1
|
1 |
/*
|
|
2 |
* Copyright 2005 Sun Microsystems, Inc. All Rights Reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation.
|
|
8 |
*
|
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
13 |
* accompanied this code).
|
|
14 |
*
|
|
15 |
* You should have received a copy of the GNU General Public License version
|
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
18 |
*
|
|
19 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
20 |
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
21 |
* have any questions.
|
|
22 |
*
|
|
23 |
*/
|
|
24 |
|
|
25 |
#include "incls/_precompiled.incl"
|
|
26 |
#include "incls/_sharedRuntimeTrans.cpp.incl"
|
|
27 |
|
|
28 |
// This file contains copies of the fdlibm routines used by
|
|
29 |
// StrictMath. It turns out that it is almost always required to use
|
|
30 |
// these runtime routines; the Intel CPU doesn't meet the Java
|
|
31 |
// specification for sin/cos outside a certain limited argument range,
|
|
32 |
// and the SPARC CPU doesn't appear to have sin/cos instructions. It
|
|
33 |
// also turns out that avoiding the indirect call through function
|
|
34 |
// pointer out to libjava.so in SharedRuntime speeds these routines up
|
|
35 |
// by roughly 15% on both Win32/x86 and Solaris/SPARC.
|
|
36 |
|
|
37 |
// Enabling optimizations in this file causes incorrect code to be
|
|
38 |
// generated; can not figure out how to turn down optimization for one
|
|
39 |
// file in the IDE on Windows
|
|
40 |
#ifdef WIN32
|
|
41 |
# pragma optimize ( "", off )
|
|
42 |
#endif
|
|
43 |
|
|
44 |
#include <math.h>
|
|
45 |
|
|
46 |
// VM_LITTLE_ENDIAN is #defined appropriately in the Makefiles
|
|
47 |
// [jk] this is not 100% correct because the float word order may different
|
|
48 |
// from the byte order (e.g. on ARM)
|
|
49 |
#ifdef VM_LITTLE_ENDIAN
|
|
50 |
# define __HI(x) *(1+(int*)&x)
|
|
51 |
# define __LO(x) *(int*)&x
|
|
52 |
#else
|
|
53 |
# define __HI(x) *(int*)&x
|
|
54 |
# define __LO(x) *(1+(int*)&x)
|
|
55 |
#endif
|
|
56 |
|
|
57 |
double copysign(double x, double y) {
|
|
58 |
__HI(x) = (__HI(x)&0x7fffffff)|(__HI(y)&0x80000000);
|
|
59 |
return x;
|
|
60 |
}
|
|
61 |
|
|
62 |
/*
|
|
63 |
* ====================================================
|
|
64 |
* Copyright (C) 1998 by Sun Microsystems, Inc. All rights reserved.
|
|
65 |
*
|
|
66 |
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
|
67 |
* Permission to use, copy, modify, and distribute this
|
|
68 |
* software is freely granted, provided that this notice
|
|
69 |
* is preserved.
|
|
70 |
* ====================================================
|
|
71 |
*/
|
|
72 |
|
|
73 |
/*
|
|
74 |
* scalbn (double x, int n)
|
|
75 |
* scalbn(x,n) returns x* 2**n computed by exponent
|
|
76 |
* manipulation rather than by actually performing an
|
|
77 |
* exponentiation or a multiplication.
|
|
78 |
*/
|
|
79 |
|
|
80 |
static const double
|
|
81 |
two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
|
|
82 |
twom54 = 5.55111512312578270212e-17, /* 0x3C900000, 0x00000000 */
|
|
83 |
hugeX = 1.0e+300,
|
|
84 |
tiny = 1.0e-300;
|
|
85 |
|
|
86 |
double scalbn (double x, int n) {
|
|
87 |
int k,hx,lx;
|
|
88 |
hx = __HI(x);
|
|
89 |
lx = __LO(x);
|
|
90 |
k = (hx&0x7ff00000)>>20; /* extract exponent */
|
|
91 |
if (k==0) { /* 0 or subnormal x */
|
|
92 |
if ((lx|(hx&0x7fffffff))==0) return x; /* +-0 */
|
|
93 |
x *= two54;
|
|
94 |
hx = __HI(x);
|
|
95 |
k = ((hx&0x7ff00000)>>20) - 54;
|
|
96 |
if (n< -50000) return tiny*x; /*underflow*/
|
|
97 |
}
|
|
98 |
if (k==0x7ff) return x+x; /* NaN or Inf */
|
|
99 |
k = k+n;
|
|
100 |
if (k > 0x7fe) return hugeX*copysign(hugeX,x); /* overflow */
|
|
101 |
if (k > 0) /* normal result */
|
|
102 |
{__HI(x) = (hx&0x800fffff)|(k<<20); return x;}
|
|
103 |
if (k <= -54) {
|
|
104 |
if (n > 50000) /* in case integer overflow in n+k */
|
|
105 |
return hugeX*copysign(hugeX,x); /*overflow*/
|
|
106 |
else return tiny*copysign(tiny,x); /*underflow*/
|
|
107 |
}
|
|
108 |
k += 54; /* subnormal result */
|
|
109 |
__HI(x) = (hx&0x800fffff)|(k<<20);
|
|
110 |
return x*twom54;
|
|
111 |
}
|
|
112 |
|
|
113 |
/* __ieee754_log(x)
|
|
114 |
* Return the logrithm of x
|
|
115 |
*
|
|
116 |
* Method :
|
|
117 |
* 1. Argument Reduction: find k and f such that
|
|
118 |
* x = 2^k * (1+f),
|
|
119 |
* where sqrt(2)/2 < 1+f < sqrt(2) .
