScope::header_block(BlockBegin* entry, BlockBegin::Flag f, ValueStack* state) {
+ − 121
if (entry == NULL) return NULL;
+ − 122
assert(entry->is_set(f), "entry/flag mismatch");
+ − 123
// create header block
+ − 124
BlockBegin* h = new BlockBegin(entry->bci());
+ − 125
BlockEnd* g = new Goto(entry, false);
+ − 126
h->set_next(g, entry->bci());
+ − 127
h->set_end(g);
+ − 128
h->set(f);
+ − 129
// setup header block end state
+ − 130
ValueStack* s = state->copy(); // can use copy since stack is empty (=> no phis)
+ − 131
assert(s->stack_is_empty(), "must have empty stack at entry point");
+ − 132
g->set_state(s);
+ − 133
return h;
+ − 134
}
+ − 135
+ − 136
+ − 137
BlockBegin* IRScope::build_graph(Compilation* compilation, int osr_bci) {
+ − 138
GraphBuilder gm(compilation, this);
+ − 139
NOT_PRODUCT(if (PrintValueNumbering && Verbose) gm.print_stats());
+ − 140
if (compilation->bailed_out()) return NULL;
+ − 141
return gm.start();
+ − 142
}
+ − 143
+ − 144
+ − 145
IRScope::IRScope(Compilation* compilation, IRScope* caller, int caller_bci, ciMethod* method, int osr_bci, bool create_graph)
+ − 146
: _callees(2)
+ − 147
, _compilation(compilation)
+ − 148
, _lock_stack_size(-1)
+ − 149
, _requires_phi_function(method->max_locals())
+ − 150
{
+ − 151
_caller = caller;
+ − 152
_caller_bci = caller == NULL ? -1 : caller_bci;
+ − 153
_caller_state = NULL; // Must be set later if needed
+ − 154
_level = caller == NULL ? 0 : caller->level() + 1;
+ − 155
_method = method;
+ − 156
_xhandlers = new XHandlers(method);
+ − 157
_number_of_locks = 0;
+ − 158
_monitor_pairing_ok = method->has_balanced_monitors();
+ − 159
_start = NULL;
+ − 160
+ − 161
if (osr_bci == -1) {
+ − 162
_requires_phi_function.clear();
+ − 163
} else {
+ − 164
// selective creation of phi functions is not possibel in osr-methods
+ − 165
_requires_phi_function.set_range(0, method->max_locals());
+ − 166
}
+ − 167
+ − 168
assert(method->holder()->is_loaded() , "method holder must be loaded");
+ − 169
+ − 170
// build graph if monitor pairing is ok
+ − 171
if (create_graph && monitor_pairing_ok()) _start = build_graph(compilation, osr_bci);
+ − 172
}
+ − 173
+ − 174
+ − 175
int IRScope::max_stack() const {
+ − 176
int my_max = method()->max_stack();
+ − 177
int callee_max = 0;
+ − 178
for (int i = 0; i < number_of_callees(); i++) {
+ − 179
callee_max = MAX2(callee_max, callee_no(i)->max_stack());
+ − 180
}
+ − 181
return my_max + callee_max;
+ − 182
}
+ − 183
+ − 184
+ − 185
void IRScope::compute_lock_stack_size() {
+ − 186
if (!InlineMethodsWithExceptionHandlers) {
+ − 187
_lock_stack_size = 0;
+ − 188
return;
+ − 189
}
+ − 190
+ − 191
// Figure out whether we have to preserve expression stack elements
+ − 192
// for parent scopes, and if so, how many
+ − 193
IRScope* cur_scope = this;
+ − 194
while (cur_scope != NULL && !cur_scope->xhandlers()->has_handlers()) {
+ − 195
cur_scope = cur_scope->caller();
+ − 196
}
+ − 197
_lock_stack_size = (cur_scope == NULL ? 0 :
+ − 198
(cur_scope->caller_state() == NULL ? 0 :
+ − 199
cur_scope->caller_state()->stack_size()));
+ − 200
}
+ − 201
+ − 202
int IRScope::top_scope_bci() const {
+ − 203
assert(!is_top_scope(), "no correct answer for top scope possible");
+ − 204
const IRScope* scope = this;
+ − 205
while (!scope->caller()->is_top_scope()) {
+ − 206
scope = scope->caller();
+ − 207
}
+ − 208
return scope->caller_bci();
+ − 209
}
+ − 210
+ − 211
+ − 212
+ − 213
// Implementation of CodeEmitInfo
+ − 214
+ − 215
// Stack must be NON-null
+ − 216
CodeEmitInfo::CodeEmitInfo(int bci, ValueStack* stack, XHandlers* exception_handlers)
+ − 217
: _scope(stack->scope())
+ − 218
, _bci(bci)
+ − 219
, _scope_debug_info(NULL)
+ − 220
, _oop_map(NULL)
+ − 221
, _stack(stack)
+ − 222
, _exception_handlers(exception_handlers)
+ − 223
, _next(NULL)
+ − 224
, _id(-1) {
+ − 225
assert(_stack != NULL, "must be non null");
+ − 226
assert(_bci == SynchronizationEntryBCI || Bytecodes::is_defined(scope()->method()->java_code_at_bci(_bci)), "make sure bci points at a real bytecode");
+ − 227
}
+ − 228
+ − 229
+ − 230
CodeEmitInfo::CodeEmitInfo(CodeEmitInfo* info, bool lock_stack_only)
+ − 231
: _scope(info->_scope)
+ − 232
, _exception_handlers(NULL)
+ − 233
, _bci(info->_bci)
+ − 234
, _scope_debug_info(NULL)
+ − 235
, _oop_map(NULL) {
+ − 236
if (lock_stack_only) {
+ − 237
if (info->_stack != NULL) {
+ − 238
_stack = info->_stack->copy_locks();
+ − 239
} else {
+ − 240
_stack = NULL;
+ − 241
}
+ − 242
} else {
+ − 243
_stack = info->_stack;
+ − 244
}
+ − 245
+ − 246
// deep copy of exception handlers
+ − 247
if (info->_exception_handlers != NULL) {
+ − 248
_exception_handlers = new XHandlers(info->_exception_handlers);
+ − 249
}
+ − 250
}
+ − 251
+ − 252
+ − 253
void CodeEmitInfo::record_debug_info(DebugInformationRecorder* recorder, int pc_offset) {
+ − 254
// record the safepoint before recording the debug info for enclosing scopes
+ − 255
recorder->add_safepoint(pc_offset, _oop_map->deep_copy());
+ − 256
_scope_debug_info->record_debug_info(recorder, pc_offset);
+ − 257
recorder->end_safepoint(pc_offset);
+ − 258
}
+ − 259
+ − 260
+ − 261
void CodeEmitInfo::add_register_oop(LIR_Opr opr) {
+ − 262
assert(_oop_map != NULL, "oop map must already exist");
+ − 263
assert(opr->is_single_cpu(), "should not call otherwise");
+ − 264
+ − 265
int frame_size = frame_map()->framesize();
+ − 266
int arg_count = frame_map()->oop_map_arg_count();
+ − 267
VMReg name = frame_map()->regname(opr);
+ − 268
_oop_map->set_oop(name);
+ − 269
}
+ − 270
+ − 271
+ − 272
+ − 273
+ − 274
// Implementation of IR
