1
|
1 |
/*
|
|
2 |
* Copyright 2001-2005 Sun Microsystems, Inc. All Rights Reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation.
|
|
8 |
*
|
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
13 |
* accompanied this code).
|
|
14 |
*
|
|
15 |
* You should have received a copy of the GNU General Public License version
|
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
18 |
*
|
|
19 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
20 |
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
21 |
* have any questions.
|
|
22 |
*
|
|
23 |
*/
|
|
24 |
|
|
25 |
#include "incls/_precompiled.incl"
|
|
26 |
#include "incls/_sharedRuntimeTrig.cpp.incl"
|
|
27 |
|
|
28 |
// This file contains copies of the fdlibm routines used by
|
|
29 |
// StrictMath. It turns out that it is almost always required to use
|
|
30 |
// these runtime routines; the Intel CPU doesn't meet the Java
|
|
31 |
// specification for sin/cos outside a certain limited argument range,
|
|
32 |
// and the SPARC CPU doesn't appear to have sin/cos instructions. It
|
|
33 |
// also turns out that avoiding the indirect call through function
|
|
34 |
// pointer out to libjava.so in SharedRuntime speeds these routines up
|
|
35 |
// by roughly 15% on both Win32/x86 and Solaris/SPARC.
|
|
36 |
|
|
37 |
// Enabling optimizations in this file causes incorrect code to be
|
|
38 |
// generated; can not figure out how to turn down optimization for one
|
|
39 |
// file in the IDE on Windows
|
|
40 |
#ifdef WIN32
|
|
41 |
# pragma optimize ( "", off )
|
|
42 |
#endif
|
|
43 |
|
|
44 |
#include <math.h>
|
|
45 |
|
|
46 |
// VM_LITTLE_ENDIAN is #defined appropriately in the Makefiles
|
|
47 |
// [jk] this is not 100% correct because the float word order may different
|
|
48 |
// from the byte order (e.g. on ARM)
|
|
49 |
#ifdef VM_LITTLE_ENDIAN
|
|
50 |
# define __HI(x) *(1+(int*)&x)
|
|
51 |
# define __LO(x) *(int*)&x
|
|
52 |
#else
|
|
53 |
# define __HI(x) *(int*)&x
|
|
54 |
# define __LO(x) *(1+(int*)&x)
|
|
55 |
#endif
|
|
56 |
|
|
57 |
static double copysignA(double x, double y) {
|
|
58 |
__HI(x) = (__HI(x)&0x7fffffff)|(__HI(y)&0x80000000);
|
|
59 |
return x;
|
|
60 |
}
|
|
61 |
|
|
62 |
/*
|
|
63 |
* scalbn (double x, int n)
|
|
64 |
* scalbn(x,n) returns x* 2**n computed by exponent
|
|
65 |
* manipulation rather than by actually performing an
|
|
66 |
* exponentiation or a multiplication.
|
|
67 |
*/
|
|
68 |
|
|
69 |
static const double
|
|
70 |
two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
|
|
71 |
twom54 = 5.55111512312578270212e-17, /* 0x3C900000, 0x00000000 */
|
|
72 |
hugeX = 1.0e+300,
|
|
73 |
tiny = 1.0e-300;
|
|
74 |
|
|
75 |
static double scalbnA (double x, int n) {
|
|
76 |
int k,hx,lx;
|
|
77 |
hx = __HI(x);
|
|
78 |
lx = __LO(x);
|
|
79 |
k = (hx&0x7ff00000)>>20; /* extract exponent */
|
|
80 |
if (k==0) { /* 0 or subnormal x */
|
|
81 |
if ((lx|(hx&0x7fffffff))==0) return x; /* +-0 */
|
|
82 |
x *= two54;
|
|
83 |
hx = __HI(x);
|
|
84 |
k = ((hx&0x7ff00000)>>20) - 54;
|
|
85 |
if (n< -50000) return tiny*x; /*underflow*/
|
|
86 |
}
|
|
87 |
if (k==0x7ff) return x+x; /* NaN or Inf */
|
|
88 |
k = k+n;
|
|
89 |
if (k > 0x7fe) return hugeX*copysignA(hugeX,x); /* overflow */
|
|
90 |
if (k > 0) /* normal result */
|
|
91 |
{__HI(x) = (hx&0x800fffff)|(k<<20); return x;}
|
|
92 |
if (k <= -54) {
|
|
93 |
if (n > 50000) /* in case integer overflow in n+k */
|
|
94 |
return hugeX*copysignA(hugeX,x); /*overflow*/
|
|
95 |
else return tiny*copysignA(tiny,x); /*underflow*/
|
|
96 |
}
|
|
97 |
k += 54; /* subnormal result */
|
|
98 |
__HI(x) = (hx&0x800fffff)|(k<<20);
|
|
99 |
return x*twom54;
|
|
100 |
}
|
|
101 |
|
|
102 |
/*
|
|
103 |
* __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
|
|
104 |
* double x[],y[]; int e0,nx,prec; int ipio2[];
|
|
105 |
*
|
|
106 |
* __kernel_rem_pio2 return the last three digits of N with
|
|
107 |
* y = x - N*pi/2
|
|
108 |
* so that |y| < pi/2.
|
|
109 |
*
|
|
110 |
* The method is to compute the integer (mod 8) and fraction parts of
|
|
111 |
* (2/pi)*x without doing the full multiplication. In general we
|
|
112 |
* skip the part of the product that are known to be a huge integer (
|
|
113 |
* more accurately, = 0 mod 8 ). Thus the number of operations are
|
|
114 |
* independent of the exponent of the input.
|
|
115 |
*
|
|
116 |
* (2/pi) is represented by an array of 24-bit integers in ipio2[].
|
|
117 |
*
|
|
118 |
* Input parameters:
|
|
119 |
* x[] The input value (must be positive) is broken into nx
|
|
120 |
* pieces of 24-bit integers in double precision format.
|
|
121 |
* x[i] will be the i-th 24 bit of x. The scaled exponent
|
|
122 |
* of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
|
|
123 |
* match x's up to 24 bits.
