1
|
1 |
/*
|
|
2 |
* Copyright 2001-2007 Sun Microsystems, Inc. All Rights Reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation.
|
|
8 |
*
|
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
13 |
* accompanied this code).
|
|
14 |
*
|
|
15 |
* You should have received a copy of the GNU General Public License version
|
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
18 |
*
|
|
19 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
20 |
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
21 |
* have any questions.
|
|
22 |
*
|
|
23 |
*/
|
|
24 |
|
|
25 |
# include "incls/_precompiled.incl"
|
|
26 |
# include "incls/_perfMemory_windows.cpp.incl"
|
|
27 |
|
|
28 |
#include <windows.h>
|
|
29 |
#include <sys/types.h>
|
|
30 |
#include <sys/stat.h>
|
|
31 |
#include <errno.h>
|
|
32 |
#include <lmcons.h>
|
|
33 |
|
|
34 |
typedef BOOL (WINAPI *SetSecurityDescriptorControlFnPtr)(
|
|
35 |
IN PSECURITY_DESCRIPTOR pSecurityDescriptor,
|
|
36 |
IN SECURITY_DESCRIPTOR_CONTROL ControlBitsOfInterest,
|
|
37 |
IN SECURITY_DESCRIPTOR_CONTROL ControlBitsToSet);
|
|
38 |
|
|
39 |
// Standard Memory Implementation Details
|
|
40 |
|
|
41 |
// create the PerfData memory region in standard memory.
|
|
42 |
//
|
|
43 |
static char* create_standard_memory(size_t size) {
|
|
44 |
|
|
45 |
// allocate an aligned chuck of memory
|
|
46 |
char* mapAddress = os::reserve_memory(size);
|
|
47 |
|
|
48 |
if (mapAddress == NULL) {
|
|
49 |
return NULL;
|
|
50 |
}
|
|
51 |
|
|
52 |
// commit memory
|
|
53 |
if (!os::commit_memory(mapAddress, size)) {
|
|
54 |
if (PrintMiscellaneous && Verbose) {
|
|
55 |
warning("Could not commit PerfData memory\n");
|
|
56 |
}
|
|
57 |
os::release_memory(mapAddress, size);
|
|
58 |
return NULL;
|
|
59 |
}
|
|
60 |
|
|
61 |
return mapAddress;
|
|
62 |
}
|
|
63 |
|
|
64 |
// delete the PerfData memory region
|
|
65 |
//
|
|
66 |
static void delete_standard_memory(char* addr, size_t size) {
|
|
67 |
|
|
68 |
// there are no persistent external resources to cleanup for standard
|
|
69 |
// memory. since DestroyJavaVM does not support unloading of the JVM,
|
|
70 |
// cleanup of the memory resource is not performed. The memory will be
|
|
71 |
// reclaimed by the OS upon termination of the process.
|
|
72 |
//
|
|
73 |
return;
|
|
74 |
|
|
75 |
}
|
|
76 |
|
|
77 |
// save the specified memory region to the given file
|
|
78 |
//
|
|
79 |
static void save_memory_to_file(char* addr, size_t size) {
|
|
80 |
|
|
81 |
const char* destfile = PerfMemory::get_perfdata_file_path();
|
|
82 |
assert(destfile[0] != '\0', "invalid Perfdata file path");
|
|
83 |
|
|
84 |
int fd = ::_open(destfile, _O_BINARY|_O_CREAT|_O_WRONLY|_O_TRUNC,
|
|
85 |
_S_IREAD|_S_IWRITE);
|
|
86 |
|
|
87 |
if (fd == OS_ERR) {
|
|
88 |
if (PrintMiscellaneous && Verbose) {
|
|
89 |
warning("Could not create Perfdata save file: %s: %s\n",
|
|
90 |
destfile, strerror(errno));
|
|
91 |
}
|
|
92 |
} else {
|
|
93 |
for (size_t remaining = size; remaining > 0;) {
|
|
94 |
|
|
95 |
int nbytes = ::_write(fd, addr, (unsigned int)remaining);
|
|
96 |
if (nbytes == OS_ERR) {
|
|
97 |
if (PrintMiscellaneous && Verbose) {
|
|
98 |
warning("Could not write Perfdata save file: %s: %s\n",
|
|
99 |
destfile, strerror(errno));
|
|
100 |
}
|
|
101 |
break;
|
|
102 |
}
|
|
103 |
|
|
104 |
remaining -= (size_t)nbytes;
|
|
105 |
addr += nbytes;
|
|
106 |
}
|
|
107 |
|
|
108 |
int result = ::_close(fd);
|
|
109 |
if (PrintMiscellaneous && Verbose) {
|
|
110 |
if (result == OS_ERR) {
|
|
111 |
warning("Could not close %s: %s\n", destfile, strerror(errno));
|
|
112 |
}
|
|
113 |
}
|
|
114 |
}
|
|
115 |
|
|
116 |
FREE_C_HEAP_ARRAY(char, destfile);
|
|
117 |
}
|
|
118 |
|
|
119 |
// Shared Memory Implementation Details
|
|
120 |
|
|
121 |
// Note: the win32 shared memory implementation uses two objects to represent
|
|
122 |
// the shared memory: a windows kernel based file mapping object and a backing
|
|
123 |
// store file. On windows, the name space for shared memory is a kernel
|
|
124 |
// based name space that is disjoint from other win32 name spaces. Since Java
|
|
125 |
// is unaware of this name space, a parallel file system based name space is
|
|
126 |
// maintained, which provides a common file system based shared memory name
|
|
127 |
// space across the supported platforms and one that Java apps can deal with
|
|
128 |
// through simple file apis.
|
|
129 |
//
|
|
130 |
// For performance and resource cleanup reasons, it is recommended that the
|
|
131 |
// user specific directory and the backing store file be stored in either a
|
|
132 |
// RAM based file system or a local disk based file system. Network based
|
|
133 |
// file systems are not recommended for performance reasons. In addition,
|
|
134 |
// use of SMB network based file systems may result in unsuccesful cleanup
|
|
135 |
// of the disk based resource on exit of the VM. The Windows TMP and TEMP
|
|
136 |
// environement variables, as used by the GetTempPath() Win32 API (see
|
|
137 |
// os::get_temp_directory() in os_win32.cpp), control the location of the
|
|
138 |
// user specific directory and the shared memory backing store file.
|
|
139 |
|
|
140 |
static HANDLE sharedmem_fileMapHandle = NULL;
|
|
141 |
static HANDLE sharedmem_fileHandle = INVALID_HANDLE_VALUE;
|
|
142 |
static char* sharedmem_fileName = NULL;
|
|
143 |
|
|
144 |
// return the user specific temporary directory name.
|
|
145 |
//
|
|
146 |
// the caller is expected to free the allocated memory.
|
|
147 |
//
|
|
148 |
static char* get_user_tmp_dir(const char* user) {
|
|
149 |
|
|
150 |
const char* tmpdir = os::get_temp_directory();
|
|
151 |
const char* perfdir = PERFDATA_NAME;
|
|
152 |
size_t nbytes = strlen(tmpdir) + strlen(perfdir) + strlen(user) + 2;
|
|
153 |
char* dirname = NEW_C_HEAP_ARRAY(char, nbytes);
|
|
154 |
|
|
155 |
// construct the path name to user specific tmp directory
|
|
156 |
_snprintf(dirname, nbytes, "%s%s_%s", tmpdir, perfdir, user);
|
|
157 |
|
|
158 |
return dirname;
|
|
159 |
}
|
|
160 |
|
|
161 |
// convert the given file name into a process id. if the file
|
|
162 |
// does not meet the file naming constraints, return 0.
|
|
163 |
//
|
|
164 |
static int filename_to_pid(const char* filename) {
|
|
165 |
|
|
166 |
// a filename that doesn't begin with a digit is not a
|
|
167 |
// candidate for conversion.
|
|
168 |
//
|
|
169 |
if (!isdigit(*filename)) {
|
|
170 |
return 0;
|
|
171 |
}
|
|
172 |
|
|
173 |
// check if file name can be converted to an integer without
|
|
174 |
// any leftover characters.
|
|
175 |
//
|
|
176 |
char* remainder = NULL;
|
|
177 |
errno = 0;
|
|
178 |
int pid = (int)strtol(filename, &remainder, 10);
|
|
179 |
|
|
180 |
if (errno != 0) {
|
|
181 |
return 0;
|
|
182 |
}
|
|
183 |
|
|
184 |
// check for left over characters. If any, then the filename is
|
|
185 |
// not a candidate for conversion.
|
|
186 |
//
|
|
187 |
if (remainder != NULL && *remainder != '\0') {
|
|
188 |
return 0;
|
|
189 |
}
|
|
190 |
|
|
191 |
// successful conversion, return the pid
|
|
192 |
return pid;
|
|
193 |
}
|
|
194 |
|
|
195 |
// check if the given path is considered a secure directory for
|
|
196 |
// the backing store files. Returns true if the directory exists
|
|
197 |
// and is considered a secure location. Returns false if the path
|
|
198 |
// is a symbolic link or if an error occured.
|
|
199 |
//
|
|
200 |
static bool is_directory_secure(const char* path) {
|
|
201 |
|
|
202 |
DWORD fa;
|
|
203 |
|
|
204 |
fa = GetFileAttributes(path);
|
|
205 |
if (fa == 0xFFFFFFFF) {
|
|
206 |
DWORD lasterror = GetLastError();
|
|
207 |
if (lasterror == ERROR_FILE_NOT_FOUND) {
|
|
208 |
return false;
|
|
209 |
}
|
|
210 |
else {
|
|
211 |
// unexpected error, declare the path insecure
|
|
212 |
if (PrintMiscellaneous && Verbose) {
|
|
213 |
warning("could not get attributes for file %s: ",
|
|
214 |
" lasterror = %d\n", path, lasterror);
|
|
215 |
}
|
|
216 |
return false;
|
|
217 |
}
|
|
218 |
}
|
|
219 |
|
|
220 |
if (fa & FILE_ATTRIBUTE_REPARSE_POINT) {
|
|
221 |
// we don't accept any redirection for the user specific directory
|
|
222 |
// so declare the path insecure. This may be too conservative,
|
|
223 |
// as some types of reparse points might be acceptable, but it
|
|
224 |
// is probably more secure to avoid these conditions.
|
|
225 |
//
|
|
226 |
if (PrintMiscellaneous && Verbose) {
|
|
227 |
warning("%s is a reparse point\n", path);
|
|
228 |
}
|
|
229 |
return false;
|
|
230 |
}
|
|
231 |
|
|
232 |
if (fa & FILE_ATTRIBUTE_DIRECTORY) {
|
|
233 |
// this is the expected case. Since windows supports symbolic
|
|
234 |
// links to directories only, not to files, there is no need
|
|
235 |
// to check for open write permissions on the directory. If the
|
|
236 |
// directory has open write permissions, any files deposited that
|
|
237 |
// are not expected will be removed by the cleanup code.
|
|
238 |
//
|
|
239 |
return true;
|
|
240 |
}
|
|
241 |
else {
|
|
242 |
// this is either a regular file or some other type of file,
|
|
243 |
// any of which are unexpected and therefore insecure.