+ − 275
+ − 276
IR::IR(Compilation* compilation, ciMethod* method, int osr_bci) :
+ − 277
_locals_size(in_WordSize(-1))
+ − 278
, _num_loops(0) {
+ − 279
// initialize data structures
+ − 280
ValueType::initialize();
+ − 281
Instruction::initialize();
+ − 282
BlockBegin::initialize();
+ − 283
GraphBuilder::initialize();
+ − 284
// setup IR fields
+ − 285
_compilation = compilation;
+ − 286
_top_scope = new IRScope(compilation, NULL, -1, method, osr_bci, true);
+ − 287
_code = NULL;
+ − 288
}
+ − 289
+ − 290
+ − 291
void IR::optimize() {
+ − 292
Optimizer opt(this);
+ − 293
if (DoCEE) {
+ − 294
opt.eliminate_conditional_expressions();
+ − 295
#ifndef PRODUCT
+ − 296
if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after CEE"); print(true); }
+ − 297
if (PrintIR || PrintIR1 ) { tty->print_cr("IR after CEE"); print(false); }
+ − 298
#endif
+ − 299
}
+ − 300
if (EliminateBlocks) {
+ − 301
opt.eliminate_blocks();
+ − 302
#ifndef PRODUCT
+ − 303
if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after block elimination"); print(true); }
+ − 304
if (PrintIR || PrintIR1 ) { tty->print_cr("IR after block elimination"); print(false); }
+ − 305
#endif
+ − 306
}
+ − 307
if (EliminateNullChecks) {
+ − 308
opt.eliminate_null_checks();
+ − 309
#ifndef PRODUCT
+ − 310
if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after null check elimination"); print(true); }
+ − 311
if (PrintIR || PrintIR1 ) { tty->print_cr("IR after null check elimination"); print(false); }
+ − 312
#endif
+ − 313
}
+ − 314
}
+ − 315
+ − 316
+ − 317
static int sort_pairs(BlockPair** a, BlockPair** b) {
+ − 318
if ((*a)->from() == (*b)->from()) {
+ − 319
return (*a)->to()->block_id() - (*b)->to()->block_id();
+ − 320
} else {
+ − 321
return (*a)->from()->block_id() - (*b)->from()->block_id();
+ − 322
}
+ − 323
}
+ − 324
+ − 325
+ − 326
class CriticalEdgeFinder: public BlockClosure {
+ − 327
BlockPairList blocks;
+ − 328
IR* _ir;
+ − 329
+ − 330
public:
+ − 331
CriticalEdgeFinder(IR* ir): _ir(ir) {}
+ − 332
void block_do(BlockBegin* bb) {
+ − 333
BlockEnd* be = bb->end();
+ − 334
int nos = be->number_of_sux();
+ − 335
if (nos >= 2) {
+ − 336
for (int i = 0; i < nos; i++) {
+ − 337
BlockBegin* sux = be->sux_at(i);
+ − 338
if (sux->number_of_preds() >= 2) {
+ − 339
blocks.append(new BlockPair(bb, sux));
+ − 340
}
+ − 341
}
+ − 342
}
+ − 343
}
+ − 344
+ − 345
void split_edges() {
+ − 346
BlockPair* last_pair = NULL;
+ − 347
blocks.sort(sort_pairs);
+ − 348
for (int i = 0; i < blocks.length(); i++) {
+ − 349
BlockPair* pair = blocks.at(i);
+ − 350
if (last_pair != NULL && pair->is_same(last_pair)) continue;
+ − 351
BlockBegin* from = pair->from();
+ − 352
BlockBegin* to = pair->to();
+ − 353
BlockBegin* split = from->insert_block_between(to);
+ − 354
#ifndef PRODUCT
+ − 355
if ((PrintIR || PrintIR1) && Verbose) {
+ − 356
tty->print_cr("Split critical edge B%d -> B%d (new block B%d)",
+ − 357
from->block_id(), to->block_id(), split->block_id());
+ − 358
}
+ − 359
#endif
+ − 360
last_pair = pair;
+ − 361
}
+ − 362
}
+ − 363
};
+ − 364
+ − 365
void IR::split_critical_edges() {
+ − 366
CriticalEdgeFinder cef(this);
+ − 367
+ − 368
iterate_preorder(&cef);
+ − 369
cef.split_edges();
+ − 370
}
+ − 371
+ − 372
+ − 373
class UseCountComputer: public AllStatic {
+ − 374
private:
+ − 375
static void update_use_count(Value* n) {
+ − 376
// Local instructions and Phis for expression stack values at the
+ − 377
// start of basic blocks are not added to the instruction list
+ − 378
if ((*n)->bci() == -99 && (*n)->as_Local() == NULL &&
+ − 379
(*n)->as_Phi() == NULL) {
+ − 380
assert(false, "a node was not appended to the graph");
+ − 381
Compilation::current_compilation()->bailout("a node was not appended to the graph");
+ − 382
}
+ − 383
// use n's input if not visited before
+ − 384
if (!(*n)->is_pinned() && !(*n)->has_uses()) {
+ − 385
// note: a) if the instruction is pinned, it will be handled by compute_use_count
+ − 386
// b) if the instruction has uses, it was touched before
+ − 387
// => in both cases we don't need to update n's values
+ − 388
uses_do(n);
+ − 389
}
+ − 390
// use n
+ − 391
(*n)->_use_count++;
+ − 392
}
+ − 393
+ − 394
static Values* worklist;
+ − 395
static int depth;
+ − 396
enum {
+ − 397
max_recurse_depth = 20
+ − 398
};
+ − 399
+ − 400
static void uses_do(Value* n) {
+ − 401
depth++;
+ − 402
if (depth > max_recurse_depth) {
+ − 403
// don't allow the traversal to recurse too deeply
+ − 404
worklist->push(*n);
+ − 405
} else {
+ − 406
(*n)->input_values_do(update_use_count);
+ − 407
// special handling for some instructions
+ − 408
if ((*n)->as_BlockEnd() != NULL) {
+ − 409
// note on BlockEnd:
+ − 410
// must 'use' the stack only if the method doesn't
+ − 411
// terminate, however, in those cases stack is empty
+ − 412
(*n)->state_values_do(update_use_count);
+ − 413
}
+ − 414
}
+ − 415
depth--;
+ − 416
}
+ − 417
+ − 418
static void basic_compute_use_count(BlockBegin* b) {
+ − 419
depth = 0;
+ − 420
// process all pinned nodes as the roots of expression trees
+ − 421
for (Instruction* n = b; n != NULL; n = n->next()) {
+ − 422
if (n->is_pinned()) uses_do(&n);
+ − 423
}
+ − 424
assert(depth == 0, "should have counted back down");
+ − 425
+ − 426
// now process any unpinned nodes which recursed too deeply
+ − 427
while (worklist->length() > 0) {
+ − 428
Value t = worklist->pop();
+ − 429
if (!t->is_pinned()) {
+ − 430
// compute the use count
+ − 431
uses_do(&t);
+ − 432
+ − 433
// pin the instruction so that LIRGenerator doesn't recurse
+ − 434
// too deeply during it's evaluation.