|
|
124 |
*
|
|
125 |
* Example of breaking a double positive z into x[0]+x[1]+x[2]:
|
|
126 |
* e0 = ilogb(z)-23
|
|
127 |
* z = scalbn(z,-e0)
|
|
128 |
* for i = 0,1,2
|
|
129 |
* x[i] = floor(z)
|
|
130 |
* z = (z-x[i])*2**24
|
|
131 |
*
|
|
132 |
*
|
|
133 |
* y[] ouput result in an array of double precision numbers.
|
|
134 |
* The dimension of y[] is:
|
|
135 |
* 24-bit precision 1
|
|
136 |
* 53-bit precision 2
|
|
137 |
* 64-bit precision 2
|
|
138 |
* 113-bit precision 3
|
|
139 |
* The actual value is the sum of them. Thus for 113-bit
|
|
140 |
* precsion, one may have to do something like:
|
|
141 |
*
|
|
142 |
* long double t,w,r_head, r_tail;
|
|
143 |
* t = (long double)y[2] + (long double)y[1];
|
|
144 |
* w = (long double)y[0];
|
|
145 |
* r_head = t+w;
|
|
146 |
* r_tail = w - (r_head - t);
|
|
147 |
*
|
|
148 |
* e0 The exponent of x[0]
|
|
149 |
*
|
|
150 |
* nx dimension of x[]
|
|
151 |
*
|
|
152 |
* prec an interger indicating the precision:
|
|
153 |
* 0 24 bits (single)
|
|
154 |
* 1 53 bits (double)
|
|
155 |
* 2 64 bits (extended)
|
|
156 |
* 3 113 bits (quad)
|
|
157 |
*
|
|
158 |
* ipio2[]
|
|
159 |
* integer array, contains the (24*i)-th to (24*i+23)-th
|
|
160 |
* bit of 2/pi after binary point. The corresponding
|
|
161 |
* floating value is
|
|
162 |
*
|
|
163 |
* ipio2[i] * 2^(-24(i+1)).
|
|
164 |
*
|
|
165 |
* External function:
|
|
166 |
* double scalbn(), floor();
|
|
167 |
*
|
|
168 |
*
|
|
169 |
* Here is the description of some local variables:
|
|
170 |
*
|
|
171 |
* jk jk+1 is the initial number of terms of ipio2[] needed
|
|
172 |
* in the computation. The recommended value is 2,3,4,
|
|
173 |
* 6 for single, double, extended,and quad.
|
|
174 |
*
|
|
175 |
* jz local integer variable indicating the number of
|
|
176 |
* terms of ipio2[] used.
|
|
177 |
*
|
|
178 |
* jx nx - 1
|
|
179 |
*
|
|
180 |
* jv index for pointing to the suitable ipio2[] for the
|
|
181 |
* computation. In general, we want
|
|
182 |
* ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
|
|
183 |
* is an integer. Thus
|
|
184 |
* e0-3-24*jv >= 0 or (e0-3)/24 >= jv
|
|
185 |
* Hence jv = max(0,(e0-3)/24).
|
|
186 |
*
|
|
187 |
* jp jp+1 is the number of terms in PIo2[] needed, jp = jk.
|
|
188 |
*
|
|
189 |
* q[] double array with integral value, representing the
|
|
190 |
* 24-bits chunk of the product of x and 2/pi.
|
|
191 |
*
|
|
192 |
* q0 the corresponding exponent of q[0]. Note that the
|
|
193 |
* exponent for q[i] would be q0-24*i.
|
|
194 |
*
|
|
195 |
* PIo2[] double precision array, obtained by cutting pi/2
|
|
196 |
* into 24 bits chunks.
|
|
197 |
*
|
|
198 |
* f[] ipio2[] in floating point
|
|
199 |
*
|
|
200 |
* iq[] integer array by breaking up q[] in 24-bits chunk.
|
|
201 |
*
|
|
202 |
* fq[] final product of x*(2/pi) in fq[0],..,fq[jk]
|
|
203 |
*
|
|
204 |
* ih integer. If >0 it indicats q[] is >= 0.5, hence
|
|
205 |
* it also indicates the *sign* of the result.
|
|
206 |
*
|
|
207 |
*/
|
|
208 |
|
|
209 |
|
|
210 |
/*
|
|
211 |
* Constants:
|
|
212 |
* The hexadecimal values are the intended ones for the following
|
|
213 |
* constants. The decimal values may be used, provided that the
|
|
214 |
* compiler will convert from decimal to binary accurately enough
|
|
215 |
* to produce the hexadecimal values shown.
