1
|
1 |
/*
|
|
2 |
* Copyright 1998-2007 Sun Microsystems, Inc. All Rights Reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation.
|
|
8 |
*
|
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
13 |
* accompanied this code).
|
|
14 |
*
|
|
15 |
* You should have received a copy of the GNU General Public License version
|
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
18 |
*
|
|
19 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
20 |
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
21 |
* have any questions.
|
|
22 |
*
|
|
23 |
*/
|
|
24 |
|
|
25 |
#include "incls/_precompiled.incl"
|
|
26 |
#include "incls/_loopnode.cpp.incl"
|
|
27 |
|
|
28 |
//=============================================================================
|
|
29 |
//------------------------------is_loop_iv-------------------------------------
|
|
30 |
// Determine if a node is Counted loop induction variable.
|
|
31 |
// The method is declared in node.hpp.
|
|
32 |
const Node* Node::is_loop_iv() const {
|
|
33 |
if (this->is_Phi() && !this->as_Phi()->is_copy() &&
|
|
34 |
this->as_Phi()->region()->is_CountedLoop() &&
|
|
35 |
this->as_Phi()->region()->as_CountedLoop()->phi() == this) {
|
|
36 |
return this;
|
|
37 |
} else {
|
|
38 |
return NULL;
|
|
39 |
}
|
|
40 |
}
|
|
41 |
|
|
42 |
//=============================================================================
|
|
43 |
//------------------------------dump_spec--------------------------------------
|
|
44 |
// Dump special per-node info
|
|
45 |
#ifndef PRODUCT
|
|
46 |
void LoopNode::dump_spec(outputStream *st) const {
|
|
47 |
if( is_inner_loop () ) st->print( "inner " );
|
|
48 |
if( is_partial_peel_loop () ) st->print( "partial_peel " );
|
|
49 |
if( partial_peel_has_failed () ) st->print( "partial_peel_failed " );
|
|
50 |
}
|
|
51 |
#endif
|
|
52 |
|
|
53 |
//------------------------------get_early_ctrl---------------------------------
|
|
54 |
// Compute earliest legal control
|
|
55 |
Node *PhaseIdealLoop::get_early_ctrl( Node *n ) {
|
|
56 |
assert( !n->is_Phi() && !n->is_CFG(), "this code only handles data nodes" );
|
|
57 |
uint i;
|
|
58 |
Node *early;
|
|
59 |
if( n->in(0) ) {
|
|
60 |
early = n->in(0);
|
|
61 |
if( !early->is_CFG() ) // Might be a non-CFG multi-def
|
|
62 |
early = get_ctrl(early); // So treat input as a straight data input
|
|
63 |
i = 1;
|
|
64 |
} else {
|
|
65 |
early = get_ctrl(n->in(1));
|
|
66 |
i = 2;
|
|
67 |
}
|
|
68 |
uint e_d = dom_depth(early);
|
|
69 |
assert( early, "" );
|
|
70 |
for( ; i < n->req(); i++ ) {
|
|
71 |
Node *cin = get_ctrl(n->in(i));
|
|
72 |
assert( cin, "" );
|
|
73 |
// Keep deepest dominator depth
|
|
74 |
uint c_d = dom_depth(cin);
|
|
75 |
if( c_d > e_d ) { // Deeper guy?
|
|
76 |
early = cin; // Keep deepest found so far
|
|
77 |
e_d = c_d;
|
|
78 |
} else if( c_d == e_d && // Same depth?
|
|
79 |
early != cin ) { // If not equal, must use slower algorithm
|
|
80 |
// If same depth but not equal, one _must_ dominate the other
|
|
81 |
// and we want the deeper (i.e., dominated) guy.
|
|
82 |
Node *n1 = early;
|
|
83 |
Node *n2 = cin;
|
|
84 |
while( 1 ) {
|
|
85 |
n1 = idom(n1); // Walk up until break cycle
|
|
86 |
n2 = idom(n2);
|
|
87 |
if( n1 == cin || // Walked early up to cin
|
|
88 |
dom_depth(n2) < c_d )
|
|
89 |
break; // early is deeper; keep him
|
|
90 |
if( n2 == early || // Walked cin up to early
|
|
91 |
dom_depth(n1) < c_d ) {
|
|
92 |
early = cin; // cin is deeper; keep him
|
|
93 |
break;
|
|
94 |
}
|
|
95 |
}
|
|
96 |
e_d = dom_depth(early); // Reset depth register cache
|
|
97 |
}
|
|
98 |
}
|
|
99 |
|
|
100 |
// Return earliest legal location
|
|
101 |
assert(early == find_non_split_ctrl(early), "unexpected early control");
|
|
102 |
|
|
103 |
return early;
|
|
104 |
}
|
|
105 |
|
|
106 |
//------------------------------set_early_ctrl---------------------------------
|
|
107 |
// Set earliest legal control
|
|
108 |
void PhaseIdealLoop::set_early_ctrl( Node *n ) {
|
|
109 |
Node *early = get_early_ctrl(n);
|
|
110 |
|
|
111 |
// Record earliest legal location
|
|
112 |
set_ctrl(n, early);
|
|
113 |
}
|
|
114 |
|
|
115 |
//------------------------------set_subtree_ctrl-------------------------------
|
|
116 |
// set missing _ctrl entries on new nodes
|
|
117 |
void PhaseIdealLoop::set_subtree_ctrl( Node *n ) {
|
|
118 |
// Already set? Get out.
|
|
119 |
if( _nodes[n->_idx] ) return;
|
|
120 |
// Recursively set _nodes array to indicate where the Node goes
|
|
121 |
uint i;
|
|
122 |
for( i = 0; i < n->req(); ++i ) {
|
|
123 |
Node *m = n->in(i);
|
|
124 |
if( m && m != C->root() )
|
|
125 |
set_subtree_ctrl( m );
|
|
126 |
}
|
|
127 |
|
|
128 |
// Fixup self
|
|
129 |
set_early_ctrl( n );
|
|
130 |
}
|
|
131 |
|
|
132 |
//------------------------------is_counted_loop--------------------------------
|
|
133 |
Node *PhaseIdealLoop::is_counted_loop( Node *x, IdealLoopTree *loop ) {
|
|
134 |
PhaseGVN *gvn = &_igvn;
|
|
135 |
|
|
136 |
// Counted loop head must be a good RegionNode with only 3 not NULL
|
|
137 |
// control input edges: Self, Entry, LoopBack.
|
|
138 |
if ( x->in(LoopNode::Self) == NULL || x->req() != 3 )
|
|
139 |
return NULL;
|
|
140 |
|
|
141 |
Node *init_control = x->in(LoopNode::EntryControl);
|
|
142 |
Node *back_control = x->in(LoopNode::LoopBackControl);
|
|
143 |
if( init_control == NULL || back_control == NULL ) // Partially dead
|
|
144 |
return NULL;
|
|
145 |
// Must also check for TOP when looking for a dead loop
|
|
146 |
if( init_control->is_top() || back_control->is_top() )
|
|
147 |
return NULL;
|
|
148 |
|
|
149 |
// Allow funny placement of Safepoint
|
|
150 |
if( back_control->Opcode() == Op_SafePoint )
|
|
151 |
back_control = back_control->in(TypeFunc::Control);
|
|
152 |
|
|
153 |
// Controlling test for loop
|
|
154 |
Node *iftrue = back_control;
|
|
155 |
uint iftrue_op = iftrue->Opcode();
|
|
156 |
if( iftrue_op != Op_IfTrue &&
|
|
157 |
iftrue_op != Op_IfFalse )
|
|
158 |
// I have a weird back-control. Probably the loop-exit test is in
|
|
159 |
// the middle of the loop and I am looking at some trailing control-flow
|
|
160 |
// merge point. To fix this I would have to partially peel the loop.
|
|
161 |
return NULL; // Obscure back-control
|
|
162 |
|
|
163 |
// Get boolean guarding loop-back test
|
|
164 |
Node *iff = iftrue->in(0);
|
|
165 |
if( get_loop(iff) != loop || !iff->in(1)->is_Bool() ) return NULL;
|
|
166 |
BoolNode *test = iff->in(1)->as_Bool();
|
|
167 |
BoolTest::mask bt = test->_test._test;
|
|
168 |
float cl_prob = iff->as_If()->_prob;
|
|
169 |
if( iftrue_op == Op_IfFalse ) {
|
|
170 |
bt = BoolTest(bt).negate();
|
|
171 |
cl_prob = 1.0 - cl_prob;
|
|
172 |
}
|
|
173 |
// Get backedge compare
|
|
174 |
Node *cmp = test->in(1);
|
|
175 |
int cmp_op = cmp->Opcode();
|
|
176 |
if( cmp_op != Op_CmpI )
|
|
177 |
return NULL; // Avoid pointer & float compares
|
|
178 |
|
|
179 |
// Find the trip-counter increment & limit. Limit must be loop invariant.
|
|
180 |
Node *incr = cmp->in(1);
|
|
181 |
Node *limit = cmp->in(2);
|
|
182 |
|
|
183 |
// ---------
|
|
184 |
// need 'loop()' test to tell if limit is loop invariant
|
|
185 |
// ---------
|
|
186 |
|
|
187 |
if( !is_member( loop, get_ctrl(incr) ) ) { // Swapped trip counter and limit?
|
|
188 |
Node *tmp = incr; // Then reverse order into the CmpI
|
|
189 |
incr = limit;
|
|
190 |
limit = tmp;
|
|
191 |
bt = BoolTest(bt).commute(); // And commute the exit test
|
|
192 |
}
|
|
193 |
if( is_member( loop, get_ctrl(limit) ) ) // Limit must loop-invariant
|
|
194 |
return NULL;
|
|
195 |
|
|
196 |
// Trip-counter increment must be commutative & associative.
|
|
197 |
uint incr_op = incr->Opcode();
|
|
198 |
if( incr_op == Op_Phi && incr->req() == 3 ) {
|
|
199 |
incr = incr->in(2); // Assume incr is on backedge of Phi
|
|
200 |
incr_op = incr->Opcode();
|
|
201 |
}
|
|
202 |
Node* trunc1 = NULL;
|
|
203 |
Node* trunc2 = NULL;
|
|
204 |
const TypeInt* iv_trunc_t = NULL;
|
|
205 |
if (!(incr = CountedLoopNode::match_incr_with_optional_truncation(incr, &trunc1, &trunc2, &iv_trunc_t))) {
|
|
206 |
return NULL; // Funny increment opcode
|
|
207 |
}
|
|
208 |
|
|
209 |
// Get merge point
|
|
210 |
Node *xphi = incr->in(1);
|
|
211 |
Node *stride = incr->in(2);
|
|
212 |
if( !stride->is_Con() ) { // Oops, swap these
|
|
213 |
if( !xphi->is_Con() ) // Is the other guy a constant?