|
|
120 |
*
|
|
121 |
* 2. Approximation of log(1+f).
|
|
122 |
* Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
|
|
123 |
* = 2s + 2/3 s**3 + 2/5 s**5 + .....,
|
|
124 |
* = 2s + s*R
|
|
125 |
* We use a special Reme algorithm on [0,0.1716] to generate
|
|
126 |
* a polynomial of degree 14 to approximate R The maximum error
|
|
127 |
* of this polynomial approximation is bounded by 2**-58.45. In
|
|
128 |
* other words,
|
|
129 |
* 2 4 6 8 10 12 14
|
|
130 |
* R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
|
|
131 |
* (the values of Lg1 to Lg7 are listed in the program)
|
|
132 |
* and
|
|
133 |
* | 2 14 | -58.45
|
|
134 |
* | Lg1*s +...+Lg7*s - R(z) | <= 2
|
|
135 |
* | |
|
|
136 |
* Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
|
|
137 |
* In order to guarantee error in log below 1ulp, we compute log
|
|
138 |
* by
|
|
139 |
* log(1+f) = f - s*(f - R) (if f is not too large)
|
|
140 |
* log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
|
|
141 |
*
|
|
142 |
* 3. Finally, log(x) = k*ln2 + log(1+f).
|
|
143 |
* = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
|
|
144 |
* Here ln2 is split into two floating point number:
|
|
145 |
* ln2_hi + ln2_lo,
|
|
146 |
* where n*ln2_hi is always exact for |n| < 2000.
|
|
147 |
*
|
|
148 |
* Special cases:
|
|
149 |
* log(x) is NaN with signal if x < 0 (including -INF) ;
|
|
150 |
* log(+INF) is +INF; log(0) is -INF with signal;
|
|
151 |
* log(NaN) is that NaN with no signal.
|
|
152 |
*
|
|
153 |
* Accuracy:
|
|
154 |
* according to an error analysis, the error is always less than
|
|
155 |
* 1 ulp (unit in the last place).
|
|
156 |
*
|
|
157 |
* Constants:
|
|
158 |
* The hexadecimal values are the intended ones for the following
|
|
159 |
* constants. The decimal values may be used, provided that the
|
|
160 |
* compiler will convert from decimal to binary accurately enough
|
|
161 |
* to produce the hexadecimal values shown.