+ − 435
t->pin();
+ − 436
}
+ − 437
}
+ − 438
assert(depth == 0, "should have counted back down");
+ − 439
}
+ − 440
+ − 441
public:
+ − 442
static void compute(BlockList* blocks) {
+ − 443
worklist = new Values();
+ − 444
blocks->blocks_do(basic_compute_use_count);
+ − 445
worklist = NULL;
+ − 446
}
+ − 447
};
+ − 448
+ − 449
+ − 450
Values* UseCountComputer::worklist = NULL;
+ − 451
int UseCountComputer::depth = 0;
+ − 452
+ − 453
// helper macro for short definition of trace-output inside code
+ − 454
#ifndef PRODUCT
+ − 455
#define TRACE_LINEAR_SCAN(level, code) \
+ − 456
if (TraceLinearScanLevel >= level) { \
+ − 457
code; \
+ − 458
}
+ − 459
#else
+ − 460
#define TRACE_LINEAR_SCAN(level, code)
+ − 461
#endif
+ − 462
+ − 463
class ComputeLinearScanOrder : public StackObj {
+ − 464
private:
+ − 465
int _max_block_id; // the highest block_id of a block
+ − 466
int _num_blocks; // total number of blocks (smaller than _max_block_id)
+ − 467
int _num_loops; // total number of loops
+ − 468
bool _iterative_dominators;// method requires iterative computation of dominatiors
+ − 469
+ − 470
BlockList* _linear_scan_order; // the resulting list of blocks in correct order
+ − 471
+ − 472
BitMap _visited_blocks; // used for recursive processing of blocks
+ − 473
BitMap _active_blocks; // used for recursive processing of blocks
+ − 474
BitMap _dominator_blocks; // temproary BitMap used for computation of dominator
+ − 475
intArray _forward_branches; // number of incoming forward branches for each block
+ − 476
BlockList _loop_end_blocks; // list of all loop end blocks collected during count_edges
+ − 477
BitMap2D _loop_map; // two-dimensional bit set: a bit is set if a block is contained in a loop
+ − 478
BlockList _work_list; // temporary list (used in mark_loops and compute_order)
+ − 479
+ − 480
// accessors for _visited_blocks and _active_blocks
+ − 481
void init_visited() { _active_blocks.clear(); _visited_blocks.clear(); }
+ − 482
bool is_visited(BlockBegin* b) const { return _visited_blocks.at(b->block_id()); }
+ − 483
bool is_active(BlockBegin* b) const { return _active_blocks.at(b->block_id()); }
+ − 484
void set_visited(BlockBegin* b) { assert(!is_visited(b), "already set"); _visited_blocks.set_bit(b->block_id()); }
+ − 485
void set_active(BlockBegin* b) { assert(!is_active(b), "already set"); _active_blocks.set_bit(b->block_id()); }
+ − 486
void clear_active(BlockBegin* b) { assert(is_active(b), "not already"); _active_blocks.clear_bit(b->block_id()); }
+ − 487
+ − 488
// accessors for _forward_branches
+ − 489
void inc_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) + 1); }
+ − 490
int dec_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) - 1); return _forward_branches.at(b->block_id()); }
+ − 491
+ − 492
// accessors for _loop_map
+ − 493
bool is_block_in_loop (int loop_idx, BlockBegin* b) const { return _loop_map.at(loop_idx, b->block_id()); }
+ − 494
void set_block_in_loop (int loop_idx, BlockBegin* b) { _loop_map.set_bit(loop_idx, b->block_id()); }
+ − 495
void clear_block_in_loop(int loop_idx, int block_id) { _loop_map.clear_bit(loop_idx, block_id); }
+ − 496
+ − 497
// count edges between blocks
+ − 498
void count_edges(BlockBegin* cur, BlockBegin* parent);
+ − 499
+ − 500
// loop detection
+ − 501
void mark_loops();
+ − 502
void clear_non_natural_loops(BlockBegin* start_block);
+ − 503
void assign_loop_depth(BlockBegin* start_block);
+ − 504
+ − 505
// computation of final block order
+ − 506
BlockBegin* common_dominator(BlockBegin* a, BlockBegin* b);
+ − 507
void compute_dominator(BlockBegin* cur, BlockBegin* parent);
+ − 508
int compute_weight(BlockBegin* cur);
+ − 509
bool ready_for_processing(BlockBegin* cur);
+ − 510
void sort_into_work_list(BlockBegin* b);
+ − 511
void append_block(BlockBegin* cur);
+ − 512
void compute_order(BlockBegin* start_block);
+ − 513
+ − 514
// fixup of dominators for non-natural loops
+ − 515
bool compute_dominators_iter();
+ − 516
void compute_dominators();
+ − 517
+ − 518
// debug functions
+ − 519
NOT_PRODUCT(void print_blocks();)
+ − 520
DEBUG_ONLY(void verify();)
+ − 521
+ − 522
public:
+ − 523
ComputeLinearScanOrder(BlockBegin* start_block);
+ − 524
+ − 525
// accessors for final result
+ − 526
BlockList* linear_scan_order() const { return _linear_scan_order; }
+ − 527
int num_loops() const { return _num_loops; }
+ − 528
};
+ − 529
+ − 530
+ − 531
ComputeLinearScanOrder::ComputeLinearScanOrder(BlockBegin* start_block) :
+ − 532
_max_block_id(BlockBegin::number_of_blocks()),
+ − 533
_num_blocks(0),
+ − 534
_num_loops(0),
+ − 535
_iterative_dominators(false),
+ − 536
_visited_blocks(_max_block_id),
+ − 537
_active_blocks(_max_block_id),
+ − 538
_dominator_blocks(_max_block_id),
+ − 539
_forward_branches(_max_block_id, 0),
+ − 540
_loop_end_blocks(8),
+ − 541
_work_list(8),
+ − 542
_linear_scan_order(NULL), // initialized later with correct size
+ − 543
_loop_map(0, 0) // initialized later with correct size
+ − 544
{
+ − 545
TRACE_LINEAR_SCAN(2, "***** computing linear-scan block order");
+ − 546
+ − 547
init_visited();
+ − 548
count_edges(start_block, NULL);
+ − 549
+ − 550
if (_num_loops > 0) {
+ − 551
mark_loops();
+ − 552
clear_non_natural_loops(start_block);
+ − 553
assign_loop_depth(start_block);
+ − 554
}
+ − 555
+ − 556
compute_order(start_block);
+ − 557
compute_dominators();
+ − 558
+ − 559
NOT_PRODUCT(print_blocks());
+ − 560
DEBUG_ONLY(verify());
+ − 561
}
+ − 562
+ − 563
+ − 564
// Traverse the CFG:
+ − 565
// * count total number of blocks
+ − 566
// * count all incoming edges and backward incoming edges
+ − 567
// * number loop header blocks
+ − 568
// * create a list with all loop end blocks
+ − 569
void ComputeLinearScanOrder::count_edges(BlockBegin* cur, BlockBegin* parent) {
+ − 570
TRACE_LINEAR_SCAN(3, tty->print_cr("Enter count_edges for block B%d coming from B%d", cur->block_id(), parent != NULL ? parent->block_id() : -1));
+ − 571
assert(cur->dominator() == NULL, "dominator already initialized");
+ − 572
+ − 573
if (is_active(cur)) {
+ − 574
TRACE_LINEAR_SCAN(3, tty->print_cr("backward branch"));
+ − 575
assert(is_visited(cur), "block must be visisted when block is active");
+ − 576
assert(parent != NULL, "must have parent");
+ − 577
assert(parent->number_of_sux() == 1, "loop end blocks must have one successor (critical edges are split)");
+ − 578
+ − 579
cur->set(BlockBegin::linear_scan_loop_header_flag);
+ − 580
cur->set(BlockBegin::backward_branch_target_flag);
+ − 581
+ − 582
parent->set(BlockBegin::linear_scan_loop_end_flag);
+ − 583
_loop_end_blocks.append(parent);
+ − 584
return;
+ − 585
}
+ − 586
+ − 587
// increment number of incoming forward branches
+ − 588
inc_forward_branches(cur);
+ − 589
+ − 590
if (is_visited(cur)) {
+ − 591
TRACE_LINEAR_SCAN(3, tty->print_cr("block already visited"));
+ − 592
return;
+ − 593
}
+ − 594
+ − 595
_num_blocks++;
+ − 596
set_visited(cur);
+ − 597
set_active(cur);
+ − 598
+ − 599
// recursive call for all successors
+ − 600
int i;
+ − 601
for (i = cur->number_of_sux() - 1; i >= 0; i--) {
+ − 602
count_edges(cur->sux_at(i), cur);
+ − 603
}
+ − 604
for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) {
+ − 605
count_edges(cur->exception_handler_at(i), cur);
+ − 606
}
+ − 607
+ − 608
clear_active(cur);
+ − 609
+ − 610
// Each loop has a unique number.