|
|
214 |
return NULL; // Nope, unknown stride, bail out
|
|
215 |
Node *tmp = xphi; // 'incr' is commutative, so ok to swap
|
|
216 |
xphi = stride;
|
|
217 |
stride = tmp;
|
|
218 |
}
|
|
219 |
//if( loop(xphi) != l) return NULL;// Merge point is in inner loop??
|
|
220 |
if( !xphi->is_Phi() ) return NULL; // Too much math on the trip counter
|
|
221 |
PhiNode *phi = xphi->as_Phi();
|
|
222 |
|
|
223 |
// Stride must be constant
|
|
224 |
const Type *stride_t = stride->bottom_type();
|
|
225 |
int stride_con = stride_t->is_int()->get_con();
|
|
226 |
assert( stride_con, "missed some peephole opt" );
|
|
227 |
|
|
228 |
// Phi must be of loop header; backedge must wrap to increment
|
|
229 |
if( phi->region() != x ) return NULL;
|
|
230 |
if( trunc1 == NULL && phi->in(LoopNode::LoopBackControl) != incr ||
|
|
231 |
trunc1 != NULL && phi->in(LoopNode::LoopBackControl) != trunc1 ) {
|
|
232 |
return NULL;
|
|
233 |
}
|
|
234 |
Node *init_trip = phi->in(LoopNode::EntryControl);
|
|
235 |
//if (!init_trip->is_Con()) return NULL; // avoid rolling over MAXINT/MININT
|
|
236 |
|
|
237 |
// If iv trunc type is smaller than int, check for possible wrap.
|
|
238 |
if (!TypeInt::INT->higher_equal(iv_trunc_t)) {
|
|
239 |
assert(trunc1 != NULL, "must have found some truncation");
|
|
240 |
|
|
241 |
// Get a better type for the phi (filtered thru if's)
|
|
242 |
const TypeInt* phi_ft = filtered_type(phi);
|
|
243 |
|
|
244 |
// Can iv take on a value that will wrap?
|
|
245 |
//
|
|
246 |
// Ensure iv's limit is not within "stride" of the wrap value.
|
|
247 |
//
|
|
248 |
// Example for "short" type
|
|
249 |
// Truncation ensures value is in the range -32768..32767 (iv_trunc_t)
|
|
250 |
// If the stride is +10, then the last value of the induction
|
|
251 |
// variable before the increment (phi_ft->_hi) must be
|
|
252 |
// <= 32767 - 10 and (phi_ft->_lo) must be >= -32768 to
|
|
253 |
// ensure no truncation occurs after the increment.
|
|
254 |
|
|
255 |
if (stride_con > 0) {
|
|
256 |
if (iv_trunc_t->_hi - phi_ft->_hi < stride_con ||
|
|
257 |
iv_trunc_t->_lo > phi_ft->_lo) {
|
|
258 |
return NULL; // truncation may occur
|
|
259 |
}
|
|
260 |
} else if (stride_con < 0) {
|
|
261 |
if (iv_trunc_t->_lo - phi_ft->_lo > stride_con ||
|
|
262 |
iv_trunc_t->_hi < phi_ft->_hi) {
|
|
263 |
return NULL; // truncation may occur
|
|
264 |
}
|
|
265 |
}
|
|
266 |
// No possibility of wrap so truncation can be discarded
|
|
267 |
// Promote iv type to Int
|
|
268 |
} else {
|
|
269 |
assert(trunc1 == NULL && trunc2 == NULL, "no truncation for int");
|
|
270 |
}
|
|
271 |
|
|
272 |
// =================================================
|
|
273 |
// ---- SUCCESS! Found A Trip-Counted Loop! -----
|
|
274 |
//
|
|
275 |
// Canonicalize the condition on the test. If we can exactly determine
|
|
276 |
// the trip-counter exit value, then set limit to that value and use
|
|
277 |
// a '!=' test. Otherwise use conditon '<' for count-up loops and
|
|
278 |
// '>' for count-down loops. If the condition is inverted and we will
|
|
279 |
// be rolling through MININT to MAXINT, then bail out.
|
|
280 |
|
|
281 |
C->print_method("Before CountedLoop", 3);
|
|
282 |
|
|
283 |
// Check for SafePoint on backedge and remove
|
|
284 |
Node *sfpt = x->in(LoopNode::LoopBackControl);
|
|
285 |
if( sfpt->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt)) {
|
|
286 |
lazy_replace( sfpt, iftrue );
|
|
287 |
loop->_tail = iftrue;
|
|
288 |
}
|
|
289 |
|
|
290 |
|
|
291 |
// If compare points to incr, we are ok. Otherwise the compare
|
|
292 |
// can directly point to the phi; in this case adjust the compare so that
|
|
293 |
// it points to the incr by adusting the limit.
|
|
294 |
if( cmp->in(1) == phi || cmp->in(2) == phi )
|
|
295 |
limit = gvn->transform(new (C, 3) AddINode(limit,stride));
|
|
296 |
|
|
297 |
// trip-count for +-tive stride should be: (limit - init_trip + stride - 1)/stride.
|
|
298 |
// Final value for iterator should be: trip_count * stride + init_trip.
|
|
299 |
const Type *limit_t = limit->bottom_type();
|
|
300 |
const Type *init_t = init_trip->bottom_type();
|
|
301 |
Node *one_p = gvn->intcon( 1);
|
|
302 |
Node *one_m = gvn->intcon(-1);
|
|
303 |
|
|
304 |
Node *trip_count = NULL;
|
|
305 |
Node *hook = new (C, 6) Node(6);
|
|
306 |
switch( bt ) {
|
|
307 |
case BoolTest::eq:
|
|
308 |
return NULL; // Bail out, but this loop trips at most twice!
|
|
309 |
case BoolTest::ne: // Ahh, the case we desire
|
|
310 |
if( stride_con == 1 )
|
|
311 |
trip_count = gvn->transform(new (C, 3) SubINode(limit,init_trip));
|
|
312 |
else if( stride_con == -1 )
|
|
313 |
trip_count = gvn->transform(new (C, 3) SubINode(init_trip,limit));
|
|
314 |
else
|
|
315 |
return NULL; // Odd stride; must prove we hit limit exactly
|
|
316 |
set_subtree_ctrl( trip_count );
|
|
317 |
//_loop.map(trip_count->_idx,loop(limit));
|
|
318 |
break;
|
|
319 |
case BoolTest::le: // Maybe convert to '<' case
|
|
320 |
limit = gvn->transform(new (C, 3) AddINode(limit,one_p));
|
|
321 |
set_subtree_ctrl( limit );
|
|
322 |
hook->init_req(4, limit);
|
|
323 |
|
|
324 |
bt = BoolTest::lt;
|
|
325 |
// Make the new limit be in the same loop nest as the old limit
|
|
326 |
//_loop.map(limit->_idx,limit_loop);
|
|
327 |
// Fall into next case
|
|
328 |
case BoolTest::lt: { // Maybe convert to '!=' case
|
|
329 |
if( stride_con < 0 ) return NULL; // Count down loop rolls through MAXINT
|
|
330 |
Node *range = gvn->transform(new (C, 3) SubINode(limit,init_trip));
|
|
331 |
set_subtree_ctrl( range );
|
|
332 |
hook->init_req(0, range);
|
|
333 |
|
|
334 |
Node *bias = gvn->transform(new (C, 3) AddINode(range,stride));
|
|
335 |
set_subtree_ctrl( bias );
|
|
336 |
hook->init_req(1, bias);
|
|
337 |
|
|
338 |
Node *bias1 = gvn->transform(new (C, 3) AddINode(bias,one_m));
|
|
339 |
set_subtree_ctrl( bias1 );
|
|
340 |
hook->init_req(2, bias1);
|
|
341 |
|
|
342 |
trip_count = gvn->transform(new (C, 3) DivINode(0,bias1,stride));
|
|
343 |
set_subtree_ctrl( trip_count );
|
|
344 |
hook->init_req(3, trip_count);
|
|
345 |
break;
|
|
346 |
}
|
|
347 |
|
|
348 |
case BoolTest::ge: // Maybe convert to '>' case
|
|
349 |
limit = gvn->transform(new (C, 3) AddINode(limit,one_m));
|
|
350 |
set_subtree_ctrl( limit );
|
|
351 |
hook->init_req(4 ,limit);
|
|
352 |
|
|
353 |
bt = BoolTest::gt;
|
|
354 |
// Make the new limit be in the same loop nest as the old limit
|
|
355 |
//_loop.map(limit->_idx,limit_loop);
|
|
356 |
// Fall into next case
|
|
357 |
case BoolTest::gt: { // Maybe convert to '!=' case
|
|
358 |
if( stride_con > 0 ) return NULL; // count up loop rolls through MININT
|
|
359 |
Node *range = gvn->transform(new (C, 3) SubINode(limit,init_trip));
|
|
360 |
set_subtree_ctrl( range );
|
|
361 |
hook->init_req(0, range);
|
|
362 |
|
|
363 |
Node *bias = gvn->transform(new (C, 3) AddINode(range,stride));
|
|
364 |
set_subtree_ctrl( bias );
|
|
365 |
hook->init_req(1, bias);
|
|
366 |
|
|
367 |
Node *bias1 = gvn->transform(new (C, 3) AddINode(bias,one_p));
|
|
368 |
set_subtree_ctrl( bias1 );
|
|
369 |
hook->init_req(2, bias1);
|
|
370 |
|
|
371 |
trip_count = gvn->transform(new (C, 3) DivINode(0,bias1,stride));
|
|
372 |
set_subtree_ctrl( trip_count );
|
|
373 |
hook->init_req(3, trip_count);
|
|
374 |
break;
|
|
375 |
}
|
|
376 |
}
|
|
377 |
|
|
378 |
Node *span = gvn->transform(new (C, 3) MulINode(trip_count,stride));
|
|
379 |
set_subtree_ctrl( span );
|
|
380 |
hook->init_req(5, span);
|
|
381 |
|
|
382 |
limit = gvn->transform(new (C, 3) AddINode(span,init_trip));
|
|
383 |
set_subtree_ctrl( limit );
|
|
384 |
|
|
385 |
// Build a canonical trip test.
|
|
386 |
// Clone code, as old values may be in use.
|
|
387 |
incr = incr->clone();
|
|
388 |
incr->set_req(1,phi);
|
|
389 |
incr->set_req(2,stride);
|
|
390 |
incr = _igvn.register_new_node_with_optimizer(incr);
|
|
391 |
set_early_ctrl( incr );
|
|
392 |
_igvn.hash_delete(phi);
|
|
393 |
phi->set_req_X( LoopNode::LoopBackControl, incr, &_igvn );
|
|
394 |
|
|
395 |
// If phi type is more restrictive than Int, raise to
|
|
396 |
// Int to prevent (almost) infinite recursion in igvn
|
|
397 |
// which can only handle integer types for constants or minint..maxint.