|
|
244 |
//
|
|
245 |
if (PrintMiscellaneous && Verbose) {
|
|
246 |
warning("%s is not a directory, file attributes = "
|
|
247 |
INTPTR_FORMAT "\n", path, fa);
|
|
248 |
}
|
|
249 |
return false;
|
|
250 |
}
|
|
251 |
}
|
|
252 |
|
|
253 |
// return the user name for the owner of this process
|
|
254 |
//
|
|
255 |
// the caller is expected to free the allocated memory.
|
|
256 |
//
|
|
257 |
static char* get_user_name() {
|
|
258 |
|
|
259 |
/* get the user name. This code is adapted from code found in
|
|
260 |
* the jdk in src/windows/native/java/lang/java_props_md.c
|
|
261 |
* java_props_md.c 1.29 02/02/06. According to the original
|
|
262 |
* source, the call to GetUserName is avoided because of a resulting
|
|
263 |
* increase in footprint of 100K.
|
|
264 |
*/
|
|
265 |
char* user = getenv("USERNAME");
|
|
266 |
char buf[UNLEN+1];
|
|
267 |
DWORD buflen = sizeof(buf);
|
|
268 |
if (user == NULL || strlen(user) == 0) {
|
|
269 |
if (GetUserName(buf, &buflen)) {
|
|
270 |
user = buf;
|
|
271 |
}
|
|
272 |
else {
|
|
273 |
return NULL;
|
|
274 |
}
|
|
275 |
}
|
|
276 |
|
|
277 |
char* user_name = NEW_C_HEAP_ARRAY(char, strlen(user)+1);
|
|
278 |
strcpy(user_name, user);
|
|
279 |
|
|
280 |
return user_name;
|
|
281 |
}
|
|
282 |
|
|
283 |
// return the name of the user that owns the process identified by vmid.
|
|
284 |
//
|
|
285 |
// This method uses a slow directory search algorithm to find the backing
|
|
286 |
// store file for the specified vmid and returns the user name, as determined
|
|
287 |
// by the user name suffix of the hsperfdata_<username> directory name.
|
|
288 |
//
|
|
289 |
// the caller is expected to free the allocated memory.
|
|
290 |
//
|
|
291 |
static char* get_user_name_slow(int vmid) {
|
|
292 |
|
|
293 |
// directory search
|
|
294 |
char* oldest_user = NULL;
|
|
295 |
time_t oldest_ctime = 0;
|
|
296 |
|
|
297 |
const char* tmpdirname = os::get_temp_directory();
|
|
298 |
|
|
299 |
DIR* tmpdirp = os::opendir(tmpdirname);
|
|
300 |
|
|
301 |
if (tmpdirp == NULL) {
|
|
302 |
return NULL;
|
|
303 |
}
|
|
304 |
|
|
305 |
// for each entry in the directory that matches the pattern hsperfdata_*,
|
|
306 |
// open the directory and check if the file for the given vmid exists.
|
|
307 |
// The file with the expected name and the latest creation date is used
|
|
308 |
// to determine the user name for the process id.
|
|
309 |
//
|
|
310 |
struct dirent* dentry;
|
|
311 |
char* tdbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(tmpdirname));
|
|
312 |
errno = 0;
|
|
313 |
while ((dentry = os::readdir(tmpdirp, (struct dirent *)tdbuf)) != NULL) {
|
|
314 |
|
|
315 |
// check if the directory entry is a hsperfdata file
|
|
316 |
if (strncmp(dentry->d_name, PERFDATA_NAME, strlen(PERFDATA_NAME)) != 0) {
|
|
317 |
continue;
|
|
318 |
}
|
|
319 |
|
|
320 |
char* usrdir_name = NEW_C_HEAP_ARRAY(char,
|
|
321 |
strlen(tmpdirname) + strlen(dentry->d_name) + 1);
|
|
322 |
strcpy(usrdir_name, tmpdirname);
|
|
323 |
strcat(usrdir_name, dentry->d_name);
|
|
324 |
|
|
325 |
DIR* subdirp = os::opendir(usrdir_name);
|
|
326 |
|
|
327 |
if (subdirp == NULL) {
|
|
328 |
FREE_C_HEAP_ARRAY(char, usrdir_name);
|
|
329 |
continue;
|
|
330 |
}
|
|
331 |
|
|
332 |
// Since we don't create the backing store files in directories
|
|
333 |
// pointed to by symbolic links, we also don't follow them when
|
|
334 |
// looking for the files. We check for a symbolic link after the
|
|
335 |
// call to opendir in order to eliminate a small window where the
|
|
336 |
// symlink can be exploited.
|
|
337 |
//
|
|
338 |
if (!is_directory_secure(usrdir_name)) {
|
|
339 |
FREE_C_HEAP_ARRAY(char, usrdir_name);
|
|
340 |
os::closedir(subdirp);
|
|
341 |
continue;
|
|
342 |
}
|
|
343 |
|
|
344 |
struct dirent* udentry;
|
|
345 |
char* udbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(usrdir_name));
|
|
346 |
errno = 0;
|
|
347 |
while ((udentry = os::readdir(subdirp, (struct dirent *)udbuf)) != NULL) {
|
|
348 |
|
|
349 |
if (filename_to_pid(udentry->d_name) == vmid) {
|
|
350 |
struct stat statbuf;
|
|
351 |
|
|
352 |
char* filename = NEW_C_HEAP_ARRAY(char,
|
|
353 |
strlen(usrdir_name) + strlen(udentry->d_name) + 2);
|
|
354 |
|
|
355 |
strcpy(filename, usrdir_name);
|
|
356 |
strcat(filename, "\\");
|
|
357 |
strcat(filename, udentry->d_name);
|
|
358 |
|
|
359 |
if (::stat(filename, &statbuf) == OS_ERR) {
|
|
360 |
FREE_C_HEAP_ARRAY(char, filename);
|
|
361 |
continue;
|
|
362 |
}
|
|
363 |
|
|
364 |
// skip over files that are not regular files.
|
|
365 |
if ((statbuf.st_mode & S_IFMT) != S_IFREG) {
|
|
366 |
FREE_C_HEAP_ARRAY(char, filename);
|
|
367 |
continue;
|
|
368 |
}
|
|
369 |
|
|
370 |
// compare and save filename with latest creation time
|
|
371 |
if (statbuf.st_size > 0 && statbuf.st_ctime > oldest_ctime) {
|
|
372 |
|
|
373 |
if (statbuf.st_ctime > oldest_ctime) {
|
|
374 |
char* user = strchr(dentry->d_name, '_') + 1;
|
|
375 |
|
|
376 |
if (oldest_user != NULL) FREE_C_HEAP_ARRAY(char, oldest_user);
|
|
377 |
oldest_user = NEW_C_HEAP_ARRAY(char, strlen(user)+1);
|
|
378 |
|
|
379 |
strcpy(oldest_user, user);
|
|
380 |
oldest_ctime = statbuf.st_ctime;
|
|
381 |
}
|
|
382 |
}
|
|
383 |
|
|
384 |
FREE_C_HEAP_ARRAY(char, filename);
|
|
385 |
}
|
|
386 |
}
|
|
387 |
os::closedir(subdirp);
|
|
388 |
FREE_C_HEAP_ARRAY(char, udbuf);
|
|
389 |
FREE_C_HEAP_ARRAY(char, usrdir_name);
|
|
390 |
}
|
|
391 |
os::closedir(tmpdirp);
|
|
392 |
FREE_C_HEAP_ARRAY(char, tdbuf);
|
|
393 |
|
|
394 |
return(oldest_user);
|
|
395 |
}
|
|
396 |
|
|
397 |
// return the name of the user that owns the process identified by vmid.
|
|
398 |
//
|
|
399 |
// note: this method should only be used via the Perf native methods.
|
|
400 |
// There are various costs to this method and limiting its use to the
|
|
401 |
// Perf native methods limits the impact to monitoring applications only.
|
|
402 |
//
|
|
403 |
static char* get_user_name(int vmid) {
|
|
404 |
|
|
405 |
// A fast implementation is not provided at this time. It's possible
|
|
406 |
// to provide a fast process id to user name mapping function using
|
|
407 |
// the win32 apis, but the default ACL for the process object only
|
|
408 |
// allows processes with the same owner SID to acquire the process
|
|
409 |
// handle (via OpenProcess(PROCESS_QUERY_INFORMATION)). It's possible
|
|
410 |
// to have the JVM change the ACL for the process object to allow arbitrary
|
|
411 |
// users to access the process handle and the process security token.
|
|
412 |
// The security ramifications need to be studied before providing this
|
|
413 |
// mechanism.
|
|
414 |
//
|
|
415 |
return get_user_name_slow(vmid);
|
|
416 |
}
|
|
417 |
|
|
418 |
// return the name of the shared memory file mapping object for the
|
|
419 |
// named shared memory region for the given user name and vmid.
|
|
420 |
//
|
|
421 |
// The file mapping object's name is not the file name. It is a name
|
|
422 |
// in a separate name space.
|
|
423 |
//
|
|
424 |
// the caller is expected to free the allocated memory.
|
|
425 |
//
|
|
426 |
static char *get_sharedmem_objectname(const char* user, int vmid) {
|
|
427 |
|
|
428 |
// construct file mapping object's name, add 3 for two '_' and a
|
|
429 |
// null terminator.
|
|
430 |
int nbytes = (int)strlen(PERFDATA_NAME) + (int)strlen(user) + 3;
|
|
431 |
|
|
432 |
// the id is converted to an unsigned value here because win32 allows
|
|
433 |
// negative process ids. However, OpenFileMapping API complains
|
|
434 |
// about a name containing a '-' characters.
|
|
435 |
//
|
|
436 |
nbytes += UINT_CHARS;
|
|
437 |
char* name = NEW_C_HEAP_ARRAY(char, nbytes);
|
|
438 |
_snprintf(name, nbytes, "%s_%s_%u", PERFDATA_NAME, user, vmid);
|
|
439 |
|
|
440 |
return name;
|
|
441 |
}
|
|
442 |
|
|
443 |
// return the file name of the backing store file for the named
|
|
444 |
// shared memory region for the given user name and vmid.
|
|
445 |
//
|
|
446 |
// the caller is expected to free the allocated memory.
|
|
447 |
//
|
|
448 |
static char* get_sharedmem_filename(const char* dirname, int vmid) {
|
|
449 |
|
|
450 |
// add 2 for the file separator and a null terminator.
|
|
451 |
size_t nbytes = strlen(dirname) + UINT_CHARS + 2;
|
|
452 |
|
|
453 |
char* name = NEW_C_HEAP_ARRAY(char, nbytes);
|
|
454 |
_snprintf(name, nbytes, "%s\\%d", dirname, vmid);
|
|
455 |
|
|
456 |
return name;
|
|
457 |
}
|
|
458 |
|
|
459 |
// remove file
|
|
460 |
//
|
|
461 |
// this method removes the file with the given file name.
|
|
462 |
//
|
|
463 |
// Note: if the indicated file is on an SMB network file system, this
|
|
464 |
// method may be unsuccessful in removing the file.