|
|
162 |
*/
|
|
163 |
|
|
164 |
static const double
|
|
165 |
ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
|
|
166 |
ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
|
|
167 |
Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
|
|
168 |
Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
|
|
169 |
Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
|
|
170 |
Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
|
|
171 |
Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
|
|
172 |
Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
|
|
173 |
Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
|
|
174 |
|
|
175 |
static double zero = 0.0;
|
|
176 |
|
|
177 |
static double __ieee754_log(double x) {
|
|
178 |
double hfsq,f,s,z,R,w,t1,t2,dk;
|
|
179 |
int k,hx,i,j;
|
|
180 |
unsigned lx;
|
|
181 |
|
|
182 |
hx = __HI(x); /* high word of x */
|
|
183 |
lx = __LO(x); /* low word of x */
|
|
184 |
|
|
185 |
k=0;
|
|
186 |
if (hx < 0x00100000) { /* x < 2**-1022 */
|
|
187 |
if (((hx&0x7fffffff)|lx)==0)
|
|
188 |
return -two54/zero; /* log(+-0)=-inf */
|
|
189 |
if (hx<0) return (x-x)/zero; /* log(-#) = NaN */
|
|
190 |
k -= 54; x *= two54; /* subnormal number, scale up x */
|
|
191 |
hx = __HI(x); /* high word of x */
|
|
192 |
}
|
|
193 |
if (hx >= 0x7ff00000) return x+x;
|
|
194 |
k += (hx>>20)-1023;
|
|
195 |
hx &= 0x000fffff;
|
|
196 |
i = (hx+0x95f64)&0x100000;
|
|
197 |
__HI(x) = hx|(i^0x3ff00000); /* normalize x or x/2 */
|
|
198 |
k += (i>>20);
|
|
199 |
f = x-1.0;
|
|
200 |
if((0x000fffff&(2+hx))<3) { /* |f| < 2**-20 */
|
|
201 |
if(f==zero) {
|
|
202 |
if (k==0) return zero;
|
|
203 |
else {dk=(double)k; return dk*ln2_hi+dk*ln2_lo;}
|
|
204 |
}
|
|
205 |
R = f*f*(0.5-0.33333333333333333*f);
|
|
206 |
if(k==0) return f-R; else {dk=(double)k;
|
|
207 |
return dk*ln2_hi-((R-dk*ln2_lo)-f);}
|
|
208 |
}
|
|
209 |
s = f/(2.0+f);
|
|
210 |
dk = (double)k;
|
|
211 |
z = s*s;
|
|
212 |
i = hx-0x6147a;
|
|
213 |
w = z*z;
|
|
214 |
j = 0x6b851-hx;
|
|
215 |
t1= w*(Lg2+w*(Lg4+w*Lg6));
|
|
216 |
t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
|
|
217 |
i |= j;
|
|
218 |
R = t2+t1;
|
|
219 |
if(i>0) {
|
|
220 |
hfsq=0.5*f*f;
|
|
221 |
if(k==0) return f-(hfsq-s*(hfsq+R)); else
|
|
222 |
return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
|
|
223 |
} else {
|
|
224 |
if(k==0) return f-s*(f-R); else
|
|
225 |
return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
|
|
226 |
}
|
|
227 |
}
|
|
228 |
|
|
229 |
JRT_LEAF(jdouble, SharedRuntime::dlog(jdouble x))
|
|
230 |
return __ieee754_log(x);
|
|
231 |
JRT_END
|
|
232 |
|
|
233 |
/* __ieee754_log10(x)
|
|
234 |
* Return the base 10 logarithm of x
|
|
235 |
*
|
|
236 |
* Method :
|
|
237 |
* Let log10_2hi = leading 40 bits of log10(2) and
|
|
238 |
* log10_2lo = log10(2) - log10_2hi,
|
|
239 |
* ivln10 = 1/log(10) rounded.
|
|
240 |
* Then
|
|
241 |
* n = ilogb(x),
|
|
242 |
* if(n<0) n = n+1;
|
|
243 |
* x = scalbn(x,-n);
|
|
244 |
* log10(x) := n*log10_2hi + (n*log10_2lo + ivln10*log(x))
|
|
245 |
*
|
|
246 |
* Note 1:
|
|
247 |
* To guarantee log10(10**n)=n, where 10**n is normal, the rounding
|
|
248 |
* mode must set to Round-to-Nearest.
|
|
249 |
* Note 2:
|
|
250 |
* [1/log(10)] rounded to 53 bits has error .198 ulps;
|
|
251 |
* log10 is monotonic at all binary break points.
|
|
252 |
*
|
|
253 |
* Special cases:
|
|
254 |
* log10(x) is NaN with signal if x < 0;
|
|
255 |
* log10(+INF) is +INF with no signal; log10(0) is -INF with signal;
|
|
256 |
* log10(NaN) is that NaN with no signal;
|
|
257 |
* log10(10**N) = N for N=0,1,...,22.
|
|
258 |
*
|
|
259 |
* Constants:
|
|
260 |
* The hexadecimal values are the intended ones for the following constants.
|
|
261 |
* The decimal values may be used, provided that the compiler will convert
|
|
262 |
* from decimal to binary accurately enough to produce the hexadecimal values
|
|
263 |
* shown.