|
|
398 |
if (!TypeInt::INT->higher_equal(phi->bottom_type())) {
|
|
399 |
Node* nphi = PhiNode::make(phi->in(0), phi->in(LoopNode::EntryControl), TypeInt::INT);
|
|
400 |
nphi->set_req(LoopNode::LoopBackControl, phi->in(LoopNode::LoopBackControl));
|
|
401 |
nphi = _igvn.register_new_node_with_optimizer(nphi);
|
|
402 |
set_ctrl(nphi, get_ctrl(phi));
|
|
403 |
_igvn.subsume_node(phi, nphi);
|
|
404 |
phi = nphi->as_Phi();
|
|
405 |
}
|
|
406 |
cmp = cmp->clone();
|
|
407 |
cmp->set_req(1,incr);
|
|
408 |
cmp->set_req(2,limit);
|
|
409 |
cmp = _igvn.register_new_node_with_optimizer(cmp);
|
|
410 |
set_ctrl(cmp, iff->in(0));
|
|
411 |
|
|
412 |
Node *tmp = test->clone();
|
|
413 |
assert( tmp->is_Bool(), "" );
|
|
414 |
test = (BoolNode*)tmp;
|
|
415 |
(*(BoolTest*)&test->_test)._test = bt; //BoolTest::ne;
|
|
416 |
test->set_req(1,cmp);
|
|
417 |
_igvn.register_new_node_with_optimizer(test);
|
|
418 |
set_ctrl(test, iff->in(0));
|
|
419 |
// If the exit test is dead, STOP!
|
|
420 |
if( test == NULL ) return NULL;
|
|
421 |
_igvn.hash_delete(iff);
|
|
422 |
iff->set_req_X( 1, test, &_igvn );
|
|
423 |
|
|
424 |
// Replace the old IfNode with a new LoopEndNode
|
|
425 |
Node *lex = _igvn.register_new_node_with_optimizer(new (C, 2) CountedLoopEndNode( iff->in(0), iff->in(1), cl_prob, iff->as_If()->_fcnt ));
|
|
426 |
IfNode *le = lex->as_If();
|
|
427 |
uint dd = dom_depth(iff);
|
|
428 |
set_idom(le, le->in(0), dd); // Update dominance for loop exit
|
|
429 |
set_loop(le, loop);
|
|
430 |
|
|
431 |
// Get the loop-exit control
|
|
432 |
Node *if_f = iff->as_If()->proj_out(!(iftrue_op == Op_IfTrue));
|
|
433 |
|
|
434 |
// Need to swap loop-exit and loop-back control?
|
|
435 |
if( iftrue_op == Op_IfFalse ) {
|
|
436 |
Node *ift2=_igvn.register_new_node_with_optimizer(new (C, 1) IfTrueNode (le));
|
|
437 |
Node *iff2=_igvn.register_new_node_with_optimizer(new (C, 1) IfFalseNode(le));
|
|
438 |
|
|
439 |
loop->_tail = back_control = ift2;
|
|
440 |
set_loop(ift2, loop);
|
|
441 |
set_loop(iff2, get_loop(if_f));
|
|
442 |
|
|
443 |
// Lazy update of 'get_ctrl' mechanism.
|
|
444 |
lazy_replace_proj( if_f , iff2 );
|
|
445 |
lazy_replace_proj( iftrue, ift2 );
|
|
446 |
|
|
447 |
// Swap names
|
|
448 |
if_f = iff2;
|
|
449 |
iftrue = ift2;
|
|
450 |
} else {
|
|
451 |
_igvn.hash_delete(if_f );
|
|
452 |
_igvn.hash_delete(iftrue);
|
|
453 |
if_f ->set_req_X( 0, le, &_igvn );
|
|
454 |
iftrue->set_req_X( 0, le, &_igvn );
|
|
455 |
}
|
|
456 |
|
|
457 |
set_idom(iftrue, le, dd+1);
|
|
458 |
set_idom(if_f, le, dd+1);
|
|
459 |
|
|
460 |
// Now setup a new CountedLoopNode to replace the existing LoopNode
|
|
461 |
CountedLoopNode *l = new (C, 3) CountedLoopNode(init_control, back_control);
|
|
462 |
// The following assert is approximately true, and defines the intention
|
|
463 |
// of can_be_counted_loop. It fails, however, because phase->type
|
|
464 |
// is not yet initialized for this loop and its parts.
|
|
465 |
//assert(l->can_be_counted_loop(this), "sanity");
|
|
466 |
_igvn.register_new_node_with_optimizer(l);
|
|
467 |
set_loop(l, loop);
|
|
468 |
loop->_head = l;
|
|
469 |
// Fix all data nodes placed at the old loop head.
|
|
470 |
// Uses the lazy-update mechanism of 'get_ctrl'.
|
|
471 |
lazy_replace( x, l );
|
|
472 |
set_idom(l, init_control, dom_depth(x));
|
|
473 |
|
|
474 |
// Check for immediately preceeding SafePoint and remove
|
|
475 |
Node *sfpt2 = le->in(0);
|
|
476 |
if( sfpt2->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt2))
|
|
477 |
lazy_replace( sfpt2, sfpt2->in(TypeFunc::Control));
|
|
478 |
|
|
479 |
// Free up intermediate goo
|
|
480 |
_igvn.remove_dead_node(hook);
|
|
481 |
|
|
482 |
C->print_method("After CountedLoop", 3);
|
|
483 |
|
|
484 |
// Return trip counter
|
|
485 |
return trip_count;
|
|
486 |
}
|
|
487 |
|
|
488 |
|
|
489 |
//------------------------------Ideal------------------------------------------
|
|
490 |
// Return a node which is more "ideal" than the current node.
|
|
491 |
// Attempt to convert into a counted-loop.
|
|
492 |
Node *LoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
|
|
493 |
if (!can_be_counted_loop(phase)) {
|
|
494 |
phase->C->set_major_progress();
|
|
495 |
}
|
|
496 |
return RegionNode::Ideal(phase, can_reshape);
|
|
497 |
}
|
|
498 |
|
|
499 |
|
|
500 |
//=============================================================================
|
|
501 |
//------------------------------Ideal------------------------------------------
|
|
502 |
// Return a node which is more "ideal" than the current node.
|
|
503 |
// Attempt to convert into a counted-loop.
|
|
504 |
Node *CountedLoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
|
|
505 |
return RegionNode::Ideal(phase, can_reshape);
|
|
506 |
}
|
|
507 |
|
|
508 |
//------------------------------dump_spec--------------------------------------
|
|
509 |
// Dump special per-node info
|
|
510 |
#ifndef PRODUCT
|
|
511 |
void CountedLoopNode::dump_spec(outputStream *st) const {
|
|
512 |
LoopNode::dump_spec(st);
|
|
513 |
if( stride_is_con() ) {
|
|
514 |
st->print("stride: %d ",stride_con());
|
|
515 |
} else {
|
|
516 |
st->print("stride: not constant ");
|
|
517 |
}
|
|
518 |
if( is_pre_loop () ) st->print("pre of N%d" , _main_idx );
|
|
519 |
if( is_main_loop() ) st->print("main of N%d", _idx );
|
|
520 |
if( is_post_loop() ) st->print("post of N%d", _main_idx );
|
|
521 |
}
|
|
522 |
#endif
|
|
523 |
|
|
524 |
//=============================================================================
|
|
525 |
int CountedLoopEndNode::stride_con() const {
|
|
526 |
return stride()->bottom_type()->is_int()->get_con();
|
|
527 |
}
|
|
528 |
|
|
529 |
|
|
530 |
//----------------------match_incr_with_optional_truncation--------------------
|
|
531 |
// Match increment with optional truncation:
|
|
532 |
// CHAR: (i+1)&0x7fff, BYTE: ((i+1)<<8)>>8, or SHORT: ((i+1)<<16)>>16
|
|
533 |
// Return NULL for failure. Success returns the increment node.
|
|
534 |
Node* CountedLoopNode::match_incr_with_optional_truncation(
|
|
535 |
Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type) {
|
|
536 |
// Quick cutouts:
|
|
537 |
if (expr == NULL || expr->req() != 3) return false;
|
|
538 |
|
|
539 |
Node *t1 = NULL;
|
|
540 |
Node *t2 = NULL;
|
|
541 |
const TypeInt* trunc_t = TypeInt::INT;
|
|
542 |
Node* n1 = expr;
|
|
543 |
int n1op = n1->Opcode();
|
|
544 |
|
|
545 |
// Try to strip (n1 & M) or (n1 << N >> N) from n1.
|
|
546 |
if (n1op == Op_AndI &&
|
|
547 |
n1->in(2)->is_Con() &&
|
|
548 |
n1->in(2)->bottom_type()->is_int()->get_con() == 0x7fff) {
|
|
549 |
// %%% This check should match any mask of 2**K-1.
|
|
550 |
t1 = n1;
|
|
551 |
n1 = t1->in(1);
|
|
552 |
n1op = n1->Opcode();
|
|
553 |
trunc_t = TypeInt::CHAR;
|
|
554 |
} else if (n1op == Op_RShiftI &&
|
|
555 |
n1->in(1) != NULL &&
|
|
556 |
n1->in(1)->Opcode() == Op_LShiftI &&
|
|
557 |
n1->in(2) == n1->in(1)->in(2) &&
|
|
558 |
n1->in(2)->is_Con()) {
|
|
559 |
jint shift = n1->in(2)->bottom_type()->is_int()->get_con();
|
|
560 |
// %%% This check should match any shift in [1..31].
|
|
561 |
if (shift == 16 || shift == 8) {
|
|
562 |
t1 = n1;
|
|
563 |
t2 = t1->in(1);
|
|
564 |
n1 = t2->in(1);
|
|
565 |
n1op = n1->Opcode();
|
|
566 |
if (shift == 16) {
|
|
567 |
trunc_t = TypeInt::SHORT;
|
|
568 |
} else if (shift == 8) {
|
|
569 |
trunc_t = TypeInt::BYTE;
|
|
570 |
}
|
|
571 |
}
|
|
572 |
}
|
|
573 |
|
|
574 |
// If (maybe after stripping) it is an AddI, we won:
|
|
575 |
if (n1op == Op_AddI) {
|
|
576 |
*trunc1 = t1;
|
|
577 |
*trunc2 = t2;
|
|
578 |
*trunc_type = trunc_t;
|
|
579 |
return n1;
|
|
580 |
}
|
|
581 |
|
|
582 |
// failed
|
|
583 |
return NULL;
|
|
584 |
}
|
|
585 |
|
|
586 |
|
|
587 |
//------------------------------filtered_type--------------------------------
|
|
588 |
// Return a type based on condition control flow
|
|
589 |
// A successful return will be a type that is restricted due
|
|
590 |
// to a series of dominating if-tests, such as:
|
|
591 |
// if (i < 10) {
|
|
592 |
// if (i > 0) {
|
|
593 |
// here: "i" type is [1..10)
|
|
594 |
// }
|
|
595 |
// }
|
|
596 |
// or a control flow merge
|
|
597 |
// if (i < 10) {
|
|
598 |
// do {
|
|
599 |
// phi( , ) -- at top of loop type is [min_int..10)
|
|
600 |
// i = ?