|
|
465 |
//
|
|
466 |
static void remove_file(const char* dirname, const char* filename) {
|
|
467 |
|
|
468 |
size_t nbytes = strlen(dirname) + strlen(filename) + 2;
|
|
469 |
char* path = NEW_C_HEAP_ARRAY(char, nbytes);
|
|
470 |
|
|
471 |
strcpy(path, dirname);
|
|
472 |
strcat(path, "\\");
|
|
473 |
strcat(path, filename);
|
|
474 |
|
|
475 |
if (::unlink(path) == OS_ERR) {
|
|
476 |
if (PrintMiscellaneous && Verbose) {
|
|
477 |
if (errno != ENOENT) {
|
|
478 |
warning("Could not unlink shared memory backing"
|
|
479 |
" store file %s : %s\n", path, strerror(errno));
|
|
480 |
}
|
|
481 |
}
|
|
482 |
}
|
|
483 |
|
|
484 |
FREE_C_HEAP_ARRAY(char, path);
|
|
485 |
}
|
|
486 |
|
|
487 |
// returns true if the process represented by pid is alive, otherwise
|
|
488 |
// returns false. the validity of the result is only accurate if the
|
|
489 |
// target process is owned by the same principal that owns this process.
|
|
490 |
// this method should not be used if to test the status of an otherwise
|
|
491 |
// arbitrary process unless it is know that this process has the appropriate
|
|
492 |
// privileges to guarantee a result valid.
|
|
493 |
//
|
|
494 |
static bool is_alive(int pid) {
|
|
495 |
|
|
496 |
HANDLE ph = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE, pid);
|
|
497 |
if (ph == NULL) {
|
|
498 |
// the process does not exist.
|
|
499 |
if (PrintMiscellaneous && Verbose) {
|
|
500 |
DWORD lastError = GetLastError();
|
|
501 |
if (lastError != ERROR_INVALID_PARAMETER) {
|
|
502 |
warning("OpenProcess failed: %d\n", GetLastError());
|
|
503 |
}
|
|
504 |
}
|
|
505 |
return false;
|
|
506 |
}
|
|
507 |
|
|
508 |
DWORD exit_status;
|
|
509 |
if (!GetExitCodeProcess(ph, &exit_status)) {
|
|
510 |
if (PrintMiscellaneous && Verbose) {
|
|
511 |
warning("GetExitCodeProcess failed: %d\n", GetLastError());
|
|
512 |
}
|
|
513 |
CloseHandle(ph);
|
|
514 |
return false;
|
|
515 |
}
|
|
516 |
|
|
517 |
CloseHandle(ph);
|
|
518 |
return (exit_status == STILL_ACTIVE) ? true : false;
|
|
519 |
}
|
|
520 |
|
|
521 |
// check if the file system is considered secure for the backing store files
|
|
522 |
//
|
|
523 |
static bool is_filesystem_secure(const char* path) {
|
|
524 |
|
|
525 |
char root_path[MAX_PATH];
|
|
526 |
char fs_type[MAX_PATH];
|
|
527 |
|
|
528 |
if (PerfBypassFileSystemCheck) {
|
|
529 |
if (PrintMiscellaneous && Verbose) {
|
|
530 |
warning("bypassing file system criteria checks for %s\n", path);
|
|
531 |
}
|
|
532 |
return true;
|
|
533 |
}
|
|
534 |
|
|
535 |
char* first_colon = strchr((char *)path, ':');
|
|
536 |
if (first_colon == NULL) {
|
|
537 |
if (PrintMiscellaneous && Verbose) {
|
|
538 |
warning("expected device specifier in path: %s\n", path);
|
|
539 |
}
|
|
540 |
return false;
|
|
541 |
}
|
|
542 |
|
|
543 |
size_t len = (size_t)(first_colon - path);
|
|
544 |
assert(len + 2 <= MAX_PATH, "unexpected device specifier length");
|
|
545 |
strncpy(root_path, path, len + 1);
|
|
546 |
root_path[len + 1] = '\\';
|
|
547 |
root_path[len + 2] = '\0';
|
|
548 |
|
|
549 |
// check that we have something like "C:\" or "AA:\"
|
|
550 |
assert(strlen(root_path) >= 3, "device specifier too short");
|
|
551 |
assert(strchr(root_path, ':') != NULL, "bad device specifier format");
|
|
552 |
assert(strchr(root_path, '\\') != NULL, "bad device specifier format");
|
|
553 |
|
|
554 |
DWORD maxpath;
|
|
555 |
DWORD flags;
|
|
556 |
|
|
557 |
if (!GetVolumeInformation(root_path, NULL, 0, NULL, &maxpath,
|
|
558 |
&flags, fs_type, MAX_PATH)) {
|
|
559 |
// we can't get information about the volume, so assume unsafe.
|
|
560 |
if (PrintMiscellaneous && Verbose) {
|
|
561 |
warning("could not get device information for %s: "
|
|
562 |
" path = %s: lasterror = %d\n",
|
|
563 |
root_path, path, GetLastError());
|
|
564 |
}
|
|
565 |
return false;
|
|
566 |
}
|
|
567 |
|
|
568 |
if ((flags & FS_PERSISTENT_ACLS) == 0) {
|
|
569 |
// file system doesn't support ACLs, declare file system unsafe
|
|
570 |
if (PrintMiscellaneous && Verbose) {
|
|
571 |
warning("file system type %s on device %s does not support"
|
|
572 |
" ACLs\n", fs_type, root_path);
|
|
573 |
}
|
|
574 |
return false;
|
|
575 |
}
|
|
576 |
|
|
577 |
if ((flags & FS_VOL_IS_COMPRESSED) != 0) {
|
|
578 |
// file system is compressed, declare file system unsafe
|
|
579 |
if (PrintMiscellaneous && Verbose) {
|
|
580 |
warning("file system type %s on device %s is compressed\n",
|
|
581 |
fs_type, root_path);
|
|
582 |
}
|
|
583 |
return false;
|
|
584 |
}
|
|
585 |
|
|
586 |
return true;
|
|
587 |
}
|
|
588 |
|
|
589 |
// cleanup stale shared memory resources
|
|
590 |
//
|
|
591 |
// This method attempts to remove all stale shared memory files in
|
|
592 |
// the named user temporary directory. It scans the named directory
|
|
593 |
// for files matching the pattern ^$[0-9]*$. For each file found, the
|
|
594 |
// process id is extracted from the file name and a test is run to
|
|
595 |
// determine if the process is alive. If the process is not alive,
|
|
596 |
// any stale file resources are removed.
|
|
597 |
//
|
|
598 |
static void cleanup_sharedmem_resources(const char* dirname) {
|
|
599 |
|
|
600 |
// open the user temp directory
|
|
601 |
DIR* dirp = os::opendir(dirname);
|
|
602 |
|
|
603 |
if (dirp == NULL) {
|
|
604 |
// directory doesn't exist, so there is nothing to cleanup
|
|
605 |
return;
|
|
606 |
}
|
|
607 |
|
|
608 |
if (!is_directory_secure(dirname)) {
|
|
609 |
// the directory is not secure, don't attempt any cleanup
|
|
610 |
return;
|
|
611 |
}
|
|
612 |
|
|
613 |
// for each entry in the directory that matches the expected file
|
|
614 |
// name pattern, determine if the file resources are stale and if
|
|
615 |
// so, remove the file resources. Note, instrumented HotSpot processes
|
|
616 |
// for this user may start and/or terminate during this search and
|
|
617 |
// remove or create new files in this directory. The behavior of this
|
|
618 |
// loop under these conditions is dependent upon the implementation of
|
|
619 |
// opendir/readdir.
|
|
620 |
//
|
|
621 |
struct dirent* entry;
|
|
622 |
char* dbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(dirname));
|
|
623 |
errno = 0;
|
|
624 |
while ((entry = os::readdir(dirp, (struct dirent *)dbuf)) != NULL) {
|
|
625 |
|
|
626 |
int pid = filename_to_pid(entry->d_name);
|
|
627 |
|
|
628 |
if (pid == 0) {
|
|
629 |
|
|
630 |
if (strcmp(entry->d_name, ".") != 0 && strcmp(entry->d_name, "..") != 0) {
|
|
631 |
|
|
632 |
// attempt to remove all unexpected files, except "." and ".."
|
|
633 |
remove_file(dirname, entry->d_name);
|
|
634 |
}
|
|
635 |
|
|
636 |
errno = 0;
|
|
637 |
continue;
|
|
638 |
}
|
|
639 |
|
|
640 |
// we now have a file name that converts to a valid integer
|
|
641 |
// that could represent a process id . if this process id
|
|
642 |
// matches the current process id or the process is not running,
|
|
643 |
// then remove the stale file resources.
|
|
644 |
//
|
|
645 |
// process liveness is detected by checking the exit status
|
|
646 |
// of the process. if the process id is valid and the exit status
|
|
647 |
// indicates that it is still running, the file file resources
|
|
648 |
// are not removed. If the process id is invalid, or if we don't
|
|
649 |
// have permissions to check the process status, or if the process
|
|
650 |
// id is valid and the process has terminated, the the file resources
|
|
651 |
// are assumed to be stale and are removed.
|
|
652 |
//
|
|
653 |
if (pid == os::current_process_id() || !is_alive(pid)) {
|
|
654 |
|
|
655 |
// we can only remove the file resources. Any mapped views
|
|
656 |
// of the file can only be unmapped by the processes that
|
|
657 |
// opened those views and the file mapping object will not
|
|
658 |
// get removed until all views are unmapped.
|
|
659 |
//
|
|
660 |
remove_file(dirname, entry->d_name);
|
|
661 |
}
|
|
662 |
errno = 0;
|
|
663 |
}
|
|
664 |
os::closedir(dirp);
|
|
665 |
FREE_C_HEAP_ARRAY(char, dbuf);
|
|
666 |
}
|
|
667 |
|
|
668 |
// create a file mapping object with the requested name, and size
|
|
669 |
// from the file represented by the given Handle object
|
|
670 |
//
|
|
671 |
static HANDLE create_file_mapping(const char* name, HANDLE fh, LPSECURITY_ATTRIBUTES fsa, size_t size) {
|
|
672 |
|
|
673 |
DWORD lowSize = (DWORD)size;
|
|
674 |
DWORD highSize = 0;
|
|
675 |
HANDLE fmh = NULL;
|
|
676 |
|
|
677 |
// Create a file mapping object with the given name. This function
|
|
678 |
// will grow the file to the specified size.
|
|
679 |
//
|
|
680 |
fmh = CreateFileMapping(
|
|
681 |
fh, /* HANDLE file handle for backing store */
|
|
682 |
fsa, /* LPSECURITY_ATTRIBUTES Not inheritable */
|
|
683 |
PAGE_READWRITE, /* DWORD protections */
|
|
684 |
highSize, /* DWORD High word of max size */
|
|
685 |
lowSize, /* DWORD Low word of max size */
|
|
686 |
name); /* LPCTSTR name for object */
|
|
687 |
|
|
688 |
if (fmh == NULL) {
|
|
689 |
if (PrintMiscellaneous && Verbose) {
|
|
690 |
warning("CreateFileMapping failed, lasterror = %d\n", GetLastError());
|
|
691 |
}
|
|
692 |
return NULL;
|
|
693 |
}
|
|
694 |
|
|
695 |
if (GetLastError() == ERROR_ALREADY_EXISTS) {
|
|
696 |
|
|
697 |
// a stale file mapping object was encountered. This object may be
|
|
698 |
// owned by this or some other user and cannot be removed until
|
|
699 |
// the other processes either exit or close their mapping objects
|
|
700 |
// and/or mapped views of this mapping object.