|
|
264 |
*/
|
|
265 |
|
|
266 |
static const double
|
|
267 |
ivln10 = 4.34294481903251816668e-01, /* 0x3FDBCB7B, 0x1526E50E */
|
|
268 |
log10_2hi = 3.01029995663611771306e-01, /* 0x3FD34413, 0x509F6000 */
|
|
269 |
log10_2lo = 3.69423907715893078616e-13; /* 0x3D59FEF3, 0x11F12B36 */
|
|
270 |
|
|
271 |
static double __ieee754_log10(double x) {
|
|
272 |
double y,z;
|
|
273 |
int i,k,hx;
|
|
274 |
unsigned lx;
|
|
275 |
|
|
276 |
hx = __HI(x); /* high word of x */
|
|
277 |
lx = __LO(x); /* low word of x */
|
|
278 |
|
|
279 |
k=0;
|
|
280 |
if (hx < 0x00100000) { /* x < 2**-1022 */
|
|
281 |
if (((hx&0x7fffffff)|lx)==0)
|
|
282 |
return -two54/zero; /* log(+-0)=-inf */
|
|
283 |
if (hx<0) return (x-x)/zero; /* log(-#) = NaN */
|
|
284 |
k -= 54; x *= two54; /* subnormal number, scale up x */
|
|
285 |
hx = __HI(x); /* high word of x */
|
|
286 |
}
|
|
287 |
if (hx >= 0x7ff00000) return x+x;
|
|
288 |
k += (hx>>20)-1023;
|
|
289 |
i = ((unsigned)k&0x80000000)>>31;
|
|
290 |
hx = (hx&0x000fffff)|((0x3ff-i)<<20);
|
|
291 |
y = (double)(k+i);
|
|
292 |
__HI(x) = hx;
|
|
293 |
z = y*log10_2lo + ivln10*__ieee754_log(x);
|
|
294 |
return z+y*log10_2hi;
|
|
295 |
}
|
|
296 |
|
|
297 |
JRT_LEAF(jdouble, SharedRuntime::dlog10(jdouble x))
|
|
298 |
return __ieee754_log10(x);
|
|
299 |
JRT_END
|
|
300 |
|
|
301 |
|
|
302 |
/* __ieee754_exp(x)
|
|
303 |
* Returns the exponential of x.
|
|
304 |
*
|
|
305 |
* Method
|
|
306 |
* 1. Argument reduction:
|
|
307 |
* Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
|
|
308 |
* Given x, find r and integer k such that
|
|
309 |
*
|
|
310 |
* x = k*ln2 + r, |r| <= 0.5*ln2.
|
|
311 |
*
|
|
312 |
* Here r will be represented as r = hi-lo for better
|
|
313 |
* accuracy.
|
|
314 |
*
|
|
315 |
* 2. Approximation of exp(r) by a special rational function on
|
|
316 |
* the interval [0,0.34658]:
|
|
317 |
* Write
|
|
318 |
* R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
|
|
319 |
* We use a special Reme algorithm on [0,0.34658] to generate
|
|
320 |
* a polynomial of degree 5 to approximate R. The maximum error
|
|
321 |
* of this polynomial approximation is bounded by 2**-59. In
|
|
322 |
* other words,
|
|
323 |
* R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
|
|
324 |
* (where z=r*r, and the values of P1 to P5 are listed below)
|
|
325 |
* and
|
|
326 |
* | 5 | -59
|
|
327 |
* | 2.0+P1*z+...+P5*z - R(z) | <= 2
|
|
328 |
* | |
|
|
329 |
* The computation of exp(r) thus becomes
|
|
330 |
* 2*r
|
|
331 |
* exp(r) = 1 + -------
|
|
332 |
* R - r
|
|
333 |
* r*R1(r)
|
|
334 |
* = 1 + r + ----------- (for better accuracy)
|
|
335 |
* 2 - R1(r)
|
|
336 |
* where
|
|
337 |
* 2 4 10
|
|
338 |
* R1(r) = r - (P1*r + P2*r + ... + P5*r ).
|
|
339 |
*
|
|
340 |
* 3. Scale back to obtain exp(x):
|
|
341 |
* From step 1, we have
|
|
342 |
* exp(x) = 2^k * exp(r)
|
|
343 |
*
|
|
344 |
* Special cases:
|
|
345 |
* exp(INF) is INF, exp(NaN) is NaN;
|
|
346 |
* exp(-INF) is 0, and
|
|
347 |
* for finite argument, only exp(0)=1 is exact.
|
|
348 |
*
|
|
349 |
* Accuracy:
|
|
350 |
* according to an error analysis, the error is always less than
|
|
351 |
* 1 ulp (unit in the last place).
|
|
352 |
*
|
|
353 |
* Misc. info.
|
|
354 |
* For IEEE double
|
|
355 |
* if x > 7.09782712893383973096e+02 then exp(x) overflow
|
|
356 |
* if x < -7.45133219101941108420e+02 then exp(x) underflow
|
|
357 |
*
|
|
358 |
* Constants:
|
|
359 |
* The hexadecimal values are the intended ones for the following
|
|
360 |
* constants. The decimal values may be used, provided that the
|
|
361 |
* compiler will convert from decimal to binary accurately enough
|
|
362 |
* to produce the hexadecimal values shown.