|
|
601 |
// } while ( i < 10)
|
|
602 |
//
|
|
603 |
const TypeInt* PhaseIdealLoop::filtered_type( Node *n, Node* n_ctrl) {
|
|
604 |
assert(n && n->bottom_type()->is_int(), "must be int");
|
|
605 |
const TypeInt* filtered_t = NULL;
|
|
606 |
if (!n->is_Phi()) {
|
|
607 |
assert(n_ctrl != NULL || n_ctrl == C->top(), "valid control");
|
|
608 |
filtered_t = filtered_type_from_dominators(n, n_ctrl);
|
|
609 |
|
|
610 |
} else {
|
|
611 |
Node* phi = n->as_Phi();
|
|
612 |
Node* region = phi->in(0);
|
|
613 |
assert(n_ctrl == NULL || n_ctrl == region, "ctrl parameter must be region");
|
|
614 |
if (region && region != C->top()) {
|
|
615 |
for (uint i = 1; i < phi->req(); i++) {
|
|
616 |
Node* val = phi->in(i);
|
|
617 |
Node* use_c = region->in(i);
|
|
618 |
const TypeInt* val_t = filtered_type_from_dominators(val, use_c);
|
|
619 |
if (val_t != NULL) {
|
|
620 |
if (filtered_t == NULL) {
|
|
621 |
filtered_t = val_t;
|
|
622 |
} else {
|
|
623 |
filtered_t = filtered_t->meet(val_t)->is_int();
|
|
624 |
}
|
|
625 |
}
|
|
626 |
}
|
|
627 |
}
|
|
628 |
}
|
|
629 |
const TypeInt* n_t = _igvn.type(n)->is_int();
|
|
630 |
if (filtered_t != NULL) {
|
|
631 |
n_t = n_t->join(filtered_t)->is_int();
|
|
632 |
}
|
|
633 |
return n_t;
|
|
634 |
}
|
|
635 |
|
|
636 |
|
|
637 |
//------------------------------filtered_type_from_dominators--------------------------------
|
|
638 |
// Return a possibly more restrictive type for val based on condition control flow of dominators
|
|
639 |
const TypeInt* PhaseIdealLoop::filtered_type_from_dominators( Node* val, Node *use_ctrl) {
|
|
640 |
if (val->is_Con()) {
|
|
641 |
return val->bottom_type()->is_int();
|
|
642 |
}
|
|
643 |
uint if_limit = 10; // Max number of dominating if's visited
|
|
644 |
const TypeInt* rtn_t = NULL;
|
|
645 |
|
|
646 |
if (use_ctrl && use_ctrl != C->top()) {
|
|
647 |
Node* val_ctrl = get_ctrl(val);
|
|
648 |
uint val_dom_depth = dom_depth(val_ctrl);
|
|
649 |
Node* pred = use_ctrl;
|
|
650 |
uint if_cnt = 0;
|
|
651 |
while (if_cnt < if_limit) {
|
|
652 |
if ((pred->Opcode() == Op_IfTrue || pred->Opcode() == Op_IfFalse)) {
|
|
653 |
if_cnt++;
|
|
654 |
const TypeInt* if_t = filtered_type_at_if(val, pred);
|
|
655 |
if (if_t != NULL) {
|
|
656 |
if (rtn_t == NULL) {
|
|
657 |
rtn_t = if_t;
|
|
658 |
} else {
|
|
659 |
rtn_t = rtn_t->join(if_t)->is_int();
|
|
660 |
}
|
|
661 |
}
|
|
662 |
}
|
|
663 |
pred = idom(pred);
|
|
664 |
if (pred == NULL || pred == C->top()) {
|
|
665 |
break;
|
|
666 |
}
|
|
667 |
// Stop if going beyond definition block of val
|
|
668 |
if (dom_depth(pred) < val_dom_depth) {
|
|
669 |
break;
|
|
670 |
}
|
|
671 |
}
|
|
672 |
}
|
|
673 |
return rtn_t;
|
|
674 |
}
|
|
675 |
|
|
676 |
|
|
677 |
//------------------------------filtered_type_at_if--------------------------------
|
|
678 |
// Return a possibly more restrictive type for val based on condition control flow for an if
|
|
679 |
const TypeInt* PhaseIdealLoop::filtered_type_at_if( Node* val, Node *if_proj) {
|
|
680 |
assert(if_proj &&
|
|
681 |
(if_proj->Opcode() == Op_IfTrue || if_proj->Opcode() == Op_IfFalse), "expecting an if projection");
|
|
682 |
if (if_proj->in(0) && if_proj->in(0)->is_If()) {
|
|
683 |
IfNode* iff = if_proj->in(0)->as_If();
|
|
684 |
if (iff->in(1) && iff->in(1)->is_Bool()) {
|
|
685 |
BoolNode* bol = iff->in(1)->as_Bool();
|
|
686 |
if (bol->in(1) && bol->in(1)->is_Cmp()) {
|
|
687 |
const CmpNode* cmp = bol->in(1)->as_Cmp();
|
|
688 |
if (cmp->in(1) == val) {
|
|
689 |
const TypeInt* cmp2_t = _igvn.type(cmp->in(2))->isa_int();
|
|
690 |
if (cmp2_t != NULL) {
|
|
691 |
jint lo = cmp2_t->_lo;
|
|
692 |
jint hi = cmp2_t->_hi;
|
|
693 |
BoolTest::mask msk = if_proj->Opcode() == Op_IfTrue ? bol->_test._test : bol->_test.negate();
|
|
694 |
switch (msk) {
|
|
695 |
case BoolTest::ne:
|
|
696 |
// Can't refine type
|
|
697 |
return NULL;
|
|
698 |
case BoolTest::eq:
|
|
699 |
return cmp2_t;
|
|
700 |
case BoolTest::lt:
|
|
701 |
lo = TypeInt::INT->_lo;
|
|
702 |
if (hi - 1 < hi) {
|
|
703 |
hi = hi - 1;
|
|
704 |
}
|
|
705 |
break;
|
|
706 |
case BoolTest::le:
|
|
707 |
lo = TypeInt::INT->_lo;
|
|
708 |
break;
|
|
709 |
case BoolTest::gt:
|
|
710 |
if (lo + 1 > lo) {
|
|
711 |
lo = lo + 1;
|
|
712 |
}
|
|
713 |
hi = TypeInt::INT->_hi;
|
|
714 |
break;
|
|
715 |
case BoolTest::ge:
|
|
716 |
// lo unchanged
|
|
717 |
hi = TypeInt::INT->_hi;
|
|
718 |
break;
|
|
719 |
}
|
|
720 |
const TypeInt* rtn_t = TypeInt::make(lo, hi, cmp2_t->_widen);
|
|
721 |
return rtn_t;
|
|
722 |
}
|
|
723 |
}
|
|
724 |
}
|
|
725 |
}
|
|
726 |
}
|
|
727 |
return NULL;
|
|
728 |
}
|
|
729 |
|
|
730 |
//------------------------------dump_spec--------------------------------------
|
|
731 |
// Dump special per-node info
|
|
732 |
#ifndef PRODUCT
|
|
733 |
void CountedLoopEndNode::dump_spec(outputStream *st) const {
|
|
734 |
if( in(TestValue)->is_Bool() ) {
|
|
735 |
BoolTest bt( test_trip()); // Added this for g++.
|
|
736 |
|
|
737 |
st->print("[");
|
|
738 |
bt.dump_on(st);
|
|
739 |
st->print("]");
|
|
740 |
}
|
|
741 |
st->print(" ");
|
|
742 |
IfNode::dump_spec(st);
|
|
743 |
}
|
|
744 |
#endif
|
|
745 |
|
|
746 |
//=============================================================================
|
|
747 |
//------------------------------is_member--------------------------------------
|
|
748 |
// Is 'l' a member of 'this'?
|
|
749 |
int IdealLoopTree::is_member( const IdealLoopTree *l ) const {
|
|
750 |
while( l->_nest > _nest ) l = l->_parent;
|
|
751 |
return l == this;
|
|
752 |
}
|
|
753 |
|
|
754 |
//------------------------------set_nest---------------------------------------
|
|
755 |
// Set loop tree nesting depth. Accumulate _has_call bits.
|
|
756 |
int IdealLoopTree::set_nest( uint depth ) {
|
|
757 |
_nest = depth;
|
|
758 |
int bits = _has_call;
|
|
759 |
if( _child ) bits |= _child->set_nest(depth+1);
|
|
760 |
if( bits ) _has_call = 1;
|
|
761 |
if( _next ) bits |= _next ->set_nest(depth );
|
|
762 |
return bits;
|
|
763 |
}
|
|
764 |
|
|
765 |
//------------------------------split_fall_in----------------------------------
|
|
766 |
// Split out multiple fall-in edges from the loop header. Move them to a
|
|
767 |
// private RegionNode before the loop. This becomes the loop landing pad.
|
|
768 |
void IdealLoopTree::split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt ) {
|
|
769 |
PhaseIterGVN &igvn = phase->_igvn;
|
|
770 |
uint i;
|
|
771 |
|
|
772 |
// Make a new RegionNode to be the landing pad.
|
|
773 |
Node *landing_pad = new (phase->C, fall_in_cnt+1) RegionNode( fall_in_cnt+1 );
|
|
774 |
phase->set_loop(landing_pad,_parent);
|
|
775 |
// Gather all the fall-in control paths into the landing pad
|
|
776 |
uint icnt = fall_in_cnt;
|
|
777 |
uint oreq = _head->req();
|
|
778 |
for( i = oreq-1; i>0; i-- )
|
|
779 |
if( !phase->is_member( this, _head->in(i) ) )
|
|
780 |
landing_pad->set_req(icnt--,_head->in(i));
|
|
781 |
|
|
782 |
// Peel off PhiNode edges as well
|
|
783 |
for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
|
|
784 |
Node *oj = _head->fast_out(j);
|
|
785 |
if( oj->is_Phi() ) {
|
|
786 |
PhiNode* old_phi = oj->as_Phi();
|
|
787 |
assert( old_phi->region() == _head, "" );
|
|
788 |
igvn.hash_delete(old_phi); // Yank from hash before hacking edges
|
|
789 |
Node *p = PhiNode::make_blank(landing_pad, old_phi);
|
|
790 |
uint icnt = fall_in_cnt;
|
|
791 |
for( i = oreq-1; i>0; i-- ) {
|
|
792 |
if( !phase->is_member( this, _head->in(i) ) ) {
|
|
793 |
p->init_req(icnt--, old_phi->in(i));
|
|
794 |
// Go ahead and clean out old edges from old phi
|
|
795 |
old_phi->del_req(i);
|
|
796 |
}
|
|
797 |
}
|
|
798 |
// Search for CSE's here, because ZKM.jar does a lot of
|
|
799 |
// loop hackery and we need to be a little incremental
|
|
800 |
// with the CSE to avoid O(N^2) node blow-up.