|
|
701 |
//
|
|
702 |
if (PrintMiscellaneous && Verbose) {
|
|
703 |
warning("file mapping already exists, lasterror = %d\n", GetLastError());
|
|
704 |
}
|
|
705 |
|
|
706 |
CloseHandle(fmh);
|
|
707 |
return NULL;
|
|
708 |
}
|
|
709 |
|
|
710 |
return fmh;
|
|
711 |
}
|
|
712 |
|
|
713 |
|
|
714 |
// method to free the given security descriptor and the contained
|
|
715 |
// access control list.
|
|
716 |
//
|
|
717 |
static void free_security_desc(PSECURITY_DESCRIPTOR pSD) {
|
|
718 |
|
|
719 |
BOOL success, exists, isdefault;
|
|
720 |
PACL pACL;
|
|
721 |
|
|
722 |
if (pSD != NULL) {
|
|
723 |
|
|
724 |
// get the access control list from the security descriptor
|
|
725 |
success = GetSecurityDescriptorDacl(pSD, &exists, &pACL, &isdefault);
|
|
726 |
|
|
727 |
// if an ACL existed and it was not a default acl, then it must
|
|
728 |
// be an ACL we enlisted. free the resources.
|
|
729 |
//
|
|
730 |
if (success && exists && pACL != NULL && !isdefault) {
|
|
731 |
FREE_C_HEAP_ARRAY(char, pACL);
|
|
732 |
}
|
|
733 |
|
|
734 |
// free the security descriptor
|
|
735 |
FREE_C_HEAP_ARRAY(char, pSD);
|
|
736 |
}
|
|
737 |
}
|
|
738 |
|
|
739 |
// method to free up a security attributes structure and any
|
|
740 |
// contained security descriptors and ACL
|
|
741 |
//
|
|
742 |
static void free_security_attr(LPSECURITY_ATTRIBUTES lpSA) {
|
|
743 |
|
|
744 |
if (lpSA != NULL) {
|
|
745 |
// free the contained security descriptor and the ACL
|
|
746 |
free_security_desc(lpSA->lpSecurityDescriptor);
|
|
747 |
lpSA->lpSecurityDescriptor = NULL;
|
|
748 |
|
|
749 |
// free the security attributes structure
|
|
750 |
FREE_C_HEAP_ARRAY(char, lpSA);
|
|
751 |
}
|
|
752 |
}
|
|
753 |
|
|
754 |
// get the user SID for the process indicated by the process handle
|
|
755 |
//
|
|
756 |
static PSID get_user_sid(HANDLE hProcess) {
|
|
757 |
|
|
758 |
HANDLE hAccessToken;
|
|
759 |
PTOKEN_USER token_buf = NULL;
|
|
760 |
DWORD rsize = 0;
|
|
761 |
|
|
762 |
if (hProcess == NULL) {
|
|
763 |
return NULL;
|
|
764 |
}
|
|
765 |
|
|
766 |
// get the process token
|
|
767 |
if (!OpenProcessToken(hProcess, TOKEN_READ, &hAccessToken)) {
|
|
768 |
if (PrintMiscellaneous && Verbose) {
|
|
769 |
warning("OpenProcessToken failure: lasterror = %d \n", GetLastError());
|
|
770 |
}
|
|
771 |
return NULL;
|
|
772 |
}
|
|
773 |
|
|
774 |
// determine the size of the token structured needed to retrieve
|
|
775 |
// the user token information from the access token.
|
|
776 |
//
|
|
777 |
if (!GetTokenInformation(hAccessToken, TokenUser, NULL, rsize, &rsize)) {
|
|
778 |
DWORD lasterror = GetLastError();
|
|
779 |
if (lasterror != ERROR_INSUFFICIENT_BUFFER) {
|
|
780 |
if (PrintMiscellaneous && Verbose) {
|
|
781 |
warning("GetTokenInformation failure: lasterror = %d,"
|
|
782 |
" rsize = %d\n", lasterror, rsize);
|
|
783 |
}
|
|
784 |
CloseHandle(hAccessToken);
|
|
785 |
return NULL;
|
|
786 |
}
|
|
787 |
}
|
|
788 |
|
|
789 |
token_buf = (PTOKEN_USER) NEW_C_HEAP_ARRAY(char, rsize);
|
|
790 |
|
|
791 |
// get the user token information
|
|
792 |
if (!GetTokenInformation(hAccessToken, TokenUser, token_buf, rsize, &rsize)) {
|
|
793 |
if (PrintMiscellaneous && Verbose) {
|
|
794 |
warning("GetTokenInformation failure: lasterror = %d,"
|
|
795 |
" rsize = %d\n", GetLastError(), rsize);
|
|
796 |
}
|
|
797 |
FREE_C_HEAP_ARRAY(char, token_buf);
|
|
798 |
CloseHandle(hAccessToken);
|
|
799 |
return NULL;
|
|
800 |
}
|
|
801 |
|
|
802 |
DWORD nbytes = GetLengthSid(token_buf->User.Sid);
|
|
803 |
PSID pSID = NEW_C_HEAP_ARRAY(char, nbytes);
|
|
804 |
|
|
805 |
if (!CopySid(nbytes, pSID, token_buf->User.Sid)) {
|
|
806 |
if (PrintMiscellaneous && Verbose) {
|
|
807 |
warning("GetTokenInformation failure: lasterror = %d,"
|
|
808 |
" rsize = %d\n", GetLastError(), rsize);
|
|
809 |
}
|
|
810 |
FREE_C_HEAP_ARRAY(char, token_buf);
|
|
811 |
FREE_C_HEAP_ARRAY(char, pSID);
|
|
812 |
CloseHandle(hAccessToken);
|
|
813 |
return NULL;
|
|
814 |
}
|
|
815 |
|
|
816 |
// close the access token.
|
|
817 |
CloseHandle(hAccessToken);
|
|
818 |
FREE_C_HEAP_ARRAY(char, token_buf);
|
|
819 |
|
|
820 |
return pSID;
|
|
821 |
}
|
|
822 |
|
|
823 |
// structure used to consolidate access control entry information
|
|
824 |
//
|
|
825 |
typedef struct ace_data {
|
|
826 |
PSID pSid; // SID of the ACE
|
|
827 |
DWORD mask; // mask for the ACE
|
|
828 |
} ace_data_t;
|
|
829 |
|
|
830 |
|
|
831 |
// method to add an allow access control entry with the access rights
|
|
832 |
// indicated in mask for the principal indicated in SID to the given
|
|
833 |
// security descriptor. Much of the DACL handling was adapted from
|
|
834 |
// the example provided here:
|
|
835 |
// http://support.microsoft.com/kb/102102/EN-US/
|
|
836 |
//
|
|
837 |
|
|
838 |
static bool add_allow_aces(PSECURITY_DESCRIPTOR pSD,
|
|
839 |
ace_data_t aces[], int ace_count) {
|
|
840 |
PACL newACL = NULL;
|
|
841 |
PACL oldACL = NULL;
|
|
842 |
|
|
843 |
if (pSD == NULL) {
|
|
844 |
return false;
|
|
845 |
}
|
|
846 |
|
|
847 |
BOOL exists, isdefault;
|
|
848 |
|
|
849 |
// retrieve any existing access control list.
|
|
850 |
if (!GetSecurityDescriptorDacl(pSD, &exists, &oldACL, &isdefault)) {
|
|
851 |
if (PrintMiscellaneous && Verbose) {
|
|
852 |
warning("GetSecurityDescriptor failure: lasterror = %d \n",
|
|
853 |
GetLastError());
|
|
854 |
}
|
|
855 |
return false;
|
|
856 |
}
|
|
857 |
|
|
858 |
// get the size of the DACL
|
|
859 |
ACL_SIZE_INFORMATION aclinfo;
|
|
860 |
|
|
861 |
// GetSecurityDescriptorDacl may return true value for exists (lpbDaclPresent)
|
|
862 |
// while oldACL is NULL for some case.
|
|
863 |
if (oldACL == NULL) {
|
|
864 |
exists = FALSE;
|
|
865 |
}
|
|
866 |
|
|
867 |
if (exists) {
|
|
868 |
if (!GetAclInformation(oldACL, &aclinfo,
|
|
869 |
sizeof(ACL_SIZE_INFORMATION),
|
|
870 |
AclSizeInformation)) {
|
|
871 |
if (PrintMiscellaneous && Verbose) {
|
|
872 |
warning("GetAclInformation failure: lasterror = %d \n", GetLastError());
|
|
873 |
return false;
|
|
874 |
}
|
|
875 |
}
|
|
876 |
} else {
|
|
877 |
aclinfo.AceCount = 0; // assume NULL DACL
|
|
878 |
aclinfo.AclBytesFree = 0;
|
|
879 |
aclinfo.AclBytesInUse = sizeof(ACL);
|
|
880 |
}
|
|
881 |
|
|
882 |
// compute the size needed for the new ACL
|
|
883 |
// initial size of ACL is sum of the following:
|
|
884 |
// * size of ACL structure.
|
|
885 |
// * size of each ACE structure that ACL is to contain minus the sid
|
|
886 |
// sidStart member (DWORD) of the ACE.
|
|
887 |
// * length of the SID that each ACE is to contain.
|
|
888 |
DWORD newACLsize = aclinfo.AclBytesInUse +
|
|
889 |
(sizeof(ACCESS_ALLOWED_ACE) - sizeof(DWORD)) * ace_count;
|
|
890 |
for (int i = 0; i < ace_count; i++) {
|
|
891 |
newACLsize += GetLengthSid(aces[i].pSid);
|
|
892 |
}
|
|
893 |
|
|
894 |
// create the new ACL
|
|
895 |
newACL = (PACL) NEW_C_HEAP_ARRAY(char, newACLsize);
|
|
896 |
|
|
897 |
if (!InitializeAcl(newACL, newACLsize, ACL_REVISION)) {
|
|
898 |
if (PrintMiscellaneous && Verbose) {
|
|
899 |
warning("InitializeAcl failure: lasterror = %d \n", GetLastError());
|
|
900 |
}
|
|
901 |
FREE_C_HEAP_ARRAY(char, newACL);
|
|
902 |
return false;
|
|
903 |
}
|
|
904 |
|
|
905 |
unsigned int ace_index = 0;
|
|
906 |
// copy any existing ACEs from the old ACL (if any) to the new ACL.
|
|
907 |
if (aclinfo.AceCount != 0) {
|
|
908 |
while (ace_index < aclinfo.AceCount) {
|
|
909 |
LPVOID ace;
|
|
910 |
if (!GetAce(oldACL, ace_index, &ace)) {
|
|
911 |
if (PrintMiscellaneous && Verbose) {
|
|
912 |
warning("InitializeAcl failure: lasterror = %d \n", GetLastError());
|
|
913 |
}
|
|
914 |
FREE_C_HEAP_ARRAY(char, newACL);
|
|
915 |
return false;
|
|
916 |
}
|
|
917 |
if (((ACCESS_ALLOWED_ACE *)ace)->Header.AceFlags && INHERITED_ACE) {
|
|
918 |
// this is an inherited, allowed ACE; break from loop so we can
|
|
919 |
// add the new access allowed, non-inherited ACE in the correct
|
|
920 |
// position, immediately following all non-inherited ACEs.
|
|
921 |
break;
|
|
922 |
}
|
|
923 |
|
|
924 |
// determine if the SID of this ACE matches any of the SIDs
|
|
925 |
// for which we plan to set ACEs.