|
|
363 |
*/
|
|
364 |
|
|
365 |
static const double
|
|
366 |
one = 1.0,
|
|
367 |
halF[2] = {0.5,-0.5,},
|
|
368 |
twom1000= 9.33263618503218878990e-302, /* 2**-1000=0x01700000,0*/
|
|
369 |
o_threshold= 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */
|
|
370 |
u_threshold= -7.45133219101941108420e+02, /* 0xc0874910, 0xD52D3051 */
|
|
371 |
ln2HI[2] ={ 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */
|
|
372 |
-6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */
|
|
373 |
ln2LO[2] ={ 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */
|
|
374 |
-1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */
|
|
375 |
invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
|
|
376 |
P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
|
|
377 |
P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
|
|
378 |
P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
|
|
379 |
P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
|
|
380 |
P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
|
|
381 |
|
|
382 |
static double __ieee754_exp(double x) {
|
|
383 |
double y,hi=0,lo=0,c,t;
|
|
384 |
int k=0,xsb;
|
|
385 |
unsigned hx;
|
|
386 |
|
|
387 |
hx = __HI(x); /* high word of x */
|
|
388 |
xsb = (hx>>31)&1; /* sign bit of x */
|
|
389 |
hx &= 0x7fffffff; /* high word of |x| */
|
|
390 |
|
|
391 |
/* filter out non-finite argument */
|
|
392 |
if(hx >= 0x40862E42) { /* if |x|>=709.78... */
|
|
393 |
if(hx>=0x7ff00000) {
|
|
394 |
if(((hx&0xfffff)|__LO(x))!=0)
|
|
395 |
return x+x; /* NaN */
|
|
396 |
else return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */
|
|
397 |
}
|
|
398 |
if(x > o_threshold) return hugeX*hugeX; /* overflow */
|
|
399 |
if(x < u_threshold) return twom1000*twom1000; /* underflow */
|
|
400 |
}
|
|
401 |
|
|
402 |
/* argument reduction */
|
|
403 |
if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
|
|
404 |
if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
|
|
405 |
hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
|
|
406 |
} else {
|
|
407 |
k = (int)(invln2*x+halF[xsb]);
|
|
408 |
t = k;
|
|
409 |
hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */
|
|
410 |
lo = t*ln2LO[0];
|
|
411 |
}
|
|
412 |
x = hi - lo;
|
|
413 |
}
|
|
414 |
else if(hx < 0x3e300000) { /* when |x|<2**-28 */
|
|
415 |
if(hugeX+x>one) return one+x;/* trigger inexact */
|
|
416 |
}
|
|
417 |
else k = 0;
|
|
418 |
|
|
419 |
/* x is now in primary range */
|
|
420 |
t = x*x;
|
|
421 |
c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
|
|
422 |
if(k==0) return one-((x*c)/(c-2.0)-x);
|
|
423 |
else y = one-((lo-(x*c)/(2.0-c))-hi);
|
|
424 |
if(k >= -1021) {
|
|
425 |
__HI(y) += (k<<20); /* add k to y's exponent */
|
|
426 |
return y;
|
|
427 |
} else {
|
|
428 |
__HI(y) += ((k+1000)<<20);/* add k to y's exponent */
|
|
429 |
return y*twom1000;
|
|
430 |
}
|
|
431 |
}
|
|
432 |
|
|
433 |
JRT_LEAF(jdouble, SharedRuntime::dexp(jdouble x))
|
|
434 |
return __ieee754_exp(x);
|
|
435 |
JRT_END
|
|
436 |
|
|
437 |
/* __ieee754_pow(x,y) return x**y
|
|
438 |
*
|
|
439 |
* n
|
|
440 |
* Method: Let x = 2 * (1+f)
|
|
441 |
* 1. Compute and return log2(x) in two pieces:
|
|
442 |
* log2(x) = w1 + w2,
|
|
443 |
* where w1 has 53-24 = 29 bit trailing zeros.
|
|
444 |
* 2. Perform y*log2(x) = n+y' by simulating muti-precision
|
|
445 |
* arithmetic, where |y'|<=0.5.