+ − 611
// When multiple loops are nested, assign_loop_depth assumes that the
+ − 612
// innermost loop has the lowest number. This is guaranteed by setting
+ − 613
// the loop number after the recursive calls for the successors above
+ − 614
// have returned.
+ − 615
if (cur->is_set(BlockBegin::linear_scan_loop_header_flag)) {
+ − 616
assert(cur->loop_index() == -1, "cannot set loop-index twice");
+ − 617
TRACE_LINEAR_SCAN(3, tty->print_cr("Block B%d is loop header of loop %d", cur->block_id(), _num_loops));
+ − 618
+ − 619
cur->set_loop_index(_num_loops);
+ − 620
_num_loops++;
+ − 621
}
+ − 622
+ − 623
TRACE_LINEAR_SCAN(3, tty->print_cr("Finished count_edges for block B%d", cur->block_id()));
+ − 624
}
+ − 625
+ − 626
+ − 627
void ComputeLinearScanOrder::mark_loops() {
+ − 628
TRACE_LINEAR_SCAN(3, tty->print_cr("----- marking loops"));
+ − 629
+ − 630
_loop_map = BitMap2D(_num_loops, _max_block_id);
+ − 631
_loop_map.clear();
+ − 632
+ − 633
for (int i = _loop_end_blocks.length() - 1; i >= 0; i--) {
+ − 634
BlockBegin* loop_end = _loop_end_blocks.at(i);
+ − 635
BlockBegin* loop_start = loop_end->sux_at(0);
+ − 636
int loop_idx = loop_start->loop_index();
+ − 637
+ − 638
TRACE_LINEAR_SCAN(3, tty->print_cr("Processing loop from B%d to B%d (loop %d):", loop_start->block_id(), loop_end->block_id(), loop_idx));
+ − 639
assert(loop_end->is_set(BlockBegin::linear_scan_loop_end_flag), "loop end flag must be set");
+ − 640
assert(loop_end->number_of_sux() == 1, "incorrect number of successors");
+ − 641
assert(loop_start->is_set(BlockBegin::linear_scan_loop_header_flag), "loop header flag must be set");
+ − 642
assert(loop_idx >= 0 && loop_idx < _num_loops, "loop index not set");
+ − 643
assert(_work_list.is_empty(), "work list must be empty before processing");
+ − 644
+ − 645
// add the end-block of the loop to the working list
+ − 646
_work_list.push(loop_end);
+ − 647
set_block_in_loop(loop_idx, loop_end);
+ − 648
do {
+ − 649
BlockBegin* cur = _work_list.pop();
+ − 650
+ − 651
TRACE_LINEAR_SCAN(3, tty->print_cr(" processing B%d", cur->block_id()));
+ − 652
assert(is_block_in_loop(loop_idx, cur), "bit in loop map must be set when block is in work list");
+ − 653
+ − 654
// recursive processing of all predecessors ends when start block of loop is reached
+ − 655
if (cur != loop_start && !cur->is_set(BlockBegin::osr_entry_flag)) {
+ − 656
for (int j = cur->number_of_preds() - 1; j >= 0; j--) {
+ − 657
BlockBegin* pred = cur->pred_at(j);
+ − 658
+ − 659
if (!is_block_in_loop(loop_idx, pred) /*&& !pred->is_set(BlockBeginosr_entry_flag)*/) {
+ − 660
// this predecessor has not been processed yet, so add it to work list
+ − 661
TRACE_LINEAR_SCAN(3, tty->print_cr(" pushing B%d", pred->block_id()));
+ − 662
_work_list.push(pred);
+ − 663
set_block_in_loop(loop_idx, pred);
+ − 664
}
+ − 665
}
+ − 666
}
+ − 667
} while (!_work_list.is_empty());
+ − 668
}
+ − 669
}
+ − 670
+ − 671
+ − 672
// check for non-natural loops (loops where the loop header does not dominate
+ − 673
// all other loop blocks = loops with mulitple entries).
+ − 674
// such loops are ignored
+ − 675
void ComputeLinearScanOrder::clear_non_natural_loops(BlockBegin* start_block) {
+ − 676
for (int i = _num_loops - 1; i >= 0; i--) {
+ − 677
if (is_block_in_loop(i, start_block)) {
+ − 678
// loop i contains the entry block of the method
+ − 679
// -> this is not a natural loop, so ignore it
+ − 680
TRACE_LINEAR_SCAN(2, tty->print_cr("Loop %d is non-natural, so it is ignored", i));
+ − 681
+ − 682
for (int block_id = _max_block_id - 1; block_id >= 0; block_id--) {
+ − 683
clear_block_in_loop(i, block_id);
+ − 684
}
+ − 685
_iterative_dominators = true;
+ − 686
}
+ − 687
}
+ − 688
}
+ − 689
+ − 690
void ComputeLinearScanOrder::assign_loop_depth(BlockBegin* start_block) {
+ − 691
TRACE_LINEAR_SCAN(3, "----- computing loop-depth and weight");
+ − 692
init_visited();
+ − 693
+ − 694
assert(_work_list.is_empty(), "work list must be empty before processing");
+ − 695
_work_list.append(start_block);
+ − 696
+ − 697
do {
+ − 698
BlockBegin* cur = _work_list.pop();
+ − 699
+ − 700
if (!is_visited(cur)) {
+ − 701
set_visited(cur);
+ − 702
TRACE_LINEAR_SCAN(4, tty->print_cr("Computing loop depth for block B%d", cur->block_id()));
+ − 703
+ − 704
// compute loop-depth and loop-index for the block
+ − 705
assert(cur->loop_depth() == 0, "cannot set loop-depth twice");
+ − 706
int i;
+ − 707
int loop_depth = 0;
+ − 708
int min_loop_idx = -1;
+ − 709
for (i = _num_loops - 1; i >= 0; i--) {
+ − 710
if (is_block_in_loop(i, cur)) {
+ − 711
loop_depth++;
+ − 712
min_loop_idx = i;
+ − 713
}
+ − 714
}
+ − 715
cur->set_loop_depth(loop_depth);
+ − 716
cur->set_loop_index(min_loop_idx);
+ − 717
+ − 718
// append all unvisited successors to work list
+ − 719
for (i = cur->number_of_sux() - 1; i >= 0; i--) {
+ − 720
_work_list.append(cur->sux_at(i));
+ − 721
}
+ − 722
for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) {
+ − 723
_work_list.append(cur->exception_handler_at(i));
+ − 724
}
+ − 725
}
+ − 726
} while (!_work_list.is_empty());
+ − 727
}
+ − 728
+ − 729
+ − 730
BlockBegin* ComputeLinearScanOrder::common_dominator(BlockBegin* a, BlockBegin* b) {
+ − 731
assert(a != NULL && b != NULL, "must have input blocks");
+ − 732
+ − 733
_dominator_blocks.clear();
+ − 734
while (a != NULL) {
+ − 735
_dominator_blocks.set_bit(a->block_id());
+ − 736
assert(a->dominator() != NULL || a == _linear_scan_order->at(0), "dominator must be initialized");
+ − 737
a = a->dominator();
+ − 738
}
+ − 739
while (b != NULL && !_dominator_blocks.at(b->block_id())) {
+ − 740
assert(b->dominator() != NULL || b == _linear_scan_order->at(0), "dominator must be initialized");