|
|
216 |
*/
|
|
217 |
|
|
218 |
|
|
219 |
static const int init_jk[] = {2,3,4,6}; /* initial value for jk */
|
|
220 |
|
|
221 |
static const double PIo2[] = {
|
|
222 |
1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
|
|
223 |
7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
|
|
224 |
5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
|
|
225 |
3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
|
|
226 |
1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
|
|
227 |
1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
|
|
228 |
2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
|
|
229 |
2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
|
|
230 |
};
|
|
231 |
|
|
232 |
static const double
|
|
233 |
zeroB = 0.0,
|
|
234 |
one = 1.0,
|
|
235 |
two24B = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
|
|
236 |
twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
|
|
237 |
|
|
238 |
static int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int *ipio2) {
|
|
239 |
int jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
|
|
240 |
double z,fw,f[20],fq[20],q[20];
|
|
241 |
|
|
242 |
/* initialize jk*/
|
|
243 |
jk = init_jk[prec];
|
|
244 |
jp = jk;
|
|
245 |
|
|
246 |
/* determine jx,jv,q0, note that 3>q0 */
|
|
247 |
jx = nx-1;
|
|
248 |
jv = (e0-3)/24; if(jv<0) jv=0;
|
|
249 |
q0 = e0-24*(jv+1);
|
|
250 |
|
|
251 |
/* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
|
|
252 |
j = jv-jx; m = jx+jk;
|
|
253 |
for(i=0;i<=m;i++,j++) f[i] = (j<0)? zeroB : (double) ipio2[j];
|
|
254 |
|
|
255 |
/* compute q[0],q[1],...q[jk] */
|
|
256 |
for (i=0;i<=jk;i++) {
|
|
257 |
for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw;
|
|
258 |
}
|
|
259 |
|
|
260 |
jz = jk;
|
|
261 |
recompute:
|
|
262 |
/* distill q[] into iq[] reversingly */
|
|
263 |
for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
|
|
264 |
fw = (double)((int)(twon24* z));
|
|
265 |
iq[i] = (int)(z-two24B*fw);
|
|
266 |
z = q[j-1]+fw;
|
|
267 |
}
|
|
268 |
|
|
269 |
/* compute n */
|
|
270 |
z = scalbnA(z,q0); /* actual value of z */
|
|
271 |
z -= 8.0*floor(z*0.125); /* trim off integer >= 8 */
|
|
272 |
n = (int) z;
|
|
273 |
z -= (double)n;
|
|
274 |
ih = 0;
|
|
275 |
if(q0>0) { /* need iq[jz-1] to determine n */
|
|
276 |
i = (iq[jz-1]>>(24-q0)); n += i;
|
|
277 |
iq[jz-1] -= i<<(24-q0);
|
|
278 |
ih = iq[jz-1]>>(23-q0);
|
|
279 |
}
|
|
280 |
else if(q0==0) ih = iq[jz-1]>>23;
|
|
281 |
else if(z>=0.5) ih=2;
|
|
282 |
|
|
283 |
if(ih>0) { /* q > 0.5 */
|
|
284 |
n += 1; carry = 0;
|
|
285 |
for(i=0;i<jz ;i++) { /* compute 1-q */
|
|
286 |
j = iq[i];
|
|
287 |
if(carry==0) {
|
|
288 |
if(j!=0) {
|
|
289 |
carry = 1; iq[i] = 0x1000000- j;
|
|
290 |
}
|
|
291 |
} else iq[i] = 0xffffff - j;
|
|
292 |
}
|
|
293 |
if(q0>0) { /* rare case: chance is 1 in 12 */
|
|
294 |
switch(q0) {
|
|
295 |
case 1:
|
|
296 |
iq[jz-1] &= 0x7fffff; break;
|
|
297 |
case 2:
|
|
298 |
iq[jz-1] &= 0x3fffff; break;
|
|
299 |
}
|
|
300 |
}
|
|
301 |
if(ih==2) {
|
|
302 |
z = one - z;
|
|
303 |
if(carry!=0) z -= scalbnA(one,q0);
|
|
304 |
}
|
|
305 |
}
|
|
306 |
|
|
307 |
/* check if recomputation is needed */
|
|
308 |
if(z==zeroB) {
|
|
309 |
j = 0;
|
|
310 |
for (i=jz-1;i>=jk;i--) j |= iq[i];
|
|
311 |
if(j==0) { /* need recomputation */
|
|
312 |
for(k=1;iq[jk-k]==0;k++); /* k = no. of terms needed */
|
|
313 |
|
|
314 |
for(i=jz+1;i<=jz+k;i++) { /* add q[jz+1] to q[jz+k] */
|
|
315 |
f[jx+i] = (double) ipio2[jv+i];
|
|
316 |
for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
|
|
317 |
q[i] = fw;
|
|
318 |
}
|
|
319 |
jz += k;
|
|
320 |
goto recompute;
|
|
321 |
}
|
|
322 |
}
|
|
323 |
|
|
324 |
/* chop off zero terms */
|
|
325 |
if(z==0.0) {
|
|
326 |
jz -= 1; q0 -= 24;
|
|
327 |
while(iq[jz]==0) { jz--; q0-=24;}
|
|
328 |
} else { /* break z into 24-bit if neccessary */
|
|
329 |
z = scalbnA(z,-q0);
|
|
330 |
if(z>=two24B) {
|
|
331 |
fw = (double)((int)(twon24*z));
|
|
332 |
iq[jz] = (int)(z-two24B*fw);
|
|
333 |
jz += 1; q0 += 24;
|
|
334 |
iq[jz] = (int) fw;
|
|
335 |
} else iq[jz] = (int) z ;
|
|
336 |
}
|
|
337 |
|
|
338 |
/* convert integer "bit" chunk to floating-point value */
|
|
339 |
fw = scalbnA(one,q0);
|
|
340 |
for(i=jz;i>=0;i--) {
|
|
341 |
q[i] = fw*(double)iq[i]; fw*=twon24;
|
|
342 |
}
|
|
343 |
|
|
344 |
/* compute PIo2[0,...,jp]*q[jz,...,0] */
|
|
345 |
for(i=jz;i>=0;i--) {
|
|
346 |
for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
|
|
347 |
fq[jz-i] = fw;
|
|
348 |
}
|
|
349 |
|
|
350 |
/* compress fq[] into y[] */
|
|
351 |
switch(prec) {
|
|
352 |
case 0:
|
|
353 |
fw = 0.0;
|
|
354 |
for (i=jz;i>=0;i--) fw += fq[i];
|
|
355 |
y[0] = (ih==0)? fw: -fw;
|
|
356 |
break;
|
|
357 |
case 1:
|
|
358 |
case 2:
|
|
359 |
fw = 0.0;
|
|
360 |
for (i=jz;i>=0;i--) fw += fq[i];
|
|
361 |
y[0] = (ih==0)? fw: -fw;
|
|
362 |
fw = fq[0]-fw;
|
|
363 |
for (i=1;i<=jz;i++) fw += fq[i];
|
|
364 |
y[1] = (ih==0)? fw: -fw;
|
|
365 |
break;
|
|
366 |
case 3: /* painful */
|
|
367 |
for (i=jz;i>0;i--) {
|
|
368 |
fw = fq[i-1]+fq[i];
|
|
369 |
fq[i] += fq[i-1]-fw;
|
|
370 |
fq[i-1] = fw;
|
|
371 |
}
|
|
372 |
for (i=jz;i>1;i--) {
|
|
373 |
fw = fq[i-1]+fq[i];
|
|
374 |
fq[i] += fq[i-1]-fw;
|
|
375 |
fq[i-1] = fw;
|
|
376 |
}
|
|
377 |
for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
|
|
378 |
if(ih==0) {
|
|
379 |
y[0] = fq[0]; y[1] = fq[1]; y[2] = fw;
|
|
380 |
} else {
|
|
381 |
y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
|
|
382 |
}
|
|
383 |
}
|
|
384 |
return n&7;
|
|
385 |
}
|
|
386 |
|
|
387 |
|
|
388 |
/*
|
|
389 |
* ====================================================
|
|
390 |
* Copyright 13 Dec 1993 Sun Microsystems, Inc. All Rights Reserved.