|
|
926 |
int matches = 0;
|
|
927 |
for (int i = 0; i < ace_count; i++) {
|
|
928 |
if (EqualSid(aces[i].pSid, &(((ACCESS_ALLOWED_ACE *)ace)->SidStart))) {
|
|
929 |
matches++;
|
|
930 |
break;
|
|
931 |
}
|
|
932 |
}
|
|
933 |
|
|
934 |
// if there are no SID matches, then add this existing ACE to the new ACL
|
|
935 |
if (matches == 0) {
|
|
936 |
if (!AddAce(newACL, ACL_REVISION, MAXDWORD, ace,
|
|
937 |
((PACE_HEADER)ace)->AceSize)) {
|
|
938 |
if (PrintMiscellaneous && Verbose) {
|
|
939 |
warning("AddAce failure: lasterror = %d \n", GetLastError());
|
|
940 |
}
|
|
941 |
FREE_C_HEAP_ARRAY(char, newACL);
|
|
942 |
return false;
|
|
943 |
}
|
|
944 |
}
|
|
945 |
ace_index++;
|
|
946 |
}
|
|
947 |
}
|
|
948 |
|
|
949 |
// add the passed-in access control entries to the new ACL
|
|
950 |
for (int i = 0; i < ace_count; i++) {
|
|
951 |
if (!AddAccessAllowedAce(newACL, ACL_REVISION,
|
|
952 |
aces[i].mask, aces[i].pSid)) {
|
|
953 |
if (PrintMiscellaneous && Verbose) {
|
|
954 |
warning("AddAccessAllowedAce failure: lasterror = %d \n",
|
|
955 |
GetLastError());
|
|
956 |
}
|
|
957 |
FREE_C_HEAP_ARRAY(char, newACL);
|
|
958 |
return false;
|
|
959 |
}
|
|
960 |
}
|
|
961 |
|
|
962 |
// now copy the rest of the inherited ACEs from the old ACL
|
|
963 |
if (aclinfo.AceCount != 0) {
|
|
964 |
// picking up at ace_index, where we left off in the
|
|
965 |
// previous ace_index loop
|
|
966 |
while (ace_index < aclinfo.AceCount) {
|
|
967 |
LPVOID ace;
|
|
968 |
if (!GetAce(oldACL, ace_index, &ace)) {
|
|
969 |
if (PrintMiscellaneous && Verbose) {
|
|
970 |
warning("InitializeAcl failure: lasterror = %d \n", GetLastError());
|
|
971 |
}
|
|
972 |
FREE_C_HEAP_ARRAY(char, newACL);
|
|
973 |
return false;
|
|
974 |
}
|
|
975 |
if (!AddAce(newACL, ACL_REVISION, MAXDWORD, ace,
|
|
976 |
((PACE_HEADER)ace)->AceSize)) {
|
|
977 |
if (PrintMiscellaneous && Verbose) {
|
|
978 |
warning("AddAce failure: lasterror = %d \n", GetLastError());
|
|
979 |
}
|
|
980 |
FREE_C_HEAP_ARRAY(char, newACL);
|
|
981 |
return false;
|
|
982 |
}
|
|
983 |
ace_index++;
|
|
984 |
}
|
|
985 |
}
|
|
986 |
|
|
987 |
// add the new ACL to the security descriptor.
|
|
988 |
if (!SetSecurityDescriptorDacl(pSD, TRUE, newACL, FALSE)) {
|
|
989 |
if (PrintMiscellaneous && Verbose) {
|
|
990 |
warning("SetSecurityDescriptorDacl failure:"
|
|
991 |
" lasterror = %d \n", GetLastError());
|
|
992 |
}
|
|
993 |
FREE_C_HEAP_ARRAY(char, newACL);
|
|
994 |
return false;
|
|
995 |
}
|
|
996 |
|
|
997 |
// if running on windows 2000 or later, set the automatic inheritence
|
|
998 |
// control flags.
|
|
999 |
SetSecurityDescriptorControlFnPtr _SetSecurityDescriptorControl;
|
|
1000 |
_SetSecurityDescriptorControl = (SetSecurityDescriptorControlFnPtr)
|
|
1001 |
GetProcAddress(GetModuleHandle(TEXT("advapi32.dll")),
|
|
1002 |
"SetSecurityDescriptorControl");
|
|
1003 |
|
|
1004 |
if (_SetSecurityDescriptorControl != NULL) {
|
|
1005 |
// We do not want to further propogate inherited DACLs, so making them
|
|
1006 |
// protected prevents that.
|
|
1007 |
if (!_SetSecurityDescriptorControl(pSD, SE_DACL_PROTECTED,
|
|
1008 |
SE_DACL_PROTECTED)) {
|
|
1009 |
if (PrintMiscellaneous && Verbose) {
|
|
1010 |
warning("SetSecurityDescriptorControl failure:"
|
|
1011 |
" lasterror = %d \n", GetLastError());
|
|
1012 |
}
|
|
1013 |
FREE_C_HEAP_ARRAY(char, newACL);
|
|
1014 |
return false;
|
|
1015 |
}
|
|
1016 |
}
|
|
1017 |
// Note, the security descriptor maintains a reference to the newACL, not
|
|
1018 |
// a copy of it. Therefore, the newACL is not freed here. It is freed when
|
|
1019 |
// the security descriptor containing its reference is freed.
|
|
1020 |
//
|
|
1021 |
return true;
|
|
1022 |
}
|
|
1023 |
|
|
1024 |
// method to create a security attributes structure, which contains a
|
|
1025 |
// security descriptor and an access control list comprised of 0 or more
|
|
1026 |
// access control entries. The method take an array of ace_data structures
|
|
1027 |
// that indicate the ACE to be added to the security descriptor.
|
|
1028 |
//
|
|
1029 |
// the caller must free the resources associated with the security
|
|
1030 |
// attributes structure created by this method by calling the
|
|
1031 |
// free_security_attr() method.
|
|
1032 |
//
|
|
1033 |
static LPSECURITY_ATTRIBUTES make_security_attr(ace_data_t aces[], int count) {
|
|
1034 |
|
|
1035 |
// allocate space for a security descriptor
|
|
1036 |
PSECURITY_DESCRIPTOR pSD = (PSECURITY_DESCRIPTOR)
|
|
1037 |
NEW_C_HEAP_ARRAY(char, SECURITY_DESCRIPTOR_MIN_LENGTH);
|
|
1038 |
|
|
1039 |
// initialize the security descriptor
|
|
1040 |
if (!InitializeSecurityDescriptor(pSD, SECURITY_DESCRIPTOR_REVISION)) {
|
|
1041 |
if (PrintMiscellaneous && Verbose) {
|
|
1042 |
warning("InitializeSecurityDescriptor failure: "
|
|
1043 |
"lasterror = %d \n", GetLastError());
|
|
1044 |
}
|
|
1045 |
free_security_desc(pSD);
|
|
1046 |
return NULL;
|
|
1047 |
}
|
|
1048 |
|
|
1049 |
// add the access control entries
|
|
1050 |
if (!add_allow_aces(pSD, aces, count)) {
|
|
1051 |
free_security_desc(pSD);
|
|
1052 |
return NULL;
|
|
1053 |
}
|
|
1054 |
|
|
1055 |
// allocate and initialize the security attributes structure and
|
|
1056 |
// return it to the caller.
|
|
1057 |
//
|
|
1058 |
LPSECURITY_ATTRIBUTES lpSA = (LPSECURITY_ATTRIBUTES)
|
|
1059 |
NEW_C_HEAP_ARRAY(char, sizeof(SECURITY_ATTRIBUTES));
|
|
1060 |
lpSA->nLength = sizeof(SECURITY_ATTRIBUTES);
|
|
1061 |
lpSA->lpSecurityDescriptor = pSD;
|
|
1062 |
lpSA->bInheritHandle = FALSE;
|
|
1063 |
|
|
1064 |
return(lpSA);
|
|
1065 |
}
|
|
1066 |
|
|
1067 |
// method to create a security attributes structure with a restrictive
|
|
1068 |
// access control list that creates a set access rights for the user/owner
|
|
1069 |
// of the securable object and a separate set access rights for everyone else.
|
|
1070 |
// also provides for full access rights for the administrator group.
|
|
1071 |
//
|
|
1072 |
// the caller must free the resources associated with the security
|
|
1073 |
// attributes structure created by this method by calling the
|
|
1074 |
// free_security_attr() method.
|
|
1075 |
//
|
|
1076 |
|
|
1077 |
static LPSECURITY_ATTRIBUTES make_user_everybody_admin_security_attr(
|
|
1078 |
DWORD umask, DWORD emask, DWORD amask) {
|
|
1079 |
|
|
1080 |
ace_data_t aces[3];
|
|
1081 |
|
|
1082 |
// initialize the user ace data
|
|
1083 |
aces[0].pSid = get_user_sid(GetCurrentProcess());
|
|
1084 |
aces[0].mask = umask;
|
|
1085 |
|
|
1086 |
// get the well known SID for BUILTIN\Administrators
|
|
1087 |
PSID administratorsSid = NULL;
|
|
1088 |
SID_IDENTIFIER_AUTHORITY SIDAuthAdministrators = SECURITY_NT_AUTHORITY;
|
|
1089 |
|
|
1090 |
if (!AllocateAndInitializeSid( &SIDAuthAdministrators, 2,
|
|
1091 |
SECURITY_BUILTIN_DOMAIN_RID,
|
|
1092 |
DOMAIN_ALIAS_RID_ADMINS,
|
|
1093 |
0, 0, 0, 0, 0, 0, &administratorsSid)) {
|
|
1094 |
|
|
1095 |
if (PrintMiscellaneous && Verbose) {
|
|
1096 |
warning("AllocateAndInitializeSid failure: "
|
|
1097 |
"lasterror = %d \n", GetLastError());
|
|
1098 |
}
|
|
1099 |
return NULL;
|
|
1100 |
}
|
|
1101 |
|
|
1102 |
// initialize the ace data for administrator group
|
|
1103 |
aces[1].pSid = administratorsSid;
|
|
1104 |
aces[1].mask = amask;
|
|
1105 |
|
|
1106 |
// get the well known SID for the universal Everybody
|
|
1107 |
PSID everybodySid = NULL;
|
|
1108 |
SID_IDENTIFIER_AUTHORITY SIDAuthEverybody = SECURITY_WORLD_SID_AUTHORITY;
|
|
1109 |
|
|
1110 |
if (!AllocateAndInitializeSid( &SIDAuthEverybody, 1, SECURITY_WORLD_RID,
|
|
1111 |
0, 0, 0, 0, 0, 0, 0, &everybodySid)) {
|
|
1112 |
|
|
1113 |
if (PrintMiscellaneous && Verbose) {
|
|
1114 |
warning("AllocateAndInitializeSid failure: "
|
|
1115 |
"lasterror = %d \n", GetLastError());
|
|
1116 |
}
|
|
1117 |
return NULL;
|
|
1118 |
}
|
|
1119 |
|
|
1120 |
// initialize the ace data for everybody else.
|
|
1121 |
aces[2].pSid = everybodySid;
|
|
1122 |
aces[2].mask = emask;
|
|
1123 |
|
|
1124 |
// create a security attributes structure with access control
|
|
1125 |
// entries as initialized above.