+ − 741
b = b->dominator();
+ − 742
}
+ − 743
+ − 744
assert(b != NULL, "could not find dominator");
+ − 745
return b;
+ − 746
}
+ − 747
+ − 748
void ComputeLinearScanOrder::compute_dominator(BlockBegin* cur, BlockBegin* parent) {
+ − 749
if (cur->dominator() == NULL) {
+ − 750
TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: initializing dominator of B%d to B%d", cur->block_id(), parent->block_id()));
+ − 751
cur->set_dominator(parent);
+ − 752
+ − 753
} else if (!(cur->is_set(BlockBegin::linear_scan_loop_header_flag) && parent->is_set(BlockBegin::linear_scan_loop_end_flag))) {
+ − 754
TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: computing dominator of B%d: common dominator of B%d and B%d is B%d", cur->block_id(), parent->block_id(), cur->dominator()->block_id(), common_dominator(cur->dominator(), parent)->block_id()));
+ − 755
assert(cur->number_of_preds() > 1, "");
+ − 756
cur->set_dominator(common_dominator(cur->dominator(), parent));
+ − 757
}
+ − 758
}
+ − 759
+ − 760
+ − 761
int ComputeLinearScanOrder::compute_weight(BlockBegin* cur) {
+ − 762
BlockBegin* single_sux = NULL;
+ − 763
if (cur->number_of_sux() == 1) {
+ − 764
single_sux = cur->sux_at(0);
+ − 765
}
+ − 766
+ − 767
// limit loop-depth to 15 bit (only for security reason, it will never be so big)
+ − 768
int weight = (cur->loop_depth() & 0x7FFF) << 16;
+ − 769
+ − 770
// general macro for short definition of weight flags
+ − 771
// the first instance of INC_WEIGHT_IF has the highest priority
+ − 772
int cur_bit = 15;
+ − 773
#define INC_WEIGHT_IF(condition) if ((condition)) { weight |= (1 << cur_bit); } cur_bit--;
+ − 774
+ − 775
// this is necessery for the (very rare) case that two successing blocks have
+ − 776
// the same loop depth, but a different loop index (can happen for endless loops
+ − 777
// with exception handlers)
+ − 778
INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_header_flag));
+ − 779
+ − 780
// loop end blocks (blocks that end with a backward branch) are added
+ − 781
// after all other blocks of the loop.
+ − 782
INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_end_flag));
+ − 783
+ − 784
// critical edge split blocks are prefered because than they have a bigger
+ − 785
// proability to be completely empty
+ − 786
INC_WEIGHT_IF(cur->is_set(BlockBegin::critical_edge_split_flag));
+ − 787
+ − 788
// exceptions should not be thrown in normal control flow, so these blocks
+ − 789
// are added as late as possible
+ − 790
INC_WEIGHT_IF(cur->end()->as_Throw() == NULL && (single_sux == NULL || single_sux->end()->as_Throw() == NULL));
+ − 791
INC_WEIGHT_IF(cur->end()->as_Return() == NULL && (single_sux == NULL || single_sux->end()->as_Return() == NULL));
+ − 792
+ − 793
// exceptions handlers are added as late as possible
+ − 794
INC_WEIGHT_IF(!cur->is_set(BlockBegin::exception_entry_flag));
+ − 795
+ − 796
// guarantee that weight is > 0
+ − 797
weight |= 1;
+ − 798
+ − 799
#undef INC_WEIGHT_IF
+ − 800
assert(cur_bit >= 0, "too many flags");
+ − 801
assert(weight > 0, "weight cannot become negative");
+ − 802
+ − 803
return weight;
+ − 804
}
+ − 805
+ − 806
bool ComputeLinearScanOrder::ready_for_processing(BlockBegin* cur) {
+ − 807
// Discount the edge just traveled.
+ − 808
// When the number drops to zero, all forward branches were processed
+ − 809
if (dec_forward_branches(cur) != 0) {
+ − 810
return false;
+ − 811
}
+ − 812
+ − 813
assert(_linear_scan_order->index_of(cur) == -1, "block already processed (block can be ready only once)");
+ − 814
assert(_work_list.index_of(cur) == -1, "block already in work-list (block can be ready only once)");
+ − 815
return true;
+ − 816
}
+ − 817
+ − 818
void ComputeLinearScanOrder::sort_into_work_list(BlockBegin* cur) {
+ − 819
assert(_work_list.index_of(cur) == -1, "block already in work list");
+ − 820
+ − 821
int cur_weight = compute_weight(cur);
+ − 822
+ − 823
// the linear_scan_number is used to cache the weight of a block
+ − 824
cur->set_linear_scan_number(cur_weight);
+ − 825
+ − 826
#ifndef PRODUCT
+ − 827
if (StressLinearScan) {
+ − 828
_work_list.insert_before(0, cur);
+ − 829
return;
+ − 830
}
+ − 831
#endif
+ − 832
+ − 833
_work_list.append(NULL); // provide space for new element
+ − 834
+ − 835
int insert_idx = _work_list.length() - 1;
+ − 836
while (insert_idx > 0 && _work_list.at(insert_idx - 1)->linear_scan_number() > cur_weight) {
+ − 837
_work_list.at_put(insert_idx, _work_list.at(insert_idx - 1));
+ − 838
insert_idx--;
+ − 839
}
+ − 840
_work_list.at_put(insert_idx, cur);
+ − 841
+ − 842
TRACE_LINEAR_SCAN(3, tty->print_cr("Sorted B%d into worklist. new worklist:", cur->block_id()));
+ − 843
TRACE_LINEAR_SCAN(3, for (int i = 0; i < _work_list.length(); i++) tty->print_cr("%8d B%2d weight:%6x", i, _work_list.at(i)->block_id(), _work_list.at(i)->linear_scan_number()));
+ − 844
+ − 845
#ifdef ASSERT
+ − 846
for (int i = 0; i < _work_list.length(); i++) {
+ − 847
assert(_work_list.at(i)->linear_scan_number() > 0, "weight not set");
+ − 848
assert(i == 0 || _work_list.at(i - 1)->linear_scan_number() <= _work_list.at(i)->linear_scan_number(), "incorrect order in worklist");
+ − 849
}
+ − 850
#endif
+ − 851
}
+ − 852
+ − 853
void ComputeLinearScanOrder::append_block(BlockBegin* cur) {
+ − 854
TRACE_LINEAR_SCAN(3, tty->print_cr("appending block B%d (weight 0x%6x) to linear-scan order", cur->block_id(), cur->linear_scan_number()));
+ − 855
assert(_linear_scan_order->index_of(cur) == -1, "cannot add the same block twice");
+ − 856
+ − 857
// currently, the linear scan order and code emit order are equal.
+ − 858
// therefore the linear_scan_number and the weight of a block must also
+ − 859
// be equal.