|
|
446 |
* 3. Return x**y = 2**n*exp(y'*log2)
|
|
447 |
*
|
|
448 |
* Special cases:
|
|
449 |
* 1. (anything) ** 0 is 1
|
|
450 |
* 2. (anything) ** 1 is itself
|
|
451 |
* 3. (anything) ** NAN is NAN
|
|
452 |
* 4. NAN ** (anything except 0) is NAN
|
|
453 |
* 5. +-(|x| > 1) ** +INF is +INF
|
|
454 |
* 6. +-(|x| > 1) ** -INF is +0
|
|
455 |
* 7. +-(|x| < 1) ** +INF is +0
|
|
456 |
* 8. +-(|x| < 1) ** -INF is +INF
|
|
457 |
* 9. +-1 ** +-INF is NAN
|
|
458 |
* 10. +0 ** (+anything except 0, NAN) is +0
|
|
459 |
* 11. -0 ** (+anything except 0, NAN, odd integer) is +0
|
|
460 |
* 12. +0 ** (-anything except 0, NAN) is +INF
|
|
461 |
* 13. -0 ** (-anything except 0, NAN, odd integer) is +INF
|
|
462 |
* 14. -0 ** (odd integer) = -( +0 ** (odd integer) )
|
|
463 |
* 15. +INF ** (+anything except 0,NAN) is +INF
|
|
464 |
* 16. +INF ** (-anything except 0,NAN) is +0
|
|
465 |
* 17. -INF ** (anything) = -0 ** (-anything)
|
|
466 |
* 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
|
|
467 |
* 19. (-anything except 0 and inf) ** (non-integer) is NAN
|
|
468 |
*
|
|
469 |
* Accuracy:
|
|
470 |
* pow(x,y) returns x**y nearly rounded. In particular
|
|
471 |
* pow(integer,integer)
|
|
472 |
* always returns the correct integer provided it is
|
|
473 |
* representable.
|
|
474 |
*
|
|
475 |
* Constants :
|
|
476 |
* The hexadecimal values are the intended ones for the following
|
|
477 |
* constants. The decimal values may be used, provided that the
|
|
478 |
* compiler will convert from decimal to binary accurately enough
|
|
479 |
* to produce the hexadecimal values shown.
|
|
480 |
*/
|
|
481 |
|
|
482 |
static const double
|
|
483 |
bp[] = {1.0, 1.5,},
|
|
484 |
dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
|
|
485 |
dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
|
|
486 |
zeroX = 0.0,
|
|
487 |
two = 2.0,
|
|
488 |
two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */
|
|
489 |
/* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
|
|
490 |
L1X = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
|
|
491 |
L2X = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
|
|
492 |
L3X = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
|
|
493 |
L4X = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
|
|
494 |
L5X = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
|
|
495 |
L6X = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
|
|
496 |
lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
|
|
497 |
lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
|
|
498 |
lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
|
|
499 |
ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
|
|
500 |
cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
|
|
501 |
cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
|
|
502 |
cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
|
|
503 |
ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
|
|
504 |
ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
|
|
505 |
ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
|
|
506 |
|
|
507 |
double __ieee754_pow(double x, double y) {
|
|
508 |
double z,ax,z_h,z_l,p_h,p_l;
|
|
509 |
double y1,t1,t2,r,s,t,u,v,w;
|
|
510 |
int i0,i1,i,j,k,yisint,n;
|
|
511 |
int hx,hy,ix,iy;
|
|
512 |
unsigned lx,ly;
|
|
513 |
|
|
514 |
i0 = ((*(int*)&one)>>29)^1; i1=1-i0;
|
|
515 |
hx = __HI(x); lx = __LO(x);
|
|
516 |
hy = __HI(y); ly = __LO(y);
|
|
517 |
ix = hx&0x7fffffff; iy = hy&0x7fffffff;
|
|