|
|
391 |
*
|
|
392 |
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
393 |
* Permission to use, copy, modify, and distribute this
|
|
394 |
* software is freely granted, provided that this notice
|
|
395 |
* is preserved.
|
|
396 |
* ====================================================
|
|
397 |
*
|
|
398 |
*/
|
|
399 |
|
|
400 |
/* __ieee754_rem_pio2(x,y)
|
|
401 |
*
|
|
402 |
* return the remainder of x rem pi/2 in y[0]+y[1]
|
|
403 |
* use __kernel_rem_pio2()
|
|
404 |
*/
|
|
405 |
|
|
406 |
/*
|
|
407 |
* Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
|
|
408 |
*/
|
|
409 |
static const int two_over_pi[] = {
|
|
410 |
0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62,
|
|
411 |
0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A,
|
|
412 |
0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129,
|
|
413 |
0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41,
|
|
414 |
0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8,
|
|
415 |
0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF,
|
|
416 |
0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5,
|
|
417 |
0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08,
|
|
418 |
0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3,
|
|
419 |
0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880,
|
|
420 |
0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B,
|
|
421 |
};
|
|
422 |
|
|
423 |
static const int npio2_hw[] = {
|
|
424 |
0x3FF921FB, 0x400921FB, 0x4012D97C, 0x401921FB, 0x401F6A7A, 0x4022D97C,
|
|
425 |
0x4025FDBB, 0x402921FB, 0x402C463A, 0x402F6A7A, 0x4031475C, 0x4032D97C,
|
|
426 |
0x40346B9C, 0x4035FDBB, 0x40378FDB, 0x403921FB, 0x403AB41B, 0x403C463A,
|
|
427 |
0x403DD85A, 0x403F6A7A, 0x40407E4C, 0x4041475C, 0x4042106C, 0x4042D97C,
|
|
428 |
0x4043A28C, 0x40446B9C, 0x404534AC, 0x4045FDBB, 0x4046C6CB, 0x40478FDB,
|
|
429 |
0x404858EB, 0x404921FB,
|
|
430 |
};
|
|
431 |
|
|
432 |
/*
|
|
433 |
* invpio2: 53 bits of 2/pi
|
|
434 |
* pio2_1: first 33 bit of pi/2
|
|
435 |
* pio2_1t: pi/2 - pio2_1
|
|
436 |
* pio2_2: second 33 bit of pi/2
|
|
437 |
* pio2_2t: pi/2 - (pio2_1+pio2_2)
|
|
438 |
* pio2_3: third 33 bit of pi/2
|
|
439 |
* pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3)
|
|
440 |
*/
|
|
441 |
|
|
442 |
static const double
|
|
443 |
zeroA = 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
|
|
444 |
half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
|
|
445 |
two24A = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
|
|
446 |
invpio2 = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
|
|
447 |
pio2_1 = 1.57079632673412561417e+00, /* 0x3FF921FB, 0x54400000 */
|
|
448 |
pio2_1t = 6.07710050650619224932e-11, /* 0x3DD0B461, 0x1A626331 */
|
|
449 |
pio2_2 = 6.07710050630396597660e-11, /* 0x3DD0B461, 0x1A600000 */
|
|
450 |
pio2_2t = 2.02226624879595063154e-21, /* 0x3BA3198A, 0x2E037073 */
|
|
451 |
pio2_3 = 2.02226624871116645580e-21, /* 0x3BA3198A, 0x2E000000 */
|
|
452 |
pio2_3t = 8.47842766036889956997e-32; /* 0x397B839A, 0x252049C1 */
|
|
453 |
|
|
454 |
static int __ieee754_rem_pio2(double x, double *y) {
|
|
455 |
double z,w,t,r,fn;
|
|
456 |
double tx[3];
|
|
457 |
int e0,i,j,nx,n,ix,hx,i0;
|
|
458 |
|
|
459 |
i0 = ((*(int*)&two24A)>>30)^1; /* high word index */
|
|
460 |
hx = *(i0+(int*)&x); /* high word of x */
|
|
461 |
ix = hx&0x7fffffff;
|
|
462 |
if(ix<=0x3fe921fb) /* |x| ~<= pi/4 , no need for reduction */
|
|
463 |
{y[0] = x; y[1] = 0; return 0;}
|
|
464 |
if(ix<0x4002d97c) { /* |x| < 3pi/4, special case with n=+-1 */
|
|
465 |
if(hx>0) {
|
|
466 |
z = x - pio2_1;
|
|
467 |
if(ix!=0x3ff921fb) { /* 33+53 bit pi is good enough */
|
|
468 |
y[0] = z - pio2_1t;
|
|
469 |
y[1] = (z-y[0])-pio2_1t;
|
|
470 |
} else { /* near pi/2, use 33+33+53 bit pi */
|
|
471 |
z -= pio2_2;
|
|
472 |
y[0] = z - pio2_2t;
|
|
473 |
y[1] = (z-y[0])-pio2_2t;
|
|
474 |
}
|
|
475 |
return 1;
|
|
476 |
} else { /* negative x */
|
|
477 |
z = x + pio2_1;
|
|
478 |
if(ix!=0x3ff921fb) { /* 33+53 bit pi is good enough */
|
|
479 |
y[0] = z + pio2_1t;
|
|
480 |
y[1] = (z-y[0])+pio2_1t;
|
|
481 |
} else { /* near pi/2, use 33+33+53 bit pi */
|
|
482 |
z += pio2_2;
|
|
483 |
y[0] = z + pio2_2t;