+ − 860
cur->set_linear_scan_number(_linear_scan_order->length());
+ − 861
_linear_scan_order->append(cur);
+ − 862
}
+ − 863
+ − 864
void ComputeLinearScanOrder::compute_order(BlockBegin* start_block) {
+ − 865
TRACE_LINEAR_SCAN(3, "----- computing final block order");
+ − 866
+ − 867
// the start block is always the first block in the linear scan order
+ − 868
_linear_scan_order = new BlockList(_num_blocks);
+ − 869
append_block(start_block);
+ − 870
+ − 871
assert(start_block->end()->as_Base() != NULL, "start block must end with Base-instruction");
+ − 872
BlockBegin* std_entry = ((Base*)start_block->end())->std_entry();
+ − 873
BlockBegin* osr_entry = ((Base*)start_block->end())->osr_entry();
+ − 874
+ − 875
BlockBegin* sux_of_osr_entry = NULL;
+ − 876
if (osr_entry != NULL) {
+ − 877
// special handling for osr entry:
+ − 878
// ignore the edge between the osr entry and its successor for processing
+ − 879
// the osr entry block is added manually below
+ − 880
assert(osr_entry->number_of_sux() == 1, "osr entry must have exactly one successor");
+ − 881
assert(osr_entry->sux_at(0)->number_of_preds() >= 2, "sucessor of osr entry must have two predecessors (otherwise it is not present in normal control flow");
+ − 882
+ − 883
sux_of_osr_entry = osr_entry->sux_at(0);
+ − 884
dec_forward_branches(sux_of_osr_entry);
+ − 885
+ − 886
compute_dominator(osr_entry, start_block);
+ − 887
_iterative_dominators = true;
+ − 888
}
+ − 889
compute_dominator(std_entry, start_block);
+ − 890
+ − 891
// start processing with standard entry block
+ − 892
assert(_work_list.is_empty(), "list must be empty before processing");
+ − 893
+ − 894
if (ready_for_processing(std_entry)) {
+ − 895
sort_into_work_list(std_entry);
+ − 896
} else {
+ − 897
assert(false, "the std_entry must be ready for processing (otherwise, the method has no start block)");
+ − 898
}
+ − 899
+ − 900
do {
+ − 901
BlockBegin* cur = _work_list.pop();
+ − 902
+ − 903
if (cur == sux_of_osr_entry) {
+ − 904
// the osr entry block is ignored in normal processing, it is never added to the
+ − 905
// work list. Instead, it is added as late as possible manually here.
+ − 906
append_block(osr_entry);
+ − 907
compute_dominator(cur, osr_entry);
+ − 908
}
+ − 909
append_block(cur);
+ − 910
+ − 911
int i;
+ − 912
int num_sux = cur->number_of_sux();
+ − 913
// changed loop order to get "intuitive" order of if- and else-blocks
+ − 914
for (i = 0; i < num_sux; i++) {
+ − 915
BlockBegin* sux = cur->sux_at(i);
+ − 916
compute_dominator(sux, cur);
+ − 917
if (ready_for_processing(sux)) {
+ − 918
sort_into_work_list(sux);
+ − 919
}
+ − 920
}
+ − 921
num_sux = cur->number_of_exception_handlers();
+ − 922
for (i = 0; i < num_sux; i++) {
+ − 923
BlockBegin* sux = cur->exception_handler_at(i);
+ − 924
compute_dominator(sux, cur);
+ − 925
if (ready_for_processing(sux)) {
+ − 926
sort_into_work_list(sux);
+ − 927
}
+ − 928
}
+ − 929
} while (_work_list.length() > 0);
+ − 930
}
+ − 931
+ − 932
+ − 933
bool ComputeLinearScanOrder::compute_dominators_iter() {
+ − 934
bool changed = false;
+ − 935
int num_blocks = _linear_scan_order->length();
+ − 936
+ − 937
assert(_linear_scan_order->at(0)->dominator() == NULL, "must not have dominator");
+ − 938
assert(_linear_scan_order->at(0)->number_of_preds() == 0, "must not have predecessors");
+ − 939
for (int i = 1; i < num_blocks; i++) {
+ − 940
BlockBegin* block = _linear_scan_order->at(i);
+ − 941
+ − 942
BlockBegin* dominator = block->pred_at(0);
+ − 943
int num_preds = block->number_of_preds();
+ − 944
for (int i = 1; i < num_preds; i++) {
+ − 945
dominator = common_dominator(dominator, block->pred_at(i));
+ − 946
}
+ − 947
+ − 948
if (dominator != block->dominator()) {
+ − 949
TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: updating dominator of B%d from B%d to B%d", block->block_id(), block->dominator()->block_id(), dominator->block_id()));
+ − 950
+ − 951
block->set_dominator(dominator);
+ − 952
changed = true;
+ − 953
}
+ − 954
}
+ − 955
return changed;
+ − 956
}
+ − 957
+ − 958
void ComputeLinearScanOrder::compute_dominators() {
+ − 959
TRACE_LINEAR_SCAN(3, tty->print_cr("----- computing dominators (iterative computation reqired: %d)", _iterative_dominators));
+ − 960
+ − 961
// iterative computation of dominators is only required for methods with non-natural loops
+ − 962
// and OSR-methods. For all other methods, the dominators computed when generating the
+ − 963
// linear scan block order are correct.