518 |
|
|
519 |
/* y==zero: x**0 = 1 */
|
|
520 |
if((iy|ly)==0) return one;
|
|
521 |
|
|
522 |
/* +-NaN return x+y */
|
|
523 |
if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
|
|
524 |
iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
|
|
525 |
return x+y;
|
|
526 |
|
|
527 |
/* determine if y is an odd int when x < 0
|
|
528 |
* yisint = 0 ... y is not an integer
|
|
529 |
* yisint = 1 ... y is an odd int
|
|
530 |
* yisint = 2 ... y is an even int
|
|
531 |
*/
|
|
532 |
yisint = 0;
|
|
533 |
if(hx<0) {
|
|
534 |
if(iy>=0x43400000) yisint = 2; /* even integer y */
|
|
535 |
else if(iy>=0x3ff00000) {
|
|
536 |
k = (iy>>20)-0x3ff; /* exponent */
|
|
537 |
if(k>20) {
|
|
538 |
j = ly>>(52-k);
|
|
539 |
if((unsigned)(j<<(52-k))==ly) yisint = 2-(j&1);
|
|
540 |
} else if(ly==0) {
|
|
541 |
j = iy>>(20-k);
|
|
542 |
if((j<<(20-k))==iy) yisint = 2-(j&1);
|
|
543 |
}
|
|
544 |
}
|
|
545 |
}
|
|
546 |
|
|
547 |
/* special value of y */
|
|
548 |
if(ly==0) {
|
|
549 |
if (iy==0x7ff00000) { /* y is +-inf */
|
|
550 |
if(((ix-0x3ff00000)|lx)==0)
|
|
551 |
return y - y; /* inf**+-1 is NaN */
|
|
552 |
else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
|
|
553 |
return (hy>=0)? y: zeroX;
|
|
554 |
else /* (|x|<1)**-,+inf = inf,0 */
|
|
555 |
return (hy<0)?-y: zeroX;
|
|
556 |
}
|
|
557 |
if(iy==0x3ff00000) { /* y is +-1 */
|
|
558 |
if(hy<0) return one/x; else return x;
|
|
559 |
}
|
|
560 |
if(hy==0x40000000) return x*x; /* y is 2 */
|
|
561 |
if(hy==0x3fe00000) { /* y is 0.5 */
|
|
562 |
if(hx>=0) /* x >= +0 */
|
|
563 |
return sqrt(x);
|
|
564 |
}
|
|
565 |
}
|
|
566 |
|
|
567 |
ax = fabsd(x);
|
|
568 |
/* special value of x */
|
|
569 |
if(lx==0) {
|
|
570 |
if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
|
|
571 |
z = ax; /*x is +-0,+-inf,+-1*/
|
|
572 |
if(hy<0) z = one/z; /* z = (1/|x|) */
|
|
573 |
if(hx<0) {
|
|
574 |
if(((ix-0x3ff00000)|yisint)==0) {
|
|
575 |
z = (z-z)/(z-z); /* (-1)**non-int is NaN */
|
|
576 |
} else if(yisint==1)
|
|
577 |
z = -1.0*z; /* (x<0)**odd = -(|x|**odd) */
|
|
578 |
}
|
|
579 |
return z;
|
|
580 |
}
|
|
581 |
}
|
|
582 |
|
|
583 |
n = (hx>>31)+1;
|
|
584 |
|
|
585 |
/* (x<0)**(non-int) is NaN */
|
|
586 |
if((n|yisint)==0) return (x-x)/(x-x);
|
|
587 |
|
|
588 |
s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
|
|
589 |
if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */
|
|
590 |
|
|
591 |
/* |y| is huge */
|
|
592 |
if(iy>0x41e00000) { /* if |y| > 2**31 */
|
|
593 |
if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */
|
|
594 |
if(ix<=0x3fefffff) return (hy<0)? hugeX*hugeX:tiny*tiny;
|
|
595 |
if(ix>=0x3ff00000) return (hy>0)? hugeX*hugeX:tiny*tiny;
|
|
596 |
}
|
|
597 |
/* over/underflow if x is not close to one */
|
|
598 |
if(ix<0x3fefffff) return (hy<0)? s*hugeX*hugeX:s*tiny*tiny;
|
|
599 |
if(ix>0x3ff00000) return (hy>0)? s*hugeX*hugeX:s*tiny*tiny;
|
|
600 |
/* now |1-x| is tiny <= 2**-20, suffice to compute
|
|
601 |
log(x) by x-x^2/2+x^3/3-x^4/4 */
|
|
602 |
t = ax-one; /* t has 20 trailing zeros */
|
|
603 |
w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
|
|
604 |
u = ivln2_h*t; /* ivln2_h has 21 sig. bits */
|
|
605 |
v = t*ivln2_l-w*ivln2;
|
|
606 |
t1 = u+v;
|
|
607 |
__LO(t1) = 0;
|
|
608 |
t2 = v-(t1-u);
|
|
609 |
} else {
|
|
610 |
double ss,s2,s_h,s_l,t_h,t_l;
|
|
611 |
n = 0;
|
|
612 |
/* take care subnormal number */
|
|
613 |
if(ix<0x00100000)
|
|
614 |
{ax *= two53; n -= 53; ix = __HI(ax); }
|
|
615 |