|
|
1126 |
LPSECURITY_ATTRIBUTES lpSA = make_security_attr(aces, 3);
|
|
1127 |
FREE_C_HEAP_ARRAY(char, aces[0].pSid);
|
|
1128 |
FreeSid(everybodySid);
|
|
1129 |
FreeSid(administratorsSid);
|
|
1130 |
return(lpSA);
|
|
1131 |
}
|
|
1132 |
|
|
1133 |
|
|
1134 |
// method to create the security attributes structure for restricting
|
|
1135 |
// access to the user temporary directory.
|
|
1136 |
//
|
|
1137 |
// the caller must free the resources associated with the security
|
|
1138 |
// attributes structure created by this method by calling the
|
|
1139 |
// free_security_attr() method.
|
|
1140 |
//
|
|
1141 |
static LPSECURITY_ATTRIBUTES make_tmpdir_security_attr() {
|
|
1142 |
|
|
1143 |
// create full access rights for the user/owner of the directory
|
|
1144 |
// and read-only access rights for everybody else. This is
|
|
1145 |
// effectively equivalent to UNIX 755 permissions on a directory.
|
|
1146 |
//
|
|
1147 |
DWORD umask = STANDARD_RIGHTS_REQUIRED | FILE_ALL_ACCESS;
|
|
1148 |
DWORD emask = GENERIC_READ | FILE_LIST_DIRECTORY | FILE_TRAVERSE;
|
|
1149 |
DWORD amask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS;
|
|
1150 |
|
|
1151 |
return make_user_everybody_admin_security_attr(umask, emask, amask);
|
|
1152 |
}
|
|
1153 |
|
|
1154 |
// method to create the security attributes structure for restricting
|
|
1155 |
// access to the shared memory backing store file.
|
|
1156 |
//
|
|
1157 |
// the caller must free the resources associated with the security
|
|
1158 |
// attributes structure created by this method by calling the
|
|
1159 |
// free_security_attr() method.
|
|
1160 |
//
|
|
1161 |
static LPSECURITY_ATTRIBUTES make_file_security_attr() {
|
|
1162 |
|
|
1163 |
// create extensive access rights for the user/owner of the file
|
|
1164 |
// and attribute read-only access rights for everybody else. This
|
|
1165 |
// is effectively equivalent to UNIX 600 permissions on a file.
|
|
1166 |
//
|
|
1167 |
DWORD umask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS;
|
|
1168 |
DWORD emask = STANDARD_RIGHTS_READ | FILE_READ_ATTRIBUTES |
|
|
1169 |
FILE_READ_EA | FILE_LIST_DIRECTORY | FILE_TRAVERSE;
|
|
1170 |
DWORD amask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS;
|
|
1171 |
|
|
1172 |
return make_user_everybody_admin_security_attr(umask, emask, amask);
|
|
1173 |
}
|
|
1174 |
|
|
1175 |
// method to create the security attributes structure for restricting
|
|
1176 |
// access to the name shared memory file mapping object.
|
|
1177 |
//
|
|
1178 |
// the caller must free the resources associated with the security
|
|
1179 |
// attributes structure created by this method by calling the
|
|
1180 |
// free_security_attr() method.
|
|
1181 |
//
|
|
1182 |
static LPSECURITY_ATTRIBUTES make_smo_security_attr() {
|
|
1183 |
|
|
1184 |
// create extensive access rights for the user/owner of the shared
|
|
1185 |
// memory object and attribute read-only access rights for everybody
|
|
1186 |
// else. This is effectively equivalent to UNIX 600 permissions on
|
|
1187 |
// on the shared memory object.
|
|
1188 |
//
|
|
1189 |
DWORD umask = STANDARD_RIGHTS_REQUIRED | FILE_MAP_ALL_ACCESS;
|
|
1190 |
DWORD emask = STANDARD_RIGHTS_READ; // attributes only
|
|
1191 |
DWORD amask = STANDARD_RIGHTS_ALL | FILE_MAP_ALL_ACCESS;
|
|
1192 |
|
|
1193 |
return make_user_everybody_admin_security_attr(umask, emask, amask);
|
|
1194 |
}
|
|
1195 |
|
|
1196 |
// make the user specific temporary directory
|
|
1197 |
//
|
|
1198 |
static bool make_user_tmp_dir(const char* dirname) {
|
|
1199 |
|
|
1200 |
|
|
1201 |
LPSECURITY_ATTRIBUTES pDirSA = make_tmpdir_security_attr();
|
|
1202 |
if (pDirSA == NULL) {
|
|
1203 |
return false;
|
|
1204 |
}
|
|
1205 |
|
|
1206 |
|
|
1207 |
// create the directory with the given security attributes
|
|
1208 |
if (!CreateDirectory(dirname, pDirSA)) {
|
|
1209 |
DWORD lasterror = GetLastError();
|
|
1210 |
if (lasterror == ERROR_ALREADY_EXISTS) {
|
|
1211 |
// The directory already exists and was probably created by another
|
|
1212 |
// JVM instance. However, this could also be the result of a
|
|
1213 |
// deliberate symlink. Verify that the existing directory is safe.
|
|
1214 |
//
|
|
1215 |
if (!is_directory_secure(dirname)) {
|
|
1216 |
// directory is not secure
|
|
1217 |
if (PrintMiscellaneous && Verbose) {
|
|
1218 |
warning("%s directory is insecure\n", dirname);
|
|
1219 |
}
|
|
1220 |
return false;
|
|
1221 |
}
|
|
1222 |
// The administrator should be able to delete this directory.
|
|
1223 |
// But the directory created by previous version of JVM may not
|
|
1224 |
// have permission for administrators to delete this directory.
|
|
1225 |
// So add full permission to the administrator. Also setting new
|
|
1226 |
// DACLs might fix the corrupted the DACLs.
|
|
1227 |
SECURITY_INFORMATION secInfo = DACL_SECURITY_INFORMATION;
|
|
1228 |
if (!SetFileSecurity(dirname, secInfo, pDirSA->lpSecurityDescriptor)) {
|
|
1229 |
if (PrintMiscellaneous && Verbose) {
|
|
1230 |
lasterror = GetLastError();
|
|
1231 |
warning("SetFileSecurity failed for %s directory. lasterror %d \n",
|
|
1232 |
dirname, lasterror);
|
|
1233 |
}
|
|
1234 |
}
|
|
1235 |
}
|
|
1236 |
else {
|
|
1237 |
if (PrintMiscellaneous && Verbose) {
|
|
1238 |
warning("CreateDirectory failed: %d\n", GetLastError());
|
|
1239 |
}
|
|
1240 |
return false;
|
|
1241 |
}
|
|
1242 |
}
|
|
1243 |
|
|
1244 |
// free the security attributes structure
|
|
1245 |
free_security_attr(pDirSA);
|
|
1246 |
|
|
1247 |
return true;
|
|
1248 |
}
|
|
1249 |
|
|
1250 |
// create the shared memory resources
|
|
1251 |
//
|
|
1252 |
// This function creates the shared memory resources. This includes
|
|
1253 |
// the backing store file and the file mapping shared memory object.
|
|
1254 |
//
|
|
1255 |
static HANDLE create_sharedmem_resources(const char* dirname, const char* filename, const char* objectname, size_t size) {
|
|
1256 |
|
|
1257 |
HANDLE fh = INVALID_HANDLE_VALUE;
|
|
1258 |
HANDLE fmh = NULL;
|
|
1259 |
|
|
1260 |
|
|
1261 |
// create the security attributes for the backing store file
|
|
1262 |
LPSECURITY_ATTRIBUTES lpFileSA = make_file_security_attr();
|
|
1263 |
if (lpFileSA == NULL) {
|
|
1264 |
return NULL;
|
|
1265 |
}
|
|
1266 |
|
|
1267 |
// create the security attributes for the shared memory object
|
|
1268 |
LPSECURITY_ATTRIBUTES lpSmoSA = make_smo_security_attr();
|
|
1269 |
if (lpSmoSA == NULL) {
|
|
1270 |
free_security_attr(lpFileSA);
|
|
1271 |
return NULL;
|
|
1272 |
}
|
|
1273 |
|
|
1274 |
// create the user temporary directory
|
|
1275 |
if (!make_user_tmp_dir(dirname)) {
|
|
1276 |
// could not make/find the directory or the found directory
|
|
1277 |
// was not secure
|
|
1278 |
return NULL;
|
|
1279 |
}
|
|
1280 |
|
|
1281 |
// Create the file - the FILE_FLAG_DELETE_ON_CLOSE flag allows the
|
|
1282 |
// file to be deleted by the last process that closes its handle to
|
|
1283 |
// the file. This is important as the apis do not allow a terminating
|
|
1284 |
// JVM being monitored by another process to remove the file name.
|
|
1285 |
//
|
|
1286 |
// the FILE_SHARE_DELETE share mode is valid only in winnt
|
|
1287 |
//
|
|
1288 |
fh = CreateFile(
|
|
1289 |
filename, /* LPCTSTR file name */
|
|
1290 |
|
|
1291 |
GENERIC_READ|GENERIC_WRITE, /* DWORD desired access */
|
|
1292 |
|
|
1293 |
(os::win32::is_nt() ? FILE_SHARE_DELETE : 0)|
|
|
1294 |
FILE_SHARE_READ, /* DWORD share mode, future READONLY
|
|
1295 |
* open operations allowed
|
|
1296 |
*/
|
|
1297 |
lpFileSA, /* LPSECURITY security attributes */
|
|
1298 |
CREATE_ALWAYS, /* DWORD creation disposition
|
|
1299 |
* create file, if it already
|
|
1300 |
* exists, overwrite it.
|
|
1301 |
*/
|
|
1302 |
FILE_FLAG_DELETE_ON_CLOSE, /* DWORD flags and attributes */
|
|
1303 |
|
|
1304 |
NULL); /* HANDLE template file access */
|
|
1305 |
|
|
1306 |
free_security_attr(lpFileSA);
|
|
1307 |
|
|
1308 |
if (fh == INVALID_HANDLE_VALUE) {
|
|
1309 |
DWORD lasterror = GetLastError();
|
|
1310 |
if (PrintMiscellaneous && Verbose) {
|
|
1311 |
warning("could not create file %s: %d\n", filename, lasterror);
|
|
1312 |
}
|
|
1313 |
return NULL;
|
|
1314 |
}
|
|
1315 |
|
|
1316 |
// try to create the file mapping
|
|
1317 |
fmh = create_file_mapping(objectname, fh, lpSmoSA, size);
|
|
1318 |
|
|
1319 |
free_security_attr(lpSmoSA);
|
|
1320 |
|
|
1321 |
if (fmh == NULL) {
|
|
1322 |
// closing the file handle here will decrement the reference count
|
|
1323 |
// on the file. When all processes accessing the file close their
|
|
1324 |
// handle to it, the reference count will decrement to 0 and the
|
|
1325 |
// OS will delete the file. These semantics are requested by the
|
|
1326 |
// FILE_FLAG_DELETE_ON_CLOSE flag in CreateFile call above.
|
|
1327 |
CloseHandle(fh);
|
|
1328 |
fh = NULL;
|
|
1329 |
return NULL;
|
|
1330 |
}
|
|
1331 |
|
|
1332 |
// the file has been successfully created and the file mapping
|
|
1333 |
// object has been created.
|
|
1334 |
sharedmem_fileHandle = fh;
|
|
1335 |
sharedmem_fileName = strdup(filename);
|
|
1336 |
|
|
1337 |
return fmh;
|
|
1338 |
}
|
|
1339 |
|
|
1340 |
// open the shared memory object for the given vmid.