+ − 964
if (_iterative_dominators) {
+ − 965
do {
+ − 966
TRACE_LINEAR_SCAN(1, tty->print_cr("DOM: next iteration of fix-point calculation"));
+ − 967
} while (compute_dominators_iter());
+ − 968
}
+ − 969
+ − 970
// check that dominators are correct
+ − 971
assert(!compute_dominators_iter(), "fix point not reached");
+ − 972
}
+ − 973
+ − 974
+ − 975
#ifndef PRODUCT
+ − 976
void ComputeLinearScanOrder::print_blocks() {
+ − 977
if (TraceLinearScanLevel >= 2) {
+ − 978
tty->print_cr("----- loop information:");
+ − 979
for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) {
+ − 980
BlockBegin* cur = _linear_scan_order->at(block_idx);
+ − 981
+ − 982
tty->print("%4d: B%2d: ", cur->linear_scan_number(), cur->block_id());
+ − 983
for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) {
+ − 984
tty->print ("%d ", is_block_in_loop(loop_idx, cur));
+ − 985
}
+ − 986
tty->print_cr(" -> loop_index: %2d, loop_depth: %2d", cur->loop_index(), cur->loop_depth());
+ − 987
}
+ − 988
}
+ − 989
+ − 990
if (TraceLinearScanLevel >= 1) {
+ − 991
tty->print_cr("----- linear-scan block order:");
+ − 992
for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) {
+ − 993
BlockBegin* cur = _linear_scan_order->at(block_idx);
+ − 994
tty->print("%4d: B%2d loop: %2d depth: %2d", cur->linear_scan_number(), cur->block_id(), cur->loop_index(), cur->loop_depth());
+ − 995
+ − 996
tty->print(cur->is_set(BlockBegin::exception_entry_flag) ? " ex" : " ");
+ − 997
tty->print(cur->is_set(BlockBegin::critical_edge_split_flag) ? " ce" : " ");
+ − 998
tty->print(cur->is_set(BlockBegin::linear_scan_loop_header_flag) ? " lh" : " ");
+ − 999
tty->print(cur->is_set(BlockBegin::linear_scan_loop_end_flag) ? " le" : " ");
+ − 1000
+ − 1001
if (cur->dominator() != NULL) {
+ − 1002
tty->print(" dom: B%d ", cur->dominator()->block_id());
+ − 1003
} else {
+ − 1004
tty->print(" dom: NULL ");
+ − 1005
}
+ − 1006
+ − 1007
if (cur->number_of_preds() > 0) {
+ − 1008
tty->print(" preds: ");
+ − 1009
for (int j = 0; j < cur->number_of_preds(); j++) {
+ − 1010
BlockBegin* pred = cur->pred_at(j);
+ − 1011
tty->print("B%d ", pred->block_id());
+ − 1012
}
+ − 1013
}
+ − 1014
if (cur->number_of_sux() > 0) {
+ − 1015
tty->print(" sux: ");
+ − 1016
for (int j = 0; j < cur->number_of_sux(); j++) {
+ − 1017
BlockBegin* sux = cur->sux_at(j);
+ − 1018
tty->print("B%d ", sux->block_id());
+ − 1019
}
+ − 1020
}
+ − 1021
if (cur->number_of_exception_handlers() > 0) {
+ − 1022
tty->print(" ex: ");
+ − 1023
for (int j = 0; j < cur->number_of_exception_handlers(); j++) {
+ − 1024
BlockBegin* ex = cur->exception_handler_at(j);
+ − 1025
tty->print("B%d ", ex->block_id());
+ − 1026
}
+ − 1027
}
+ − 1028
tty->cr();
+ − 1029
}
+ − 1030
}
+ − 1031
}
+ − 1032
#endif
+ − 1033
+ − 1034
#ifdef ASSERT
+ − 1035
void ComputeLinearScanOrder::verify() {
+ − 1036
assert(_linear_scan_order->length() == _num_blocks, "wrong number of blocks in list");
+ − 1037
+ − 1038
if (StressLinearScan) {
+ − 1039
// blocks are scrambled when StressLinearScan is used
+ − 1040
return;
+ − 1041
}
+ − 1042
+ − 1043
// check that all successors of a block have a higher linear-scan-number
+ − 1044
// and that all predecessors of a block have a lower linear-scan-number
+ − 1045
// (only backward branches of loops are ignored)
+ − 1046
int i;
+ − 1047
for (i = 0; i < _linear_scan_order->length(); i++) {
+ − 1048
BlockBegin* cur = _linear_scan_order->at(i);
+ − 1049
+ − 1050
assert(cur->linear_scan_number() == i, "incorrect linear_scan_number");
+ − 1051
assert(cur->linear_scan_number() >= 0 && cur->linear_scan_number() == _linear_scan_order->index_of(cur), "incorrect linear_scan_number");
+ − 1052
+ − 1053
int j;
+ − 1054
for (j = cur->number_of_sux() - 1; j >= 0; j--) {
+ − 1055
BlockBegin* sux = cur->sux_at(j);
+ − 1056
+ − 1057
assert(sux->linear_scan_number() >= 0 && sux->linear_scan_number() == _linear_scan_order->index_of(sux), "incorrect linear_scan_number");
+ − 1058
if (!cur->is_set(BlockBegin::linear_scan_loop_end_flag)) {
+ − 1059
assert(cur->linear_scan_number() < sux->linear_scan_number(), "invalid order");
+ − 1060
}
+ − 1061
if (cur->loop_depth() == sux->loop_depth()) {
+ − 1062
assert(cur->loop_index() == sux->loop_index() || sux->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index");
+ − 1063
}
+ − 1064
}
+ − 1065
+ − 1066
for (j = cur->number_of_preds() - 1; j >= 0; j--) {
+ − 1067
BlockBegin* pred = cur->pred_at(j);
+ − 1068
+ − 1069
assert(pred->linear_scan_number() >= 0 && pred->linear_scan_number() == _linear_scan_order->index_of(pred), "incorrect linear_scan_number");
+ − 1070
if (!cur->is_set(BlockBegin::linear_scan_loop_header_flag)) {
+ − 1071
assert(cur->linear_scan_number() > pred->linear_scan_number(), "invalid order");
+ − 1072
}
+ − 1073
if (cur->loop_depth() == pred->loop_depth()) {
+ − 1074
assert(cur->loop_index() == pred->loop_index() || cur->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index");
+ − 1075
}
+ − 1076
+ − 1077
assert(cur->dominator()->linear_scan_number() <= cur->pred_at(j)->linear_scan_number(), "dominator must be before predecessors");
+ − 1078
}
+ − 1079
+ − 1080
// check dominator
+ − 1081
if (i == 0) {
+ − 1082
assert(cur->dominator() == NULL, "first block has no dominator");
+ − 1083
} else {
+ − 1084
assert(cur->dominator() != NULL, "all but first block must have dominator");
+ − 1085
}
+ − 1086
assert(cur->number_of_preds() != 1 || cur->dominator() == cur->pred_at(0), "Single predecessor must also be dominator");
+ − 1087
}
+ − 1088
+ − 1089
// check that all loops are continuous
+ − 1090
for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) {
+ − 1091
int block_idx = 0;
+ − 1092
assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "the first block must not be present in any loop");
+ − 1093
+ − 1094
// skip blocks before the loop
+ − 1095
while (block_idx < _num_blocks && !is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) {
+ − 1096
block_idx++;
+ − 1097
}
+ − 1098
// skip blocks of loop
+ − 1099
while (block_idx < _num_blocks && is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) {
+ − 1100
block_idx++;
+ − 1101
}
+ − 1102
// after the first non-loop block, there must not be another loop-block
+ − 1103
while (block_idx < _num_blocks) {
+ − 1104
assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "loop not continuous in linear-scan order");
+ − 1105
block_idx++;
+ − 1106
}
+ − 1107
}
+ − 1108
}
+ − 1109
#endif
+ − 1110
+ − 1111
+ − 1112
void IR::compute_code() {
+ − 1113
assert(is_valid(), "IR must be valid");
+ − 1114
+ − 1115
ComputeLinearScanOrder compute_order(start());
+ − 1116
_num_loops = compute_order.num_loops();
+ − 1117
_code = compute_order.linear_scan_order();
+ − 1118
}
+ − 1119
+ − 1120
+ − 1121
void IR::compute_use_counts() {
+ − 1122
// make sure all values coming out of this block get evaluated.