|
|
484 |
y[1] = (z-y[0])+pio2_2t;
|
|
485 |
}
|
|
486 |
return -1;
|
|
487 |
}
|
|
488 |
}
|
|
489 |
if(ix<=0x413921fb) { /* |x| ~<= 2^19*(pi/2), medium size */
|
|
490 |
t = fabsd(x);
|
|
491 |
n = (int) (t*invpio2+half);
|
|
492 |
fn = (double)n;
|
|
493 |
r = t-fn*pio2_1;
|
|
494 |
w = fn*pio2_1t; /* 1st round good to 85 bit */
|
|
495 |
if(n<32&&ix!=npio2_hw[n-1]) {
|
|
496 |
y[0] = r-w; /* quick check no cancellation */
|
|
497 |
} else {
|
|
498 |
j = ix>>20;
|
|
499 |
y[0] = r-w;
|
|
500 |
i = j-(((*(i0+(int*)&y[0]))>>20)&0x7ff);
|
|
501 |
if(i>16) { /* 2nd iteration needed, good to 118 */
|
|
502 |
t = r;
|
|
503 |
w = fn*pio2_2;
|
|
504 |
r = t-w;
|
|
505 |
w = fn*pio2_2t-((t-r)-w);
|
|
506 |
y[0] = r-w;
|
|
507 |
i = j-(((*(i0+(int*)&y[0]))>>20)&0x7ff);
|
|
508 |
if(i>49) { /* 3rd iteration need, 151 bits acc */
|
|
509 |
t = r; /* will cover all possible cases */
|
|
510 |
w = fn*pio2_3;
|
|
511 |
r = t-w;
|
|
512 |
w = fn*pio2_3t-((t-r)-w);
|
|
513 |
y[0] = r-w;
|
|
514 |
}
|
|
515 |
}
|
|
516 |
}
|
|
517 |
y[1] = (r-y[0])-w;
|
|
518 |
if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;}
|
|
519 |
else return n;
|
|
520 |
}
|
|
521 |
/*
|
|
522 |
* all other (large) arguments
|
|
523 |
*/
|
|
524 |
if(ix>=0x7ff00000) { /* x is inf or NaN */
|
|
525 |
y[0]=y[1]=x-x; return 0;
|
|
526 |
}
|
|
527 |
/* set z = scalbn(|x|,ilogb(x)-23) */
|
|
528 |
*(1-i0+(int*)&z) = *(1-i0+(int*)&x);
|
|
529 |
e0 = (ix>>20)-1046; /* e0 = ilogb(z)-23; */
|
|
530 |
*(i0+(int*)&z) = ix - (e0<<20);
|
|
531 |
for(i=0;i<2;i++) {
|
|
532 |
tx[i] = (double)((int)(z));
|
|
533 |
z = (z-tx[i])*two24A;
|
|
534 |
}
|
|
535 |
tx[2] = z;
|
|
536 |
nx = 3;
|
|
537 |
while(tx[nx-1]==zeroA) nx--; /* skip zero term */
|
|
538 |
n = __kernel_rem_pio2(tx,y,e0,nx,2,two_over_pi);
|
|
539 |
if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;}
|
|
540 |
return n;
|
|
541 |
}
|
|
542 |
|
|
543 |
|
|
544 |
/* __kernel_sin( x, y, iy)
|
|
545 |
* kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854
|
|
546 |
* Input x is assumed to be bounded by ~pi/4 in magnitude.
|
|
547 |
* Input y is the tail of x.
|
|
548 |
* Input iy indicates whether y is 0. (if iy=0, y assume to be 0).
|
|
549 |
*
|
|
550 |
* Algorithm
|
|
551 |
* 1. Since sin(-x) = -sin(x), we need only to consider positive x.
|
|
552 |
* 2. if x < 2^-27 (hx<0x3e400000 0), return x with inexact if x!=0.
|
|
553 |
* 3. sin(x) is approximated by a polynomial of degree 13 on
|
|
554 |
* [0,pi/4]
|
|
555 |
* 3 13
|
|
556 |
* sin(x) ~ x + S1*x + ... + S6*x
|
|
557 |
* where
|
|
558 |
*
|
|
559 |
* |sin(x) 2 4 6 8 10 12 | -58
|
|
560 |
* |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2
|
|
561 |
* | x |
|
|
562 |
*
|
|
563 |
* 4. sin(x+y) = sin(x) + sin'(x')*y
|
|
564 |
* ~ sin(x) + (1-x*x/2)*y
|
|
565 |
* For better accuracy, let
|
|
566 |
* 3 2 2 2 2
|
|
567 |
* r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6))))
|
|
568 |
* then 3 2
|
|
569 |
* sin(x) = x + (S1*x + (x *(r-y/2)+y))
|
|
570 |
*/
|
|
571 |
|
|
572 |
static const double
|
|
573 |
S1 = -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */
|
|
574 |
S2 = 8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */
|
|
575 |
S3 = -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */
|
|
576 |
S4 = 2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */
|
|
577 |
S5 = -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */
|
|
578 |
S6 = 1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */
|
|
579 |
|
|
580 |
static double __kernel_sin(double x, double y, int iy)
|
|
581 |
{
|
|
582 |
double z,r,v;
|
|
583 |
int ix;
|
|
584 |
ix = __HI(x)&0x7fffffff; /* high word of x */
|
|
585 |
if(ix<0x3e400000) /* |x| < 2**-27 */
|
|
586 |
{if((int)x==0) return x;} /* generate inexact */
|
|
587 |
z = x*x;
|
|
588 |
v = z*x;
|
|
589 |
r = S2+z*(S3+z*(S4+z*(S5+z*S6)));
|
|
590 |
if(iy==0) return x+v*(S1+z*r);
|
|
591 |
else return x-((z*(half*y-v*r)-y)-v*S1);
|
|
592 |
}
|
|
593 |
|
|
594 |
/*
|
|
595 |
* __kernel_cos( x, y )
|
|
596 |
* kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
|
|
597 |
* Input x is assumed to be bounded by ~pi/4 in magnitude.
|
|
598 |
* Input y is the tail of x.