|
|
801 |
Node *p2 = igvn.hash_find_insert(p); // Look for a CSE
|
|
802 |
if( p2 ) { // Found CSE
|
|
803 |
p->destruct(); // Recover useless new node
|
|
804 |
p = p2; // Use old node
|
|
805 |
} else {
|
|
806 |
igvn.register_new_node_with_optimizer(p, old_phi);
|
|
807 |
}
|
|
808 |
// Make old Phi refer to new Phi.
|
|
809 |
old_phi->add_req(p);
|
|
810 |
// Check for the special case of making the old phi useless and
|
|
811 |
// disappear it. In JavaGrande I have a case where this useless
|
|
812 |
// Phi is the loop limit and prevents recognizing a CountedLoop
|
|
813 |
// which in turn prevents removing an empty loop.
|
|
814 |
Node *id_old_phi = old_phi->Identity( &igvn );
|
|
815 |
if( id_old_phi != old_phi ) { // Found a simple identity?
|
|
816 |
// Note that I cannot call 'subsume_node' here, because
|
|
817 |
// that will yank the edge from old_phi to the Region and
|
|
818 |
// I'm mid-iteration over the Region's uses.
|
|
819 |
for (DUIterator_Last imin, i = old_phi->last_outs(imin); i >= imin; ) {
|
|
820 |
Node* use = old_phi->last_out(i);
|
|
821 |
igvn.hash_delete(use);
|
|
822 |
igvn._worklist.push(use);
|
|
823 |
uint uses_found = 0;
|
|
824 |
for (uint j = 0; j < use->len(); j++) {
|
|
825 |
if (use->in(j) == old_phi) {
|
|
826 |
if (j < use->req()) use->set_req (j, id_old_phi);
|
|
827 |
else use->set_prec(j, id_old_phi);
|
|
828 |
uses_found++;
|
|
829 |
}
|
|
830 |
}
|
|
831 |
i -= uses_found; // we deleted 1 or more copies of this edge
|
|
832 |
}
|
|
833 |
}
|
|
834 |
igvn._worklist.push(old_phi);
|
|
835 |
}
|
|
836 |
}
|
|
837 |
// Finally clean out the fall-in edges from the RegionNode
|
|
838 |
for( i = oreq-1; i>0; i-- ) {
|
|
839 |
if( !phase->is_member( this, _head->in(i) ) ) {
|
|
840 |
_head->del_req(i);
|
|
841 |
}
|
|
842 |
}
|
|
843 |
// Transform landing pad
|
|
844 |
igvn.register_new_node_with_optimizer(landing_pad, _head);
|
|
845 |
// Insert landing pad into the header
|
|
846 |
_head->add_req(landing_pad);
|
|
847 |
}
|
|
848 |
|
|
849 |
//------------------------------split_outer_loop-------------------------------
|
|
850 |
// Split out the outermost loop from this shared header.
|
|
851 |
void IdealLoopTree::split_outer_loop( PhaseIdealLoop *phase ) {
|
|
852 |
PhaseIterGVN &igvn = phase->_igvn;
|
|
853 |
|
|
854 |
// Find index of outermost loop; it should also be my tail.
|
|
855 |
uint outer_idx = 1;
|
|
856 |
while( _head->in(outer_idx) != _tail ) outer_idx++;
|
|
857 |
|
|
858 |
// Make a LoopNode for the outermost loop.
|
|
859 |
Node *ctl = _head->in(LoopNode::EntryControl);
|
|
860 |
Node *outer = new (phase->C, 3) LoopNode( ctl, _head->in(outer_idx) );
|
|
861 |
outer = igvn.register_new_node_with_optimizer(outer, _head);
|
|
862 |
phase->set_created_loop_node();
|
|
863 |
// Outermost loop falls into '_head' loop
|
|
864 |
_head->set_req(LoopNode::EntryControl, outer);
|
|
865 |
_head->del_req(outer_idx);
|
|
866 |
// Split all the Phis up between '_head' loop and 'outer' loop.
|
|
867 |
for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
|
|
868 |
Node *out = _head->fast_out(j);
|
|
869 |
if( out->is_Phi() ) {
|
|
870 |
PhiNode *old_phi = out->as_Phi();
|
|
871 |
assert( old_phi->region() == _head, "" );
|
|
872 |
Node *phi = PhiNode::make_blank(outer, old_phi);
|
|
873 |
phi->init_req(LoopNode::EntryControl, old_phi->in(LoopNode::EntryControl));
|
|
874 |
phi->init_req(LoopNode::LoopBackControl, old_phi->in(outer_idx));
|
|
875 |
phi = igvn.register_new_node_with_optimizer(phi, old_phi);
|
|
876 |
// Make old Phi point to new Phi on the fall-in path
|
|
877 |
igvn.hash_delete(old_phi);
|
|
878 |
old_phi->set_req(LoopNode::EntryControl, phi);
|
|
879 |
old_phi->del_req(outer_idx);
|
|
880 |
igvn._worklist.push(old_phi);
|
|
881 |
}
|
|
882 |
}
|
|
883 |
|
|
884 |
// Use the new loop head instead of the old shared one
|
|
885 |
_head = outer;
|
|
886 |
phase->set_loop(_head, this);
|
|
887 |
}
|
|
888 |
|
|
889 |
//------------------------------fix_parent-------------------------------------
|
|
890 |
static void fix_parent( IdealLoopTree *loop, IdealLoopTree *parent ) {
|
|
891 |
loop->_parent = parent;
|
|
892 |
if( loop->_child ) fix_parent( loop->_child, loop );
|
|
893 |
if( loop->_next ) fix_parent( loop->_next , parent );
|
|
894 |
}
|
|
895 |
|
|
896 |
//------------------------------estimate_path_freq-----------------------------
|
|
897 |
static float estimate_path_freq( Node *n ) {
|
|
898 |
// Try to extract some path frequency info
|
|
899 |
IfNode *iff;
|
|
900 |
for( int i = 0; i < 50; i++ ) { // Skip through a bunch of uncommon tests
|
|
901 |
uint nop = n->Opcode();
|
|
902 |
if( nop == Op_SafePoint ) { // Skip any safepoint
|
|
903 |
n = n->in(0);
|
|
904 |
continue;
|
|
905 |
}
|
|
906 |
if( nop == Op_CatchProj ) { // Get count from a prior call
|
|
907 |
// Assume call does not always throw exceptions: means the call-site
|
|
908 |
// count is also the frequency of the fall-through path.
|
|
909 |
assert( n->is_CatchProj(), "" );
|
|
910 |
if( ((CatchProjNode*)n)->_con != CatchProjNode::fall_through_index )
|
|
911 |
return 0.0f; // Assume call exception path is rare
|
|
912 |
Node *call = n->in(0)->in(0)->in(0);
|
|
913 |
assert( call->is_Call(), "expect a call here" );
|
|
914 |
const JVMState *jvms = ((CallNode*)call)->jvms();
|
|
915 |
ciMethodData* methodData = jvms->method()->method_data();
|
|
916 |
if (!methodData->is_mature()) return 0.0f; // No call-site data
|
|
917 |
ciProfileData* data = methodData->bci_to_data(jvms->bci());
|
|
918 |
if ((data == NULL) || !data->is_CounterData()) {
|
|
919 |
// no call profile available, try call's control input
|
|
920 |
n = n->in(0);
|
|
921 |
continue;
|
|
922 |
}
|
|
923 |
return data->as_CounterData()->count()/FreqCountInvocations;
|
|
924 |
}
|
|
925 |
// See if there's a gating IF test
|
|
926 |
Node *n_c = n->in(0);
|
|
927 |
if( !n_c->is_If() ) break; // No estimate available
|
|
928 |
iff = n_c->as_If();
|
|
929 |
if( iff->_fcnt != COUNT_UNKNOWN ) // Have a valid count?
|
|
930 |
// Compute how much count comes on this path
|
|
931 |
return ((nop == Op_IfTrue) ? iff->_prob : 1.0f - iff->_prob) * iff->_fcnt;
|
|
932 |
// Have no count info. Skip dull uncommon-trap like branches.
|
|
933 |
if( (nop == Op_IfTrue && iff->_prob < PROB_LIKELY_MAG(5)) ||
|
|
934 |
(nop == Op_IfFalse && iff->_prob > PROB_UNLIKELY_MAG(5)) )
|
|
935 |
break;
|
|
936 |
// Skip through never-taken branch; look for a real loop exit.
|
|
937 |
n = iff->in(0);
|
|
938 |
}
|
|
939 |
return 0.0f; // No estimate available
|
|
940 |
}
|
|
941 |
|
|
942 |
//------------------------------merge_many_backedges---------------------------
|
|
943 |
// Merge all the backedges from the shared header into a private Region.
|
|
944 |
// Feed that region as the one backedge to this loop.
|
|
945 |
void IdealLoopTree::merge_many_backedges( PhaseIdealLoop *phase ) {
|
|
946 |
uint i;
|
|
947 |
|
|
948 |
// Scan for the top 2 hottest backedges
|
|
949 |
float hotcnt = 0.0f;
|
|
950 |
float warmcnt = 0.0f;
|
|
951 |
uint hot_idx = 0;
|
|
952 |
// Loop starts at 2 because slot 1 is the fall-in path
|
|
953 |
for( i = 2; i < _head->req(); i++ ) {
|
|
954 |
float cnt = estimate_path_freq(_head->in(i));
|
|
955 |
if( cnt > hotcnt ) { // Grab hottest path
|
|
956 |
warmcnt = hotcnt;
|
|
957 |
hotcnt = cnt;
|
|
958 |
hot_idx = i;
|
|
959 |
} else if( cnt > warmcnt ) { // And 2nd hottest path
|
|
960 |
warmcnt = cnt;
|
|
961 |
}
|
|
962 |
}
|
|
963 |
|
|
964 |
// See if the hottest backedge is worthy of being an inner loop
|
|
965 |
// by being much hotter than the next hottest backedge.
|
|
966 |
if( hotcnt <= 0.0001 ||
|
|
967 |
hotcnt < 2.0*warmcnt ) hot_idx = 0;// No hot backedge
|
|
968 |
|
|
969 |
// Peel out the backedges into a private merge point; peel
|
|
970 |
// them all except optionally hot_idx.