|
|
1341 |
//
|
|
1342 |
static HANDLE open_sharedmem_object(const char* objectname, DWORD ofm_access, TRAPS) {
|
|
1343 |
|
|
1344 |
HANDLE fmh;
|
|
1345 |
|
|
1346 |
// open the file mapping with the requested mode
|
|
1347 |
fmh = OpenFileMapping(
|
|
1348 |
ofm_access, /* DWORD access mode */
|
|
1349 |
FALSE, /* BOOL inherit flag - Do not allow inherit */
|
|
1350 |
objectname); /* name for object */
|
|
1351 |
|
|
1352 |
if (fmh == NULL) {
|
|
1353 |
if (PrintMiscellaneous && Verbose) {
|
|
1354 |
warning("OpenFileMapping failed for shared memory object %s:"
|
|
1355 |
" lasterror = %d\n", objectname, GetLastError());
|
|
1356 |
}
|
|
1357 |
THROW_MSG_(vmSymbols::java_lang_Exception(),
|
|
1358 |
"Could not open PerfMemory", INVALID_HANDLE_VALUE);
|
|
1359 |
}
|
|
1360 |
|
|
1361 |
return fmh;;
|
|
1362 |
}
|
|
1363 |
|
|
1364 |
// create a named shared memory region
|
|
1365 |
//
|
|
1366 |
// On Win32, a named shared memory object has a name space that
|
|
1367 |
// is independent of the file system name space. Shared memory object,
|
|
1368 |
// or more precisely, file mapping objects, provide no mechanism to
|
|
1369 |
// inquire the size of the memory region. There is also no api to
|
|
1370 |
// enumerate the memory regions for various processes.
|
|
1371 |
//
|
|
1372 |
// This implementation utilizes the shared memory name space in parallel
|
|
1373 |
// with the file system name space. This allows us to determine the
|
|
1374 |
// size of the shared memory region from the size of the file and it
|
|
1375 |
// allows us to provide a common, file system based name space for
|
|
1376 |
// shared memory across platforms.
|
|
1377 |
//
|
|
1378 |
static char* mapping_create_shared(size_t size) {
|
|
1379 |
|
|
1380 |
void *mapAddress;
|
|
1381 |
int vmid = os::current_process_id();
|
|
1382 |
|
|
1383 |
// get the name of the user associated with this process
|
|
1384 |
char* user = get_user_name();
|
|
1385 |
|
|
1386 |
if (user == NULL) {
|
|
1387 |
return NULL;
|
|
1388 |
}
|
|
1389 |
|
|
1390 |
// construct the name of the user specific temporary directory
|
|
1391 |
char* dirname = get_user_tmp_dir(user);
|
|
1392 |
|
|
1393 |
// check that the file system is secure - i.e. it supports ACLs.
|
|
1394 |
if (!is_filesystem_secure(dirname)) {
|
|
1395 |
return NULL;
|
|
1396 |
}
|
|
1397 |
|
|
1398 |
// create the names of the backing store files and for the
|
|
1399 |
// share memory object.
|
|
1400 |
//
|
|
1401 |
char* filename = get_sharedmem_filename(dirname, vmid);
|
|
1402 |
char* objectname = get_sharedmem_objectname(user, vmid);
|
|
1403 |
|
|
1404 |
// cleanup any stale shared memory resources
|
|
1405 |
cleanup_sharedmem_resources(dirname);
|
|
1406 |
|
|
1407 |
assert(((size != 0) && (size % os::vm_page_size() == 0)),
|
|
1408 |
"unexpected PerfMemry region size");
|
|
1409 |
|
|
1410 |
FREE_C_HEAP_ARRAY(char, user);
|
|
1411 |
|
|
1412 |
// create the shared memory resources
|
|
1413 |
sharedmem_fileMapHandle =
|
|
1414 |
create_sharedmem_resources(dirname, filename, objectname, size);
|
|
1415 |
|
|
1416 |
FREE_C_HEAP_ARRAY(char, filename);
|
|
1417 |
FREE_C_HEAP_ARRAY(char, objectname);
|
|
1418 |
FREE_C_HEAP_ARRAY(char, dirname);
|
|
1419 |
|
|
1420 |
if (sharedmem_fileMapHandle == NULL) {
|
|
1421 |
return NULL;
|
|
1422 |
}
|
|
1423 |
|
|
1424 |
// map the file into the address space
|
|
1425 |
mapAddress = MapViewOfFile(
|
|
1426 |
sharedmem_fileMapHandle, /* HANDLE = file mapping object */
|
|
1427 |
FILE_MAP_ALL_ACCESS, /* DWORD access flags */
|
|
1428 |
0, /* DWORD High word of offset */
|
|
1429 |
0, /* DWORD Low word of offset */
|
|
1430 |
(DWORD)size); /* DWORD Number of bytes to map */
|
|
1431 |
|
|
1432 |
if (mapAddress == NULL) {
|
|
1433 |
if (PrintMiscellaneous && Verbose) {
|
|
1434 |
warning("MapViewOfFile failed, lasterror = %d\n", GetLastError());
|
|
1435 |
}
|
|
1436 |
CloseHandle(sharedmem_fileMapHandle);
|
|
1437 |
sharedmem_fileMapHandle = NULL;
|
|
1438 |
return NULL;
|
|
1439 |
}
|
|
1440 |
|
|
1441 |
// clear the shared memory region
|
|
1442 |
(void)memset(mapAddress, '\0', size);
|
|
1443 |
|
|
1444 |
return (char*) mapAddress;
|
|
1445 |
}
|
|
1446 |
|
|
1447 |
// this method deletes the file mapping object.
|
|
1448 |
//
|
|
1449 |
static void delete_file_mapping(char* addr, size_t size) {
|
|
1450 |
|
|
1451 |
// cleanup the persistent shared memory resources. since DestroyJavaVM does
|
|
1452 |
// not support unloading of the JVM, unmapping of the memory resource is not
|
|
1453 |
// performed. The memory will be reclaimed by the OS upon termination of all
|
|
1454 |
// processes mapping the resource. The file mapping handle and the file
|
|
1455 |
// handle are closed here to expedite the remove of the file by the OS. The
|
|
1456 |
// file is not removed directly because it was created with
|
|
1457 |
// FILE_FLAG_DELETE_ON_CLOSE semantics and any attempt to remove it would
|
|
1458 |
// be unsuccessful.
|
|
1459 |
|
|
1460 |
// close the fileMapHandle. the file mapping will still be retained
|
|
1461 |
// by the OS as long as any other JVM processes has an open file mapping
|
|
1462 |
// handle or a mapped view of the file.
|
|
1463 |
//
|
|
1464 |
if (sharedmem_fileMapHandle != NULL) {
|
|
1465 |
CloseHandle(sharedmem_fileMapHandle);
|
|
1466 |
sharedmem_fileMapHandle = NULL;
|
|
1467 |
}
|
|
1468 |
|
|
1469 |
// close the file handle. This will decrement the reference count on the
|
|
1470 |
// backing store file. When the reference count decrements to 0, the OS
|
|
1471 |
// will delete the file. These semantics apply because the file was
|
|
1472 |
// created with the FILE_FLAG_DELETE_ON_CLOSE flag.
|
|
1473 |
//
|
|
1474 |
if (sharedmem_fileHandle != INVALID_HANDLE_VALUE) {
|
|
1475 |
CloseHandle(sharedmem_fileHandle);
|
|
1476 |
sharedmem_fileHandle = INVALID_HANDLE_VALUE;
|
|
1477 |
}
|
|
1478 |
}
|
|
1479 |
|
|
1480 |
// this method determines the size of the shared memory file
|
|
1481 |
//
|
|
1482 |
static size_t sharedmem_filesize(const char* filename, TRAPS) {
|
|
1483 |
|
|
1484 |
struct stat statbuf;
|
|
1485 |
|
|
1486 |
// get the file size
|
|
1487 |
//
|
|
1488 |
// on win95/98/me, _stat returns a file size of 0 bytes, but on
|
|
1489 |
// winnt/2k the appropriate file size is returned. support for
|
|
1490 |
// the sharable aspects of performance counters was abandonded
|
|
1491 |
// on the non-nt win32 platforms due to this and other api
|
|
1492 |
// inconsistencies
|
|
1493 |
//
|
|
1494 |
if (::stat(filename, &statbuf) == OS_ERR) {
|
|
1495 |
if (PrintMiscellaneous && Verbose) {
|
|
1496 |
warning("stat %s failed: %s\n", filename, strerror(errno));
|
|
1497 |
}
|
|
1498 |
THROW_MSG_0(vmSymbols::java_io_IOException(),
|
|
1499 |
"Could not determine PerfMemory size");
|
|
1500 |
}
|
|
1501 |
|
|
1502 |
if ((statbuf.st_size == 0) || (statbuf.st_size % os::vm_page_size() != 0)) {
|
|
1503 |
if (PrintMiscellaneous && Verbose) {
|
|
1504 |
warning("unexpected file size: size = " SIZE_FORMAT "\n",
|
|
1505 |
statbuf.st_size);
|
|
1506 |
}
|
|
1507 |
THROW_MSG_0(vmSymbols::java_lang_Exception(),
|
|
1508 |
"Invalid PerfMemory size");
|
|
1509 |
}
|
|
1510 |
|
|
1511 |
return statbuf.st_size;
|
|
1512 |
}
|
|
1513 |
|
|
1514 |
// this method opens a file mapping object and maps the object
|
|
1515 |
// into the address space of the process
|
|
1516 |
//
|
|
1517 |
static void open_file_mapping(const char* user, int vmid,
|
|
1518 |
PerfMemory::PerfMemoryMode mode,
|
|
1519 |
char** addrp, size_t* sizep, TRAPS) {
|
|
1520 |
|
|
1521 |
ResourceMark rm;
|
|
1522 |
|
|
1523 |
void *mapAddress = 0;
|
|
1524 |
size_t size;
|
|
1525 |
HANDLE fmh;
|
|
1526 |
DWORD ofm_access;
|
|
1527 |
DWORD mv_access;
|
|
1528 |
const char* luser = NULL;
|
|
1529 |
|
|
1530 |
if (mode == PerfMemory::PERF_MODE_RO) {
|
|
1531 |
ofm_access = FILE_MAP_READ;
|
|
1532 |
mv_access = FILE_MAP_READ;
|
|
1533 |
}
|
|
1534 |
else if (mode == PerfMemory::PERF_MODE_RW) {
|
|
1535 |
#ifdef LATER
|
|
1536 |
ofm_access = FILE_MAP_READ | FILE_MAP_WRITE;
|
|
1537 |
mv_access = FILE_MAP_READ | FILE_MAP_WRITE;
|
|
1538 |
#else
|
|
1539 |
THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
|
|
1540 |
"Unsupported access mode");
|
|
1541 |
#endif
|
|
1542 |
}
|
|
1543 |
else {
|
|
1544 |
THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
|
|
1545 |
"Illegal access mode");
|
|
1546 |
}
|
|
1547 |
|
|
1548 |
// if a user name wasn't specified, then find the user name for
|
|
1549 |
// the owner of the target vm.