|
|
599 |
*
|
|
600 |
* Algorithm
|
|
601 |
* 1. Since cos(-x) = cos(x), we need only to consider positive x.
|
|
602 |
* 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0.
|
|
603 |
* 3. cos(x) is approximated by a polynomial of degree 14 on
|
|
604 |
* [0,pi/4]
|
|
605 |
* 4 14
|
|
606 |
* cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
|
|
607 |
* where the remez error is
|
|
608 |
*
|
|
609 |
* | 2 4 6 8 10 12 14 | -58
|
|
610 |
* |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2
|
|
611 |
* | |
|
|
612 |
*
|
|
613 |
* 4 6 8 10 12 14
|
|
614 |
* 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then
|
|
615 |
* cos(x) = 1 - x*x/2 + r
|
|
616 |
* since cos(x+y) ~ cos(x) - sin(x)*y
|
|
617 |
* ~ cos(x) - x*y,
|
|
618 |
* a correction term is necessary in cos(x) and hence
|
|
619 |
* cos(x+y) = 1 - (x*x/2 - (r - x*y))
|
|
620 |
* For better accuracy when x > 0.3, let qx = |x|/4 with
|
|
621 |
* the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125.
|
|
622 |
* Then
|
|
623 |
* cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)).
|
|
624 |
* Note that 1-qx and (x*x/2-qx) is EXACT here, and the
|
|
625 |
* magnitude of the latter is at least a quarter of x*x/2,
|
|
626 |
* thus, reducing the rounding error in the subtraction.
|
|
627 |
*/
|
|
628 |
|
|
629 |
static const double
|
|
630 |
C1 = 4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */
|
|
631 |
C2 = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */
|
|
632 |
C3 = 2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */
|
|
633 |
C4 = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */
|
|
634 |
C5 = 2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */
|
|
635 |
C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */
|
|
636 |
|
|
637 |
static double __kernel_cos(double x, double y)
|
|
638 |
{
|
|
639 |
double a,hz,z,r,qx;
|
|
640 |
int ix;
|
|
641 |
ix = __HI(x)&0x7fffffff; /* ix = |x|'s high word*/
|
|
642 |
if(ix<0x3e400000) { /* if x < 2**27 */
|
|
643 |
if(((int)x)==0) return one; /* generate inexact */
|
|
644 |
}
|
|
645 |
z = x*x;
|
|
646 |
r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6)))));
|
|
647 |
if(ix < 0x3FD33333) /* if |x| < 0.3 */
|
|
648 |
return one - (0.5*z - (z*r - x*y));
|
|
649 |
else {
|
|
650 |
if(ix > 0x3fe90000) { /* x > 0.78125 */
|
|
651 |
qx = 0.28125;
|
|
652 |
} else {
|
|
653 |
__HI(qx) = ix-0x00200000; /* x/4 */
|
|
654 |
__LO(qx) = 0;
|
|
655 |
}
|
|
656 |
hz = 0.5*z-qx;
|
|
657 |
a = one-qx;
|
|
658 |
return a - (hz - (z*r-x*y));
|
|
659 |
}
|
|
660 |
}
|
|
661 |
|
|
662 |
/* __kernel_tan( x, y, k )
|
|
663 |
* kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
|
|
664 |
* Input x is assumed to be bounded by ~pi/4 in magnitude.
|
|
665 |
* Input y is the tail of x.
|
|
666 |
* Input k indicates whether tan (if k=1) or
|
|
667 |
* -1/tan (if k= -1) is returned.
|
|
668 |
*
|
|
669 |
* Algorithm
|
|
670 |
* 1. Since tan(-x) = -tan(x), we need only to consider positive x.
|
|
671 |
* 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
|
|
672 |
* 3. tan(x) is approximated by a odd polynomial of degree 27 on
|
|
673 |
* [0,0.67434]
|
|
674 |
* 3 27
|
|
675 |
* tan(x) ~ x + T1*x + ... + T13*x
|
|
676 |
* where
|
|
677 |
*
|
|
678 |
* |tan(x) 2 4 26 | -59.2
|
|
679 |
* |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2
|
|
680 |
* | x |
|
|
681 |
*
|
|
682 |
* Note: tan(x+y) = tan(x) + tan'(x)*y
|
|
683 |
* ~ tan(x) + (1+x*x)*y
|
|
684 |
* Therefore, for better accuracy in computing tan(x+y), let
|
|
685 |
* 3 2 2 2 2
|
|
686 |
* r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
|
|
687 |
* then
|
|
688 |
* 3 2
|
|
689 |
* tan(x+y) = x + (T1*x + (x *(r+y)+y))
|
|
690 |
*
|
|
691 |
* 4. For x in [0.67434,pi/4], let y = pi/4 - x, then
|
|
692 |
* tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
|
|
693 |
* = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
|
|
694 |
*/
|
|
695 |
|
|
696 |
static const double
|
|
697 |
pio4 = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
|
|
698 |
pio4lo= 3.06161699786838301793e-17, /* 0x3C81A626, 0x33145C07 */
|
|
699 |
T[] = {
|
|
700 |
3.33333333333334091986e-01, /* 0x3FD55555, 0x55555563 */
|
|
701 |
1.33333333333201242699e-01, /* 0x3FC11111, 0x1110FE7A */
|
|
702 |
5.39682539762260521377e-02, /* 0x3FABA1BA, 0x1BB341FE */
|
|
703 |
2.18694882948595424599e-02, /* 0x3F9664F4, 0x8406D637 */
|
|
704 |
8.86323982359930005737e-03, /* 0x3F8226E3, 0xE96E8493 */
|
|
705 |
3.59207910759131235356e-03, /* 0x3F6D6D22, 0xC9560328 */
|
|
706 |
1.45620945432529025516e-03, /* 0x3F57DBC8, 0xFEE08315 */
|
|
707 |