|
|
971 |
PhaseIterGVN &igvn = phase->_igvn;
|
|
972 |
|
|
973 |
Node *hot_tail = NULL;
|
|
974 |
// Make a Region for the merge point
|
|
975 |
Node *r = new (phase->C, 1) RegionNode(1);
|
|
976 |
for( i = 2; i < _head->req(); i++ ) {
|
|
977 |
if( i != hot_idx )
|
|
978 |
r->add_req( _head->in(i) );
|
|
979 |
else hot_tail = _head->in(i);
|
|
980 |
}
|
|
981 |
igvn.register_new_node_with_optimizer(r, _head);
|
|
982 |
// Plug region into end of loop _head, followed by hot_tail
|
|
983 |
while( _head->req() > 3 ) _head->del_req( _head->req()-1 );
|
|
984 |
_head->set_req(2, r);
|
|
985 |
if( hot_idx ) _head->add_req(hot_tail);
|
|
986 |
|
|
987 |
// Split all the Phis up between '_head' loop and the Region 'r'
|
|
988 |
for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
|
|
989 |
Node *out = _head->fast_out(j);
|
|
990 |
if( out->is_Phi() ) {
|
|
991 |
PhiNode* n = out->as_Phi();
|
|
992 |
igvn.hash_delete(n); // Delete from hash before hacking edges
|
|
993 |
Node *hot_phi = NULL;
|
|
994 |
Node *phi = new (phase->C, r->req()) PhiNode(r, n->type(), n->adr_type());
|
|
995 |
// Check all inputs for the ones to peel out
|
|
996 |
uint j = 1;
|
|
997 |
for( uint i = 2; i < n->req(); i++ ) {
|
|
998 |
if( i != hot_idx )
|
|
999 |
phi->set_req( j++, n->in(i) );
|
|
1000 |
else hot_phi = n->in(i);
|
|
1001 |
}
|
|
1002 |
// Register the phi but do not transform until whole place transforms
|
|
1003 |
igvn.register_new_node_with_optimizer(phi, n);
|
|
1004 |
// Add the merge phi to the old Phi
|
|
1005 |
while( n->req() > 3 ) n->del_req( n->req()-1 );
|
|
1006 |
n->set_req(2, phi);
|
|
1007 |
if( hot_idx ) n->add_req(hot_phi);
|
|
1008 |
}
|
|
1009 |
}
|
|
1010 |
|
|
1011 |
|
|
1012 |
// Insert a new IdealLoopTree inserted below me. Turn it into a clone
|
|
1013 |
// of self loop tree. Turn self into a loop headed by _head and with
|
|
1014 |
// tail being the new merge point.
|
|
1015 |
IdealLoopTree *ilt = new IdealLoopTree( phase, _head, _tail );
|
|
1016 |
phase->set_loop(_tail,ilt); // Adjust tail
|
|
1017 |
_tail = r; // Self's tail is new merge point
|
|
1018 |
phase->set_loop(r,this);
|
|
1019 |
ilt->_child = _child; // New guy has my children
|
|
1020 |
_child = ilt; // Self has new guy as only child
|
|
1021 |
ilt->_parent = this; // new guy has self for parent
|
|
1022 |
ilt->_nest = _nest; // Same nesting depth (for now)
|
|
1023 |
|
|
1024 |
// Starting with 'ilt', look for child loop trees using the same shared
|
|
1025 |
// header. Flatten these out; they will no longer be loops in the end.
|
|
1026 |
IdealLoopTree **pilt = &_child;
|
|
1027 |
while( ilt ) {
|
|
1028 |
if( ilt->_head == _head ) {
|
|
1029 |
uint i;
|
|
1030 |
for( i = 2; i < _head->req(); i++ )
|
|
1031 |
if( _head->in(i) == ilt->_tail )
|
|
1032 |
break; // Still a loop
|
|
1033 |
if( i == _head->req() ) { // No longer a loop
|
|
1034 |
// Flatten ilt. Hang ilt's "_next" list from the end of
|
|
1035 |
// ilt's '_child' list. Move the ilt's _child up to replace ilt.
|
|
1036 |
IdealLoopTree **cp = &ilt->_child;
|
|
1037 |
while( *cp ) cp = &(*cp)->_next; // Find end of child list
|
|
1038 |
*cp = ilt->_next; // Hang next list at end of child list
|
|
1039 |
*pilt = ilt->_child; // Move child up to replace ilt
|
|
1040 |
ilt->_head = NULL; // Flag as a loop UNIONED into parent
|
|
1041 |
ilt = ilt->_child; // Repeat using new ilt
|
|
1042 |
continue; // do not advance over ilt->_child
|
|
1043 |
}
|
|
1044 |
assert( ilt->_tail == hot_tail, "expected to only find the hot inner loop here" );
|
|
1045 |
phase->set_loop(_head,ilt);
|
|
1046 |
}
|
|
1047 |
pilt = &ilt->_child; // Advance to next
|
|
1048 |
ilt = *pilt;
|
|
1049 |
}
|
|
1050 |
|
|
1051 |
if( _child ) fix_parent( _child, this );
|
|
1052 |
}
|
|
1053 |
|
|
1054 |
//------------------------------beautify_loops---------------------------------
|
|
1055 |
// Split shared headers and insert loop landing pads.
|
|
1056 |
// Insert a LoopNode to replace the RegionNode.
|
|
1057 |
// Return TRUE if loop tree is structurally changed.
|
|
1058 |
bool IdealLoopTree::beautify_loops( PhaseIdealLoop *phase ) {
|
|
1059 |
bool result = false;
|
|
1060 |
// Cache parts in locals for easy
|
|
1061 |
PhaseIterGVN &igvn = phase->_igvn;
|
|
1062 |
|
|
1063 |
phase->C->print_method("Before beautify loops", 3);
|
|
1064 |
|
|
1065 |
igvn.hash_delete(_head); // Yank from hash before hacking edges
|
|
1066 |
|
|
1067 |
// Check for multiple fall-in paths. Peel off a landing pad if need be.
|
|
1068 |
int fall_in_cnt = 0;
|
|
1069 |
for( uint i = 1; i < _head->req(); i++ )
|
|
1070 |
if( !phase->is_member( this, _head->in(i) ) )
|
|
1071 |
fall_in_cnt++;
|
|
1072 |
assert( fall_in_cnt, "at least 1 fall-in path" );
|
|
1073 |
if( fall_in_cnt > 1 ) // Need a loop landing pad to merge fall-ins
|
|
1074 |
split_fall_in( phase, fall_in_cnt );
|
|
1075 |
|
|
1076 |
// Swap inputs to the _head and all Phis to move the fall-in edge to
|
|
1077 |
// the left.
|
|
1078 |
fall_in_cnt = 1;
|
|
1079 |
while( phase->is_member( this, _head->in(fall_in_cnt) ) )
|
|
1080 |
fall_in_cnt++;
|
|
1081 |
if( fall_in_cnt > 1 ) {
|
|
1082 |
// Since I am just swapping inputs I do not need to update def-use info
|
|
1083 |
Node *tmp = _head->in(1);
|
|
1084 |
_head->set_req( 1, _head->in(fall_in_cnt) );
|
|
1085 |
_head->set_req( fall_in_cnt, tmp );
|
|
1086 |
// Swap also all Phis
|
|
1087 |
for (DUIterator_Fast imax, i = _head->fast_outs(imax); i < imax; i++) {
|
|
1088 |
Node* phi = _head->fast_out(i);
|
|
1089 |
if( phi->is_Phi() ) {
|
|
1090 |
igvn.hash_delete(phi); // Yank from hash before hacking edges
|
|
1091 |
tmp = phi->in(1);
|
|
1092 |
phi->set_req( 1, phi->in(fall_in_cnt) );
|
|
1093 |
phi->set_req( fall_in_cnt, tmp );
|
|
1094 |
}
|
|
1095 |
}
|
|
1096 |
}
|
|
1097 |
assert( !phase->is_member( this, _head->in(1) ), "left edge is fall-in" );
|
|
1098 |
assert( phase->is_member( this, _head->in(2) ), "right edge is loop" );
|
|
1099 |
|
|
1100 |
// If I am a shared header (multiple backedges), peel off the many
|
|
1101 |
// backedges into a private merge point and use the merge point as
|
|
1102 |
// the one true backedge.
|
|
1103 |
if( _head->req() > 3 ) {
|
|
1104 |
// Merge the many backedges into a single backedge.
|
|
1105 |
merge_many_backedges( phase );
|
|
1106 |
result = true;
|
|
1107 |
}
|
|
1108 |
|
|
1109 |
// If I am a shared header (multiple backedges), peel off myself loop.
|
|
1110 |
// I better be the outermost loop.
|
|
1111 |
if( _head->req() > 3 ) {
|
|
1112 |
split_outer_loop( phase );
|
|
1113 |
result = true;
|
|
1114 |
|
|
1115 |
} else if( !_head->is_Loop() && !_irreducible ) {
|
|
1116 |
// Make a new LoopNode to replace the old loop head
|
|
1117 |
Node *l = new (phase->C, 3) LoopNode( _head->in(1), _head->in(2) );
|
|
1118 |
l = igvn.register_new_node_with_optimizer(l, _head);
|
|
1119 |
phase->set_created_loop_node();
|
|
1120 |
// Go ahead and replace _head
|
|
1121 |
phase->_igvn.subsume_node( _head, l );
|
|
1122 |
_head = l;
|
|
1123 |
phase->set_loop(_head, this);
|
|
1124 |
for (DUIterator_Fast imax, i = l->fast_outs(imax); i < imax; i++)
|
|
1125 |
phase->_igvn.add_users_to_worklist(l->fast_out(i));
|
|
1126 |
}
|
|
1127 |
|
|
1128 |
phase->C->print_method("After beautify loops", 3);
|
|
1129 |
|
|
1130 |
// Now recursively beautify nested loops
|
|
1131 |
if( _child ) result |= _child->beautify_loops( phase );
|
|
1132 |
if( _next ) result |= _next ->beautify_loops( phase );
|
|
1133 |
return result;
|
|
1134 |
}
|
|
1135 |
|
|
1136 |
//------------------------------allpaths_check_safepts----------------------------
|
|
1137 |
// Allpaths backwards scan from loop tail, terminating each path at first safepoint
|
|
1138 |
// encountered. Helper for check_safepts.