+ − 1123
int num_blocks = _code->length();
+ − 1124
for (int i = 0; i < num_blocks; i++) {
+ − 1125
_code->at(i)->end()->state()->pin_stack_for_linear_scan();
+ − 1126
}
+ − 1127
+ − 1128
// compute use counts
+ − 1129
UseCountComputer::compute(_code);
+ − 1130
}
+ − 1131
+ − 1132
+ − 1133
void IR::iterate_preorder(BlockClosure* closure) {
+ − 1134
assert(is_valid(), "IR must be valid");
+ − 1135
start()->iterate_preorder(closure);
+ − 1136
}
+ − 1137
+ − 1138
+ − 1139
void IR::iterate_postorder(BlockClosure* closure) {
+ − 1140
assert(is_valid(), "IR must be valid");
+ − 1141
start()->iterate_postorder(closure);
+ − 1142
}
+ − 1143
+ − 1144
void IR::iterate_linear_scan_order(BlockClosure* closure) {
+ − 1145
linear_scan_order()->iterate_forward(closure);
+ − 1146
}
+ − 1147
+ − 1148
+ − 1149
#ifndef PRODUCT
+ − 1150
class BlockPrinter: public BlockClosure {
+ − 1151
private:
+ − 1152
InstructionPrinter* _ip;
+ − 1153
bool _cfg_only;
+ − 1154
bool _live_only;
+ − 1155
+ − 1156
public:
+ − 1157
BlockPrinter(InstructionPrinter* ip, bool cfg_only, bool live_only = false) {
+ − 1158
_ip = ip;
+ − 1159
_cfg_only = cfg_only;
+ − 1160
_live_only = live_only;
+ − 1161
}
+ − 1162
+ − 1163
virtual void block_do(BlockBegin* block) {
+ − 1164
if (_cfg_only) {
+ − 1165
_ip->print_instr(block); tty->cr();
+ − 1166
} else {
+ − 1167
block->print_block(*_ip, _live_only);
+ − 1168
}
+ − 1169
}
+ − 1170
};
+ − 1171
+ − 1172
+ − 1173
void IR::print(BlockBegin* start, bool cfg_only, bool live_only) {
+ − 1174
ttyLocker ttyl;
+ − 1175
InstructionPrinter ip(!cfg_only);
+ − 1176
BlockPrinter bp(&ip, cfg_only, live_only);
+ − 1177
start->iterate_preorder(&bp);
+ − 1178
tty->cr();
+ − 1179
}
+ − 1180
+ − 1181
void IR::print(bool cfg_only, bool live_only) {
+ − 1182
if (is_valid()) {
+ − 1183
print(start(), cfg_only, live_only);
+ − 1184
} else {
+ − 1185
tty->print_cr("invalid IR");
+ − 1186
}
+ − 1187
}
+ − 1188
+ − 1189
+ − 1190
define_array(BlockListArray, BlockList*)
+ − 1191
define_stack(BlockListList, BlockListArray)
+ − 1192
+ − 1193
class PredecessorValidator : public BlockClosure {
+ − 1194
private:
+ − 1195
BlockListList* _predecessors;
+ − 1196
BlockList* _blocks;
+ − 1197
+ − 1198
static int cmp(BlockBegin** a, BlockBegin** b) {
+ − 1199
return (*a)->block_id() - (*b)->block_id();
+ − 1200
}
+ − 1201
+ − 1202
public:
+ − 1203
PredecessorValidator(IR* hir) {
+ − 1204
ResourceMark rm;
+ − 1205
_predecessors = new BlockListList(BlockBegin::number_of_blocks(), NULL);
+ − 1206
_blocks = new BlockList();
+ − 1207
+ − 1208
int i;
+ − 1209
hir->start()->iterate_preorder(this);
+ − 1210
if (hir->code() != NULL) {
+ − 1211
assert(hir->code()->length() == _blocks->length(), "must match");
+ − 1212
for (i = 0; i < _blocks->length(); i++) {
+ − 1213
assert(hir->code()->contains(_blocks->at(i)), "should be in both lists");
+ − 1214
}
+ − 1215
}
+ − 1216
+ − 1217
for (i = 0; i < _blocks->length(); i++) {
+ − 1218
BlockBegin* block = _blocks->at(i);
+ − 1219
BlockList* preds = _predecessors->at(block->block_id());
+ − 1220
if (preds == NULL) {
+ − 1221
assert(block->number_of_preds() == 0, "should be the same");
+ − 1222
continue;
+ − 1223
}
+ − 1224
+ − 1225
// clone the pred list so we can mutate it
+ − 1226
BlockList* pred_copy = new BlockList();
+ − 1227
int j;
+ − 1228
for (j = 0; j < block->number_of_preds(); j++) {
+ − 1229
pred_copy->append(block->pred_at(j));
+ − 1230
}
+ − 1231
// sort them in the same order
+ − 1232
preds->sort(cmp);
+ − 1233
pred_copy->sort(cmp);
+ − 1234
int length = MIN2(preds->length(), block->number_of_preds());
+ − 1235
for (j = 0; j < block->number_of_preds(); j++) {
+ − 1236
assert(preds->at(j) == pred_copy->at(j), "must match");
+ − 1237
}
+ − 1238
+ − 1239
assert(preds->length() == block->number_of_preds(), "should be the same");
+ − 1240
}
+ − 1241
}
+ − 1242
+ − 1243
virtual void block_do(BlockBegin* block) {
+ − 1244
_blocks->append(block);
+ − 1245
BlockEnd* be = block->end();
+ − 1246
int n = be->number_of_sux();
+ − 1247
int i;
+ − 1248
for (i = 0; i < n; i++) {
+ − 1249
BlockBegin* sux = be->sux_at(i);
+ − 1250
assert(!sux->is_set(BlockBegin::exception_entry_flag), "must not be xhandler");
+ − 1251
+ − 1252
BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL);
+ − 1253
if (preds == NULL) {
+ − 1254
preds = new BlockList();
+ − 1255
_predecessors->at_put(sux->block_id(), preds);
+ − 1256
}
+ − 1257
preds->append(block);
+ − 1258
}
+ − 1259
+ − 1260
n = block->number_of_exception_handlers();
+ − 1261
for (i = 0; i < n; i++) {
+ − 1262
BlockBegin* sux = block->exception_handler_at(i);
+ − 1263
assert(sux->is_set(BlockBegin::exception_entry_flag), "must be xhandler");
+ − 1264
+ − 1265
BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL);
+ − 1266
if (preds == NULL) {
+ − 1267
preds = new BlockList();
+ − 1268
_predecessors->at_put(sux->block_id(), preds);
+ − 1269
}
+ − 1270
preds->append(block);
+ − 1271
}
+ − 1272
}
+ − 1273
};
+ − 1274
+ − 1275
void IR::verify() {
+ − 1276
#ifdef ASSERT
+ − 1277
PredecessorValidator pv(this);
+ − 1278
#endif
+ − 1279
}
+ − 1280
+ − 1281
#endif // PRODUCT
+ − 1282
+ − 1283
void SubstitutionResolver::substitute(Value* v) {
+ − 1284
Value v0 = *v;
+ − 1285
if (v0) {
+ − 1286
Value vs = v0->subst();
+ − 1287
if (vs != v0) {
+ − 1288
*v = v0->subst();
+ − 1289
}
+ − 1290
}
+ − 1291
}
+ − 1292
+ − 1293
#ifdef ASSERT
+ − 1294
void check_substitute(Value* v) {
+ − 1295
Value v0 = *v;
+ − 1296
if (v0) {
+ − 1297
Value vs = v0->subst();
+ − 1298
assert(vs == v0, "missed substitution");
+ − 1299
}
+ − 1300
}
+ − 1301
#endif
+ − 1302
+ − 1303
+ − 1304
void SubstitutionResolver::block_do(BlockBegin* block) {
+ − 1305
Instruction* last = NULL;
+ − 1306
for (Instruction* n = block; n != NULL;) {
+ − 1307
n->values_do(substitute);
+ − 1308
// need to remove this instruction from the instruction stream
+ − 1309
if (n->subst() != n) {
+ − 1310
assert(last != NULL, "must have last");
+ − 1311
last->set_next(n->next(), n->next()->bci());
+ − 1312
} else {
+ − 1313
last = n;
+ − 1314
}
+ − 1315
n = last->next();
+ − 1316
}
+ − 1317
+ − 1318
#ifdef ASSERT
+ − 1319
if (block->state()) block->state()->values_do(check_substitute);
+ − 1320
block->block_values_do(check_substitute);
+ − 1321
if (block->end() && block->end()->state()) block->end()->state()->values_do(check_substitute);
+ − 1322
#endif
+ − 1323
}