5.88041240820264096874e-04, /* 0x3F4344D8, 0xF2F26501 */
|
|
708 |
2.46463134818469906812e-04, /* 0x3F3026F7, 0x1A8D1068 */
|
|
709 |
7.81794442939557092300e-05, /* 0x3F147E88, 0xA03792A6 */
|
|
710 |
7.14072491382608190305e-05, /* 0x3F12B80F, 0x32F0A7E9 */
|
|
711 |
-1.85586374855275456654e-05, /* 0xBEF375CB, 0xDB605373 */
|
|
712 |
2.59073051863633712884e-05, /* 0x3EFB2A70, 0x74BF7AD4 */
|
|
713 |
};
|
|
714 |
|
|
715 |
static double __kernel_tan(double x, double y, int iy)
|
|
716 |
{
|
|
717 |
double z,r,v,w,s;
|
|
718 |
int ix,hx;
|
|
719 |
hx = __HI(x); /* high word of x */
|
|
720 |
ix = hx&0x7fffffff; /* high word of |x| */
|
|
721 |
if(ix<0x3e300000) { /* x < 2**-28 */
|
|
722 |
if((int)x==0) { /* generate inexact */
|
|
723 |
if (((ix | __LO(x)) | (iy + 1)) == 0)
|
|
724 |
return one / fabsd(x);
|
|
725 |
else {
|
|
726 |
if (iy == 1)
|
|
727 |
return x;
|
|
728 |
else { /* compute -1 / (x+y) carefully */
|
|
729 |
double a, t;
|
|
730 |
|
|
731 |
z = w = x + y;
|
|
732 |
__LO(z) = 0;
|
|
733 |
v = y - (z - x);
|
|
734 |
t = a = -one / w;
|
|
735 |
__LO(t) = 0;
|
|
736 |
s = one + t * z;
|
|
737 |
return t + a * (s + t * v);
|
|
738 |
}
|
|
739 |
}
|
|
740 |
}
|
|
741 |
}
|
|
742 |
if(ix>=0x3FE59428) { /* |x|>=0.6744 */
|
|
743 |
if(hx<0) {x = -x; y = -y;}
|
|
744 |
z = pio4-x;
|
|
745 |
w = pio4lo-y;
|
|
746 |
x = z+w; y = 0.0;
|
|
747 |
}
|
|
748 |
z = x*x;
|
|
749 |
w = z*z;
|
|
750 |
/* Break x^5*(T[1]+x^2*T[2]+...) into
|
|
751 |
* x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
|
|
752 |
* x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
|
|
753 |
*/
|
|
754 |
r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11]))));
|
|
755 |
v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12])))));
|
|
756 |
s = z*x;
|
|
757 |
r = y + z*(s*(r+v)+y);
|
|
758 |
r += T[0]*s;
|
|
759 |
w = x+r;
|
|
760 |
if(ix>=0x3FE59428) {
|
|
761 |
v = (double)iy;
|
|
762 |
return (double)(1-((hx>>30)&2))*(v-2.0*(x-(w*w/(w+v)-r)));
|
|
763 |
}
|
|
764 |
if(iy==1) return w;
|
|
765 |
else { /* if allow error up to 2 ulp,
|
|
766 |
simply return -1.0/(x+r) here */
|
|
767 |
/* compute -1.0/(x+r) accurately */
|
|
768 |
double a,t;
|
|
769 |
z = w;
|
|
770 |
__LO(z) = 0;
|
|
771 |
v = r-(z - x); /* z+v = r+x */
|
|
772 |
t = a = -1.0/w; /* a = -1.0/w */
|
|
773 |
__LO(t) = 0;
|
|
774 |
s = 1.0+t*z;
|
|
775 |
return t+a*(s+t*v);
|
|
776 |
}
|
|
777 |
}
|
|
778 |
|
|
779 |
|
|
780 |
//----------------------------------------------------------------------
|
|
781 |
//
|
|
782 |
// Routines for new sin/cos implementation
|
|
783 |
//
|
|
784 |
//----------------------------------------------------------------------
|
|
785 |
|
|
786 |
/* sin(x)
|
|
787 |
* Return sine function of x.
|
|
788 |
*
|
|
789 |
* kernel function:
|
|
790 |
* __kernel_sin ... sine function on [-pi/4,pi/4]
|
|
791 |
* __kernel_cos ... cose function on [-pi/4,pi/4]
|
|
792 |
* __ieee754_rem_pio2 ... argument reduction routine
|
|
793 |
*
|
|
794 |
* Method.
|
|
795 |
* Let S,C and T denote the sin, cos and tan respectively on
|
|
796 |
* [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
|
|
797 |
* in [-pi/4 , +pi/4], and let n = k mod 4.
|
|
798 |
* We have
|
|
799 |
*
|
|
800 |
* n sin(x) cos(x) tan(x)
|
|
801 |
* ----------------------------------------------------------
|
|
802 |
* 0 S C T
|
|
803 |
* 1 C -S -1/T
|
|
804 |
* 2 -S -C T
|
|
805 |
* 3 -C S -1/T
|
|
806 |
* ----------------------------------------------------------
|
|
807 |
*
|
|
808 |
* Special cases:
|
|
809 |
* Let trig be any of sin, cos, or tan.
|
|
810 |
* trig(+-INF) is NaN, with signals;
|
|
811 |
* trig(NaN) is that NaN;
|
|
812 |
*
|
|
813 |
* Accuracy:
|
|
814 |
* TRIG(x) returns trig(x) nearly rounded
|
|
815 |
*/
|
|
816 |
|
|
817 |
JRT_LEAF(jdouble, SharedRuntime::dsin(jdouble x))
|
|
818 |
double y[2],z=0.0;
|
|
819 |
int n, ix;
|
|
820 |
|
|
821 |
/* High word of x. */
|
|
822 |
ix = __HI(x);
|
|
823 |
|
|
824 |
/* |x| ~< pi/4 */
|
|
825 |
ix &= 0x7fffffff;
|
|
826 |
if(ix <= 0x3fe921fb) return __kernel_sin(x,z,0);
|
|
827 |
|
|
828 |
/* sin(Inf or NaN) is NaN */
|
|
829 |
else if (ix>=0x7ff00000) return x-x;
|
|
830 |
|
|
831 |
/* argument reduction needed */
|
|
832 |
else {
|
|
833 |
n = __ieee754_rem_pio2(x,y);
|
|
834 |
switch(n&3) {
|
|
835 |
case 0: return __kernel_sin(y[0],y[1],1);
|
|
836 |
case 1: return __kernel_cos(y[0],y[1]);
|
|
837 |
case 2: return -__kernel_sin(y[0],y[1],1);
|
|
838 |
default:
|
|
839 |
return -__kernel_cos(y[0],y[1]);
|
|
840 |
}
|
|
841 |
}
|
|
842 |
JRT_END
|
|
843 |
|
|
844 |
/* cos(x)
|
|
845 |
* Return cosine function of x.