|
|
1139 |
void IdealLoopTree::allpaths_check_safepts(VectorSet &visited, Node_List &stack) {
|
|
1140 |
assert(stack.size() == 0, "empty stack");
|
|
1141 |
stack.push(_tail);
|
|
1142 |
visited.Clear();
|
|
1143 |
visited.set(_tail->_idx);
|
|
1144 |
while (stack.size() > 0) {
|
|
1145 |
Node* n = stack.pop();
|
|
1146 |
if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
|
|
1147 |
// Terminate this path
|
|
1148 |
} else if (n->Opcode() == Op_SafePoint) {
|
|
1149 |
if (_phase->get_loop(n) != this) {
|
|
1150 |
if (_required_safept == NULL) _required_safept = new Node_List();
|
|
1151 |
_required_safept->push(n); // save the one closest to the tail
|
|
1152 |
}
|
|
1153 |
// Terminate this path
|
|
1154 |
} else {
|
|
1155 |
uint start = n->is_Region() ? 1 : 0;
|
|
1156 |
uint end = n->is_Region() && !n->is_Loop() ? n->req() : start + 1;
|
|
1157 |
for (uint i = start; i < end; i++) {
|
|
1158 |
Node* in = n->in(i);
|
|
1159 |
assert(in->is_CFG(), "must be");
|
|
1160 |
if (!visited.test_set(in->_idx) && is_member(_phase->get_loop(in))) {
|
|
1161 |
stack.push(in);
|
|
1162 |
}
|
|
1163 |
}
|
|
1164 |
}
|
|
1165 |
}
|
|
1166 |
}
|
|
1167 |
|
|
1168 |
//------------------------------check_safepts----------------------------
|
|
1169 |
// Given dominators, try to find loops with calls that must always be
|
|
1170 |
// executed (call dominates loop tail). These loops do not need non-call
|
|
1171 |
// safepoints (ncsfpt).
|
|
1172 |
//
|
|
1173 |
// A complication is that a safepoint in a inner loop may be needed
|
|
1174 |
// by an outer loop. In the following, the inner loop sees it has a
|
|
1175 |
// call (block 3) on every path from the head (block 2) to the
|
|
1176 |
// backedge (arc 3->2). So it deletes the ncsfpt (non-call safepoint)
|
|
1177 |
// in block 2, _but_ this leaves the outer loop without a safepoint.
|
|
1178 |
//
|
|
1179 |
// entry 0
|
|
1180 |
// |
|
|
1181 |
// v
|
|
1182 |
// outer 1,2 +->1
|
|
1183 |
// | |
|
|
1184 |
// | v
|
|
1185 |
// | 2<---+ ncsfpt in 2
|
|
1186 |
// |_/|\ |
|
|
1187 |
// | v |
|
|
1188 |
// inner 2,3 / 3 | call in 3
|
|
1189 |
// / | |
|
|
1190 |
// v +--+
|
|
1191 |
// exit 4
|
|
1192 |
//
|
|
1193 |
//
|
|
1194 |
// This method creates a list (_required_safept) of ncsfpt nodes that must
|
|
1195 |
// be protected is created for each loop. When a ncsfpt maybe deleted, it
|
|
1196 |
// is first looked for in the lists for the outer loops of the current loop.
|
|
1197 |
//
|
|
1198 |
// The insights into the problem:
|
|
1199 |
// A) counted loops are okay
|
|
1200 |
// B) innermost loops are okay (only an inner loop can delete
|
|
1201 |
// a ncsfpt needed by an outer loop)
|
|
1202 |
// C) a loop is immune from an inner loop deleting a safepoint
|
|
1203 |
// if the loop has a call on the idom-path
|
|
1204 |
// D) a loop is also immune if it has a ncsfpt (non-call safepoint) on the
|
|
1205 |
// idom-path that is not in a nested loop
|
|
1206 |
// E) otherwise, an ncsfpt on the idom-path that is nested in an inner
|
|
1207 |
// loop needs to be prevented from deletion by an inner loop
|
|
1208 |
//
|
|
1209 |
// There are two analyses:
|
|
1210 |
// 1) The first, and cheaper one, scans the loop body from
|
|
1211 |
// tail to head following the idom (immediate dominator)
|
|
1212 |
// chain, looking for the cases (C,D,E) above.
|
|
1213 |
// Since inner loops are scanned before outer loops, there is summary
|
|
1214 |
// information about inner loops. Inner loops can be skipped over
|
|
1215 |
// when the tail of an inner loop is encountered.
|
|
1216 |
//
|
|
1217 |
// 2) The second, invoked if the first fails to find a call or ncsfpt on
|
|
1218 |
// the idom path (which is rare), scans all predecessor control paths
|
|
1219 |
// from the tail to the head, terminating a path when a call or sfpt
|
|
1220 |
// is encountered, to find the ncsfpt's that are closest to the tail.
|
|
1221 |
//
|
|
1222 |
void IdealLoopTree::check_safepts(VectorSet &visited, Node_List &stack) {
|
|
1223 |
// Bottom up traversal
|
|
1224 |
IdealLoopTree* ch = _child;
|
|
1225 |
while (ch != NULL) {
|
|
1226 |
ch->check_safepts(visited, stack);
|
|
1227 |
ch = ch->_next;
|
|
1228 |
}
|
|
1229 |
|
|
1230 |
if (!_head->is_CountedLoop() && !_has_sfpt && _parent != NULL && !_irreducible) {
|
|
1231 |
bool has_call = false; // call on dom-path
|
|
1232 |
bool has_local_ncsfpt = false; // ncsfpt on dom-path at this loop depth
|
|
1233 |
Node* nonlocal_ncsfpt = NULL; // ncsfpt on dom-path at a deeper depth
|
|
1234 |
// Scan the dom-path nodes from tail to head
|
|
1235 |
for (Node* n = tail(); n != _head; n = _phase->idom(n)) {
|
|
1236 |
if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
|
|
1237 |
has_call = true;
|
|
1238 |
_has_sfpt = 1; // Then no need for a safept!
|
|
1239 |
break;
|
|
1240 |
} else if (n->Opcode() == Op_SafePoint) {
|
|
1241 |
if (_phase->get_loop(n) == this) {
|
|
1242 |
has_local_ncsfpt = true;
|
|
1243 |
break;
|
|
1244 |
}
|
|
1245 |
if (nonlocal_ncsfpt == NULL) {
|
|
1246 |
nonlocal_ncsfpt = n; // save the one closest to the tail
|
|
1247 |
}
|
|
1248 |
} else {
|
|
1249 |
IdealLoopTree* nlpt = _phase->get_loop(n);
|
|
1250 |
if (this != nlpt) {
|
|
1251 |
// If at an inner loop tail, see if the inner loop has already
|
|
1252 |
// recorded seeing a call on the dom-path (and stop.) If not,
|
|
1253 |
// jump to the head of the inner loop.
|
|
1254 |
assert(is_member(nlpt), "nested loop");
|
|
1255 |
Node* tail = nlpt->_tail;
|
|
1256 |
if (tail->in(0)->is_If()) tail = tail->in(0);
|
|
1257 |
if (n == tail) {
|
|
1258 |
// If inner loop has call on dom-path, so does outer loop
|
|
1259 |
if (nlpt->_has_sfpt) {
|
|
1260 |
has_call = true;
|
|
1261 |
_has_sfpt = 1;
|
|
1262 |
break;
|
|
1263 |
}
|
|
1264 |
// Skip to head of inner loop
|
|
1265 |
assert(_phase->is_dominator(_head, nlpt->_head), "inner head dominated by outer head");
|
|
1266 |
n = nlpt->_head;
|
|
1267 |
}
|
|
1268 |
}
|
|
1269 |
}
|
|
1270 |
}
|
|
1271 |
// Record safept's that this loop needs preserved when an
|
|
1272 |
// inner loop attempts to delete it's safepoints.
|
|
1273 |
if (_child != NULL && !has_call && !has_local_ncsfpt) {
|
|
1274 |
if (nonlocal_ncsfpt != NULL) {
|
|
1275 |
if (_required_safept == NULL) _required_safept = new Node_List();
|
|
1276 |
_required_safept->push(nonlocal_ncsfpt);
|
|
1277 |
} else {
|
|
1278 |
// Failed to find a suitable safept on the dom-path. Now use
|
|
1279 |
// an all paths walk from tail to head, looking for safepoints to preserve.
|
|
1280 |
allpaths_check_safepts(visited, stack);
|
|
1281 |
}
|
|
1282 |
}
|
|
1283 |
}
|
|
1284 |
}
|
|
1285 |
|
|
1286 |
//---------------------------is_deleteable_safept----------------------------
|
|
1287 |
// Is safept not required by an outer loop?
|
|
1288 |
bool PhaseIdealLoop::is_deleteable_safept(Node* sfpt) {
|
|
1289 |
assert(sfpt->Opcode() == Op_SafePoint, "");
|
|
1290 |
IdealLoopTree* lp = get_loop(sfpt)->_parent;
|
|
1291 |
while (lp != NULL) {
|
|
1292 |
Node_List* sfpts = lp->_required_safept;
|
|
1293 |
if (sfpts != NULL) {
|
|
1294 |
for (uint i = 0; i < sfpts->size(); i++) {
|
|
1295 |
if (sfpt == sfpts->at(i))
|
|
1296 |
return false;
|
|
1297 |
}
|
|
1298 |
}
|
|
1299 |
lp = lp->_parent;
|
|
1300 |
}
|
|
1301 |
return true;
|
|
1302 |
}
|
|
1303 |
|
|
1304 |
//------------------------------counted_loop-----------------------------------
|
|
1305 |
// Convert to counted loops where possible
|
|
1306 |
void IdealLoopTree::counted_loop( PhaseIdealLoop *phase ) {
|
|
1307 |
|
|
1308 |
// For grins, set the inner-loop flag here
|
|
1309 |
if( !_child ) {
|
|
1310 |
if( _head->is_Loop() ) _head->as_Loop()->set_inner_loop();
|
|
1311 |
}
|
|
1312 |
|
|
1313 |
if( _head->is_CountedLoop() ||
|
|
1314 |
phase->is_counted_loop( _head, this ) ) {
|
|
1315 |
_has_sfpt = 1; // Indicate we do not need a safepoint here
|
|
1316 |
|
|
1317 |
// Look for a safepoint to remove
|
|
1318 |
for (Node* n = tail(); n != _head; n = phase->idom(n))
|
|
1319 |
if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this &&
|
|
1320 |
phase->is_deleteable_safept(n))
|
|
1321 |
phase->lazy_replace(n,n->in(TypeFunc::Control));
|
|
1322 |
|
|
1323 |
CountedLoopNode *cl = _head->as_CountedLoop();
|
|
1324 |
Node *incr = cl->incr();
|
|
1325 |
if( !incr ) return; // Dead loop?