n += ((ix)>>20)-0x3ff;
|
|
616 |
j = ix&0x000fffff;
|
|
617 |
/* determine interval */
|
|
618 |
ix = j|0x3ff00000; /* normalize ix */
|
|
619 |
if(j<=0x3988E) k=0; /* |x|<sqrt(3/2) */
|
|
620 |
else if(j<0xBB67A) k=1; /* |x|<sqrt(3) */
|
|
621 |
else {k=0;n+=1;ix -= 0x00100000;}
|
|
622 |
__HI(ax) = ix;
|
|
623 |
|
|
624 |
/* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
|
|
625 |
u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
|
|
626 |
v = one/(ax+bp[k]);
|
|
627 |
ss = u*v;
|
|
628 |
s_h = ss;
|
|
629 |
__LO(s_h) = 0;
|
|
630 |
/* t_h=ax+bp[k] High */
|
|
631 |
t_h = zeroX;
|
|
632 |
__HI(t_h)=((ix>>1)|0x20000000)+0x00080000+(k<<18);
|
|
633 |
t_l = ax - (t_h-bp[k]);
|
|
634 |
s_l = v*((u-s_h*t_h)-s_h*t_l);
|
|
635 |
/* compute log(ax) */
|
|
636 |
s2 = ss*ss;
|
|
637 |
r = s2*s2*(L1X+s2*(L2X+s2*(L3X+s2*(L4X+s2*(L5X+s2*L6X)))));
|
|
638 |
r += s_l*(s_h+ss);
|
|
639 |
s2 = s_h*s_h;
|
|
640 |
t_h = 3.0+s2+r;
|
|
641 |
__LO(t_h) = 0;
|
|
642 |
t_l = r-((t_h-3.0)-s2);
|
|
643 |
/* u+v = ss*(1+...) */
|
|
644 |
u = s_h*t_h;
|
|
645 |
v = s_l*t_h+t_l*ss;
|
|
646 |
/* 2/(3log2)*(ss+...) */
|
|
647 |
p_h = u+v;
|
|
648 |
__LO(p_h) = 0;
|
|
649 |
p_l = v-(p_h-u);
|
|
650 |
z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */
|
|
651 |
z_l = cp_l*p_h+p_l*cp+dp_l[k];
|
|
652 |
/* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
|
|
653 |
t = (double)n;
|
|
654 |
t1 = (((z_h+z_l)+dp_h[k])+t);
|
|
655 |
__LO(t1) = 0;
|
|
656 |
t2 = z_l-(((t1-t)-dp_h[k])-z_h);
|
|
657 |
}
|
|
658 |
|
|
659 |
/* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
|
|
660 |
y1 = y;
|
|
661 |
__LO(y1) = 0;
|
|
662 |
p_l = (y-y1)*t1+y*t2;
|
|
663 |
p_h = y1*t1;
|
|
664 |
z = p_l+p_h;
|
|
665 |
j = __HI(z);
|
|
666 |
i = __LO(z);
|
|
667 |
if (j>=0x40900000) { /* z >= 1024 */
|
|
668 |
if(((j-0x40900000)|i)!=0) /* if z > 1024 */
|
|
669 |
return s*hugeX*hugeX; /* overflow */
|
|
670 |
else {
|
|
671 |
if(p_l+ovt>z-p_h) return s*hugeX*hugeX; /* overflow */
|
|
672 |
}
|
|
673 |
} else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */
|
|
674 |
if(((j-0xc090cc00)|i)!=0) /* z < -1075 */
|
|
675 |
return s*tiny*tiny; /* underflow */
|
|
676 |
else {
|
|
677 |
if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */
|
|
678 |
}
|
|
679 |
}
|
|
680 |
/*
|
|
681 |
* compute 2**(p_h+p_l)
|
|
682 |
*/
|
|
683 |
i = j&0x7fffffff;
|
|
684 |
k = (i>>20)-0x3ff;
|
|
685 |
n = 0;
|
|
686 |
if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */
|
|
687 |
n = j+(0x00100000>>(k+1));
|
|
688 |
k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */
|
|
689 |
t = zeroX;
|
|
690 |
__HI(t) = (n&~(0x000fffff>>k));
|
|
691 |
n = ((n&0x000fffff)|0x00100000)>>(20-k);
|
|
692 |
if(j<0) n = -n;
|
|
693 |
p_h -= t;
|
|
694 |
}
|
|
695 |
t = p_l+p_h;
|
|
696 |
__LO(t) = 0;
|
|
697 |
u = t*lg2_h;
|
|
698 |
v = (p_l-(t-p_h))*lg2+t*lg2_l;
|
|
699 |
z = u+v;
|
|
700 |
w = v-(z-u);
|
|
701 |
t = z*z;
|
|
702 |
t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
|
|
703 |
r = (z*t1)/(t1-two)-(w+z*w);
|
|
704 |
z = one-(r-z);
|
|
705 |
j = __HI(z);
|
|
706 |
j += (n<<20);
|
|
707 |
if((j>>20)<=0) z = scalbn(z,n); /* subnormal output */
|
|
708 |
else __HI(z) += (n<<20);
|
|
709 |
return s*z;
|
|
710 |
}
|
|
711 |
|
|
712 |
|
|
713 |
JRT_LEAF(jdouble, SharedRuntime::dpow(jdouble x, jdouble y))
|
|
714 |
return __ieee754_pow(x, y);
|
|
715 |
JRT_END
|
|
716 |
|
|
717 |
#ifdef WIN32
|
|
718 |
# pragma optimize ( "", on )
|
|
719 |
#endif
|