|
|
846 |
*
|
|
847 |
* kernel function:
|
|
848 |
* __kernel_sin ... sine function on [-pi/4,pi/4]
|
|
849 |
* __kernel_cos ... cosine function on [-pi/4,pi/4]
|
|
850 |
* __ieee754_rem_pio2 ... argument reduction routine
|
|
851 |
*
|
|
852 |
* Method.
|
|
853 |
* Let S,C and T denote the sin, cos and tan respectively on
|
|
854 |
* [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
|
|
855 |
* in [-pi/4 , +pi/4], and let n = k mod 4.
|
|
856 |
* We have
|
|
857 |
*
|
|
858 |
* n sin(x) cos(x) tan(x)
|
|
859 |
* ----------------------------------------------------------
|
|
860 |
* 0 S C T
|
|
861 |
* 1 C -S -1/T
|
|
862 |
* 2 -S -C T
|
|
863 |
* 3 -C S -1/T
|
|
864 |
* ----------------------------------------------------------
|
|
865 |
*
|
|
866 |
* Special cases:
|
|
867 |
* Let trig be any of sin, cos, or tan.
|
|
868 |
* trig(+-INF) is NaN, with signals;
|
|
869 |
* trig(NaN) is that NaN;
|
|
870 |
*
|
|
871 |
* Accuracy:
|
|
872 |
* TRIG(x) returns trig(x) nearly rounded
|
|
873 |
*/
|
|
874 |
|
|
875 |
JRT_LEAF(jdouble, SharedRuntime::dcos(jdouble x))
|
|
876 |
double y[2],z=0.0;
|
|
877 |
int n, ix;
|
|
878 |
|
|
879 |
/* High word of x. */
|
|
880 |
ix = __HI(x);
|
|
881 |
|
|
882 |
/* |x| ~< pi/4 */
|
|
883 |
ix &= 0x7fffffff;
|
|
884 |
if(ix <= 0x3fe921fb) return __kernel_cos(x,z);
|
|
885 |
|
|
886 |
/* cos(Inf or NaN) is NaN */
|
|
887 |
else if (ix>=0x7ff00000) return x-x;
|
|
888 |
|
|
889 |
/* argument reduction needed */
|
|
890 |
else {
|
|
891 |
n = __ieee754_rem_pio2(x,y);
|
|
892 |
switch(n&3) {
|
|
893 |
case 0: return __kernel_cos(y[0],y[1]);
|
|
894 |
case 1: return -__kernel_sin(y[0],y[1],1);
|
|
895 |
case 2: return -__kernel_cos(y[0],y[1]);
|
|
896 |
default:
|
|
897 |
return __kernel_sin(y[0],y[1],1);
|
|
898 |
}
|
|
899 |
}
|
|
900 |
JRT_END
|
|
901 |
|
|
902 |
/* tan(x)
|
|
903 |
* Return tangent function of x.
|
|
904 |
*
|
|
905 |
* kernel function:
|
|
906 |
* __kernel_tan ... tangent function on [-pi/4,pi/4]
|
|
907 |
* __ieee754_rem_pio2 ... argument reduction routine
|
|
908 |
*
|
|
909 |
* Method.
|
|
910 |
* Let S,C and T denote the sin, cos and tan respectively on
|
|
911 |
* [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
|
|
912 |
* in [-pi/4 , +pi/4], and let n = k mod 4.
|
|
913 |
* We have
|
|
914 |
*
|
|
915 |
* n sin(x) cos(x) tan(x)
|
|
916 |
* ----------------------------------------------------------
|
|
917 |
* 0 S C T
|
|
918 |
* 1 C -S -1/T
|
|
919 |
* 2 -S -C T
|
|
920 |
* 3 -C S -1/T
|
|
921 |
* ----------------------------------------------------------
|
|
922 |
*
|
|
923 |
* Special cases:
|
|
924 |
* Let trig be any of sin, cos, or tan.
|
|
925 |
* trig(+-INF) is NaN, with signals;
|
|
926 |
* trig(NaN) is that NaN;
|
|
927 |
*
|
|
928 |
* Accuracy:
|
|
929 |
* TRIG(x) returns trig(x) nearly rounded
|
|
930 |
*/
|
|
931 |
|
|
932 |
JRT_LEAF(jdouble, SharedRuntime::dtan(jdouble x))
|
|
933 |
double y[2],z=0.0;
|
|
934 |
int n, ix;
|
|
935 |
|
|
936 |
/* High word of x. */
|
|
937 |
ix = __HI(x);
|
|
938 |
|
|
939 |
/* |x| ~< pi/4 */
|
|
940 |
ix &= 0x7fffffff;
|
|
941 |
if(ix <= 0x3fe921fb) return __kernel_tan(x,z,1);
|
|
942 |
|
|
943 |
/* tan(Inf or NaN) is NaN */
|
|
944 |
else if (ix>=0x7ff00000) return x-x; /* NaN */
|
|
945 |
|
|
946 |
/* argument reduction needed */
|
|
947 |
else {
|
|
948 |
n = __ieee754_rem_pio2(x,y);
|
|
949 |
return __kernel_tan(y[0],y[1],1-((n&1)<<1)); /* 1 -- n even
|
|
950 |
-1 -- n odd */
|
|
951 |
}
|
|
952 |
JRT_END
|
|
953 |
|
|
954 |
|
|
955 |
#ifdef WIN32
|
|
956 |
# pragma optimize ( "", on )
|
|
957 |
#endif
|