|
|
1550 |
if (user == NULL || strlen(user) == 0) {
|
|
1551 |
luser = get_user_name(vmid);
|
|
1552 |
}
|
|
1553 |
else {
|
|
1554 |
luser = user;
|
|
1555 |
}
|
|
1556 |
|
|
1557 |
if (luser == NULL) {
|
|
1558 |
THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
|
|
1559 |
"Could not map vmid to user name");
|
|
1560 |
}
|
|
1561 |
|
|
1562 |
// get the names for the resources for the target vm
|
|
1563 |
char* dirname = get_user_tmp_dir(luser);
|
|
1564 |
|
|
1565 |
// since we don't follow symbolic links when creating the backing
|
|
1566 |
// store file, we also don't following them when attaching
|
|
1567 |
//
|
|
1568 |
if (!is_directory_secure(dirname)) {
|
|
1569 |
FREE_C_HEAP_ARRAY(char, dirname);
|
|
1570 |
THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
|
|
1571 |
"Process not found");
|
|
1572 |
}
|
|
1573 |
|
|
1574 |
char* filename = get_sharedmem_filename(dirname, vmid);
|
|
1575 |
char* objectname = get_sharedmem_objectname(luser, vmid);
|
|
1576 |
|
|
1577 |
// copy heap memory to resource memory. the objectname and
|
|
1578 |
// filename are passed to methods that may throw exceptions.
|
|
1579 |
// using resource arrays for these names prevents the leaks
|
|
1580 |
// that would otherwise occur.
|
|
1581 |
//
|
|
1582 |
char* rfilename = NEW_RESOURCE_ARRAY(char, strlen(filename) + 1);
|
|
1583 |
char* robjectname = NEW_RESOURCE_ARRAY(char, strlen(objectname) + 1);
|
|
1584 |
strcpy(rfilename, filename);
|
|
1585 |
strcpy(robjectname, objectname);
|
|
1586 |
|
|
1587 |
// free the c heap resources that are no longer needed
|
|
1588 |
if (luser != user) FREE_C_HEAP_ARRAY(char, luser);
|
|
1589 |
FREE_C_HEAP_ARRAY(char, dirname);
|
|
1590 |
FREE_C_HEAP_ARRAY(char, filename);
|
|
1591 |
FREE_C_HEAP_ARRAY(char, objectname);
|
|
1592 |
|
|
1593 |
if (*sizep == 0) {
|
|
1594 |
size = sharedmem_filesize(rfilename, CHECK);
|
|
1595 |
assert(size != 0, "unexpected size");
|
|
1596 |
}
|
|
1597 |
|
|
1598 |
// Open the file mapping object with the given name
|
|
1599 |
fmh = open_sharedmem_object(robjectname, ofm_access, CHECK);
|
|
1600 |
|
|
1601 |
assert(fmh != INVALID_HANDLE_VALUE, "unexpected handle value");
|
|
1602 |
|
|
1603 |
// map the entire file into the address space
|
|
1604 |
mapAddress = MapViewOfFile(
|
|
1605 |
fmh, /* HANDLE Handle of file mapping object */
|
|
1606 |
mv_access, /* DWORD access flags */
|
|
1607 |
0, /* DWORD High word of offset */
|
|
1608 |
0, /* DWORD Low word of offset */
|
|
1609 |
size); /* DWORD Number of bytes to map */
|
|
1610 |
|
|
1611 |
if (mapAddress == NULL) {
|
|
1612 |
if (PrintMiscellaneous && Verbose) {
|
|
1613 |
warning("MapViewOfFile failed, lasterror = %d\n", GetLastError());
|
|
1614 |
}
|
|
1615 |
CloseHandle(fmh);
|
|
1616 |
THROW_MSG(vmSymbols::java_lang_OutOfMemoryError(),
|
|
1617 |
"Could not map PerfMemory");
|
|
1618 |
}
|
|
1619 |
|
|
1620 |
*addrp = (char*)mapAddress;
|
|
1621 |
*sizep = size;
|
|
1622 |
|
|
1623 |
// File mapping object can be closed at this time without
|
|
1624 |
// invalidating the mapped view of the file
|
|
1625 |
CloseHandle(fmh);
|
|
1626 |
|
|
1627 |
if (PerfTraceMemOps) {
|
|
1628 |
tty->print("mapped " SIZE_FORMAT " bytes for vmid %d at "
|
|
1629 |
INTPTR_FORMAT "\n", size, vmid, mapAddress);
|
|
1630 |
}
|
|
1631 |
}
|
|
1632 |
|
|
1633 |
// this method unmaps the the mapped view of the the
|
|
1634 |
// file mapping object.
|
|
1635 |
//
|
|
1636 |
static void remove_file_mapping(char* addr) {
|
|
1637 |
|
|
1638 |
// the file mapping object was closed in open_file_mapping()
|
|
1639 |
// after the file map view was created. We only need to
|
|
1640 |
// unmap the file view here.
|
|
1641 |
UnmapViewOfFile(addr);
|
|
1642 |
}
|
|
1643 |
|
|
1644 |
// create the PerfData memory region in shared memory.
|
|
1645 |
static char* create_shared_memory(size_t size) {
|
|
1646 |
|
|
1647 |
return mapping_create_shared(size);
|
|
1648 |
}
|
|
1649 |
|
|
1650 |
// release a named, shared memory region
|
|
1651 |
//
|
|
1652 |
void delete_shared_memory(char* addr, size_t size) {
|
|
1653 |
|
|
1654 |
delete_file_mapping(addr, size);
|
|
1655 |
}
|
|
1656 |
|
|
1657 |
|
|
1658 |
|
|
1659 |
|
|
1660 |
// create the PerfData memory region
|
|
1661 |
//
|
|
1662 |
// This method creates the memory region used to store performance
|
|
1663 |
// data for the JVM. The memory may be created in standard or
|
|
1664 |
// shared memory.
|
|
1665 |
//
|
|
1666 |
void PerfMemory::create_memory_region(size_t size) {
|
|
1667 |
|
|
1668 |
if (PerfDisableSharedMem || !os::win32::is_nt()) {
|
|
1669 |
// do not share the memory for the performance data.
|
|
1670 |
PerfDisableSharedMem = true;
|
|
1671 |
_start = create_standard_memory(size);
|
|
1672 |
}
|
|
1673 |
else {
|
|
1674 |
_start = create_shared_memory(size);
|
|
1675 |
if (_start == NULL) {
|
|
1676 |
|
|
1677 |
// creation of the shared memory region failed, attempt
|
|
1678 |
// to create a contiguous, non-shared memory region instead.
|
|
1679 |
//
|
|
1680 |
if (PrintMiscellaneous && Verbose) {
|
|
1681 |
warning("Reverting to non-shared PerfMemory region.\n");
|
|
1682 |
}
|
|
1683 |
PerfDisableSharedMem = true;
|
|
1684 |
_start = create_standard_memory(size);
|
|
1685 |
}
|
|
1686 |
}
|
|
1687 |
|
|
1688 |
if (_start != NULL) _capacity = size;
|
|
1689 |
|
|
1690 |
}
|
|
1691 |
|
|
1692 |
// delete the PerfData memory region
|
|
1693 |
//
|
|
1694 |
// This method deletes the memory region used to store performance
|
|
1695 |
// data for the JVM. The memory region indicated by the <address, size>
|
|
1696 |
// tuple will be inaccessible after a call to this method.
|
|
1697 |
//
|
|
1698 |
void PerfMemory::delete_memory_region() {
|
|
1699 |
|
|
1700 |
assert((start() != NULL && capacity() > 0), "verify proper state");
|
|
1701 |
|
|
1702 |
// If user specifies PerfDataSaveFile, it will save the performance data
|
|
1703 |
// to the specified file name no matter whether PerfDataSaveToFile is specified
|
|
1704 |
// or not. In other word, -XX:PerfDataSaveFile=.. overrides flag
|
|
1705 |
// -XX:+PerfDataSaveToFile.
|
|
1706 |
if (PerfDataSaveToFile || PerfDataSaveFile != NULL) {
|
|
1707 |
save_memory_to_file(start(), capacity());
|
|
1708 |
}
|
|
1709 |
|
|
1710 |
if (PerfDisableSharedMem) {
|
|
1711 |
delete_standard_memory(start(), capacity());
|
|
1712 |
}
|
|
1713 |
else {
|
|
1714 |
delete_shared_memory(start(), capacity());
|
|
1715 |
}
|
|
1716 |
}
|
|
1717 |
|
|
1718 |
// attach to the PerfData memory region for another JVM
|
|
1719 |
//
|
|
1720 |
// This method returns an <address, size> tuple that points to
|
|
1721 |
// a memory buffer that is kept reasonably synchronized with
|
|
1722 |
// the PerfData memory region for the indicated JVM. This
|
|
1723 |
// buffer may be kept in synchronization via shared memory
|
|
1724 |
// or some other mechanism that keeps the buffer updated.
|
|
1725 |
//
|
|
1726 |
// If the JVM chooses not to support the attachability feature,
|
|
1727 |
// this method should throw an UnsupportedOperation exception.
|
|
1728 |
//
|
|
1729 |
// This implementation utilizes named shared memory to map
|
|
1730 |
// the indicated process's PerfData memory region into this JVMs
|
|
1731 |
// address space.
|
|
1732 |
//
|
|
1733 |
void PerfMemory::attach(const char* user, int vmid, PerfMemoryMode mode,
|
|
1734 |
char** addrp, size_t* sizep, TRAPS) {
|
|
1735 |
|
|
1736 |
if (vmid == 0 || vmid == os::current_process_id()) {
|
|
1737 |
*addrp = start();
|
|
1738 |
*sizep = capacity();
|
|
1739 |
return;
|
|
1740 |
}
|
|
1741 |
|
|
1742 |
open_file_mapping(user, vmid, mode, addrp, sizep, CHECK);
|
|
1743 |
}
|
|
1744 |
|
|
1745 |
// detach from the PerfData memory region of another JVM
|
|
1746 |
//
|
|
1747 |
// This method detaches the PerfData memory region of another
|
|
1748 |
// JVM, specified as an <address, size> tuple of a buffer
|
|
1749 |
// in this process's address space. This method may perform
|
|
1750 |
// arbitrary actions to accomplish the detachment. The memory
|
|
1751 |
// region specified by <address, size> will be inaccessible after
|
|
1752 |
// a call to this method.
|
|
1753 |
//
|
|
1754 |
// If the JVM chooses not to support the attachability feature,
|
|
1755 |
// this method should throw an UnsupportedOperation exception.
|
|
1756 |
//
|
|
1757 |
// This implementation utilizes named shared memory to detach
|
|
1758 |
// the indicated process's PerfData memory region from this
|
|
1759 |
// process's address space.
|
|
1760 |
//
|
|
1761 |
void PerfMemory::detach(char* addr, size_t bytes, TRAPS) {
|
|
1762 |
|
|
1763 |
assert(addr != 0, "address sanity check");
|
|
1764 |
assert(bytes > 0, "capacity sanity check");
|
|
1765 |
|
|
1766 |
if (PerfMemory::contains(addr) || PerfMemory::contains(addr + bytes - 1)) {
|
|
1767 |
// prevent accidental detachment of this process's PerfMemory region
|
|
1768 |
return;
|
|
1769 |
}
|
|
1770 |
|
|
1771 |
remove_file_mapping(addr);
|
|
1772 |
}
|
|
1773 |
|
|
1774 |
char* PerfMemory::backing_store_filename() {
|
|
1775 |
return sharedmem_fileName;
|
|
1776 |
}
|