|
|
1326 |
Node *init = cl->init_trip();
|
|
1327 |
Node *phi = cl->phi();
|
|
1328 |
// protect against stride not being a constant
|
|
1329 |
if( !cl->stride_is_con() ) return;
|
|
1330 |
int stride_con = cl->stride_con();
|
|
1331 |
|
|
1332 |
// Look for induction variables
|
|
1333 |
|
|
1334 |
// Visit all children, looking for Phis
|
|
1335 |
for (DUIterator i = cl->outs(); cl->has_out(i); i++) {
|
|
1336 |
Node *out = cl->out(i);
|
|
1337 |
if (!out->is_Phi()) continue; // Looking for phis
|
|
1338 |
PhiNode* phi2 = out->as_Phi();
|
|
1339 |
Node *incr2 = phi2->in( LoopNode::LoopBackControl );
|
|
1340 |
// Look for induction variables of the form: X += constant
|
|
1341 |
if( phi2->region() != _head ||
|
|
1342 |
incr2->req() != 3 ||
|
|
1343 |
incr2->in(1) != phi2 ||
|
|
1344 |
incr2 == incr ||
|
|
1345 |
incr2->Opcode() != Op_AddI ||
|
|
1346 |
!incr2->in(2)->is_Con() )
|
|
1347 |
continue;
|
|
1348 |
|
|
1349 |
// Check for parallel induction variable (parallel to trip counter)
|
|
1350 |
// via an affine function. In particular, count-down loops with
|
|
1351 |
// count-up array indices are common. We only RCE references off
|
|
1352 |
// the trip-counter, so we need to convert all these to trip-counter
|
|
1353 |
// expressions.
|
|
1354 |
Node *init2 = phi2->in( LoopNode::EntryControl );
|
|
1355 |
int stride_con2 = incr2->in(2)->get_int();
|
|
1356 |
|
|
1357 |
// The general case here gets a little tricky. We want to find the
|
|
1358 |
// GCD of all possible parallel IV's and make a new IV using this
|
|
1359 |
// GCD for the loop. Then all possible IVs are simple multiples of
|
|
1360 |
// the GCD. In practice, this will cover very few extra loops.
|
|
1361 |
// Instead we require 'stride_con2' to be a multiple of 'stride_con',
|
|
1362 |
// where +/-1 is the common case, but other integer multiples are
|
|
1363 |
// also easy to handle.
|
|
1364 |
int ratio_con = stride_con2/stride_con;
|
|
1365 |
|
|
1366 |
if( ratio_con * stride_con == stride_con2 ) { // Check for exact
|
|
1367 |
// Convert to using the trip counter. The parallel induction
|
|
1368 |
// variable differs from the trip counter by a loop-invariant
|
|
1369 |
// amount, the difference between their respective initial values.
|
|
1370 |
// It is scaled by the 'ratio_con'.
|
|
1371 |
Compile* C = phase->C;
|
|
1372 |
Node* ratio = phase->_igvn.intcon(ratio_con);
|
|
1373 |
phase->set_ctrl(ratio, C->root());
|
|
1374 |
Node* ratio_init = new (C, 3) MulINode(init, ratio);
|
|
1375 |
phase->_igvn.register_new_node_with_optimizer(ratio_init, init);
|
|
1376 |
phase->set_early_ctrl(ratio_init);
|
|
1377 |
Node* diff = new (C, 3) SubINode(init2, ratio_init);
|
|
1378 |
phase->_igvn.register_new_node_with_optimizer(diff, init2);
|
|
1379 |
phase->set_early_ctrl(diff);
|
|
1380 |
Node* ratio_idx = new (C, 3) MulINode(phi, ratio);
|
|
1381 |
phase->_igvn.register_new_node_with_optimizer(ratio_idx, phi);
|
|
1382 |
phase->set_ctrl(ratio_idx, cl);
|
|
1383 |
Node* add = new (C, 3) AddINode(ratio_idx, diff);
|
|
1384 |
phase->_igvn.register_new_node_with_optimizer(add);
|
|
1385 |
phase->set_ctrl(add, cl);
|
|
1386 |
phase->_igvn.hash_delete( phi2 );
|
|
1387 |
phase->_igvn.subsume_node( phi2, add );
|
|
1388 |
// Sometimes an induction variable is unused
|
|
1389 |
if (add->outcnt() == 0) {
|
|
1390 |
phase->_igvn.remove_dead_node(add);
|
|
1391 |
}
|
|
1392 |
--i; // deleted this phi; rescan starting with next position
|
|
1393 |
continue;
|
|
1394 |
}
|
|
1395 |
}
|
|
1396 |
} else if (_parent != NULL && !_irreducible) {
|
|
1397 |
// Not a counted loop.
|
|
1398 |
// Look for a safepoint on the idom-path to remove, preserving the first one
|
|
1399 |
bool found = false;
|
|
1400 |
Node* n = tail();
|
|
1401 |
for (; n != _head && !found; n = phase->idom(n)) {
|
|
1402 |
if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this)
|
|
1403 |
found = true; // Found one
|
|
1404 |
}
|
|
1405 |
// Skip past it and delete the others
|
|
1406 |
for (; n != _head; n = phase->idom(n)) {
|
|
1407 |
if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this &&
|
|
1408 |
phase->is_deleteable_safept(n))
|
|
1409 |
phase->lazy_replace(n,n->in(TypeFunc::Control));
|
|
1410 |
}
|
|
1411 |
}
|
|
1412 |
|
|
1413 |
// Recursively
|
|
1414 |
if( _child ) _child->counted_loop( phase );
|
|
1415 |
if( _next ) _next ->counted_loop( phase );
|
|
1416 |
}
|
|
1417 |
|
|
1418 |
#ifndef PRODUCT
|
|
1419 |
//------------------------------dump_head--------------------------------------
|
|
1420 |
// Dump 1 liner for loop header info
|
|
1421 |
void IdealLoopTree::dump_head( ) const {
|
|
1422 |
for( uint i=0; i<_nest; i++ )
|
|
1423 |
tty->print(" ");
|
|
1424 |
tty->print("Loop: N%d/N%d ",_head->_idx,_tail->_idx);
|
|
1425 |
if( _irreducible ) tty->print(" IRREDUCIBLE");
|
|
1426 |
if( _head->is_CountedLoop() ) {
|
|
1427 |
CountedLoopNode *cl = _head->as_CountedLoop();
|
|
1428 |
tty->print(" counted");
|
|
1429 |
if( cl->is_pre_loop () ) tty->print(" pre" );
|
|
1430 |
if( cl->is_main_loop() ) tty->print(" main");
|
|
1431 |
if( cl->is_post_loop() ) tty->print(" post");
|
|
1432 |
}
|
|
1433 |
tty->cr();
|
|
1434 |
}
|
|
1435 |
|
|
1436 |
//------------------------------dump-------------------------------------------
|
|
1437 |
// Dump loops by loop tree
|
|
1438 |
void IdealLoopTree::dump( ) const {
|
|
1439 |
dump_head();
|
|
1440 |
if( _child ) _child->dump();
|
|
1441 |
if( _next ) _next ->dump();
|
|
1442 |
}
|
|
1443 |
|
|
1444 |
#endif
|
|
1445 |
|
|
1446 |
//=============================================================================
|
|
1447 |
//------------------------------PhaseIdealLoop---------------------------------
|
|
1448 |
// Create a PhaseLoop. Build the ideal Loop tree. Map each Ideal Node to
|
|
1449 |
// its corresponding LoopNode. If 'optimize' is true, do some loop cleanups.
|
|
1450 |
PhaseIdealLoop::PhaseIdealLoop( PhaseIterGVN &igvn, const PhaseIdealLoop *verify_me, bool do_split_ifs )
|
|
1451 |
: PhaseTransform(Ideal_Loop),
|
|
1452 |
_igvn(igvn),
|
|
1453 |
_dom_lca_tags(C->comp_arena()) {
|
|
1454 |
// Reset major-progress flag for the driver's heuristics
|
|
1455 |
C->clear_major_progress();
|
|
1456 |
|
|
1457 |
#ifndef PRODUCT
|
|
1458 |
// Capture for later assert
|
|
1459 |
uint unique = C->unique();
|
|
1460 |
_loop_invokes++;
|
|
1461 |
_loop_work += unique;
|
|
1462 |
#endif
|
|
1463 |
|
|
1464 |
// True if the method has at least 1 irreducible loop
|
|
1465 |
_has_irreducible_loops = false;
|
|
1466 |
|
|
1467 |
_created_loop_node = false;
|
|
1468 |
|
|
1469 |
Arena *a = Thread::current()->resource_area();
|
|
1470 |
VectorSet visited(a);
|
|
1471 |
// Pre-grow the mapping from Nodes to IdealLoopTrees.
|
|
1472 |
_nodes.map(C->unique(), NULL);
|
|
1473 |
memset(_nodes.adr(), 0, wordSize * C->unique());
|
|
1474 |
|
|
1475 |
// Pre-build the top-level outermost loop tree entry
|
|
1476 |
_ltree_root = new IdealLoopTree( this, C->root(), C->root() );
|
|
1477 |
// Do not need a safepoint at the top level
|
|
1478 |
_ltree_root->_has_sfpt = 1;
|
|
1479 |
|
|
1480 |
// Empty pre-order array
|
|
1481 |
allocate_preorders();
|
|
1482 |
|
|
1483 |
// Build a loop tree on the fly. Build a mapping from CFG nodes to
|
|
1484 |
// IdealLoopTree entries. Data nodes are NOT walked.
|
|
1485 |
build_loop_tree();
|
|
1486 |
// Check for bailout, and return
|
|
1487 |
if (C->failing()) {
|
|
1488 |
return;
|
|
1489 |
}
|
|
1490 |
|
|
1491 |
// No loops after all
|
|
1492 |
if( !_ltree_root->_child ) C->set_has_loops(false);
|
|
1493 |
|
|
1494 |
// There should always be an outer loop containing the Root and Return nodes.
|
|
1495 |
// If not, we have a degenerate empty program. Bail out in this case.
|
|
1496 |
if (!has_node(C->root())) {
|
|
1497 |
C->clear_major_progress();
|
|
1498 |
C->record_method_not_compilable("empty program detected during loop optimization");
|
|
1499 |
return;
|
|
1500 |
}
|
|
1501 |
|
|
1502 |
// Nothing to do, so get out
|
|
1503 |
if( !C->has_loops() && !do_split_ifs && !verify_me) {
|
|
1504 |
_igvn.optimize(); // Cleanup NeverBranches
|
|
1505 |
return;
|
|
1506 |
}
|
|
1507 |
|
|
1508 |
// Set loop nesting depth
|
|
1509 |
_ltree_root->set_nest( 0 );
|
|
1510 |
|
|
1511 |
// Split shared headers and insert loop landing pads.
|
|
1512 |
// Do not bother doing this on the Root loop of course.
|
|
1513 |
if( !verify_me && _ltree_root->_child ) {
|
|
1514 |
if( _ltree_root->_child->beautify_loops( this ) ) {
|
|
1515 |
// Re-build loop tree!
|
|
1516 |
_ltree_root->_child = NULL;
|
|
1517 |
_nodes.clear();
|
|
1518 |
reallocate_preorders();
|
|
1519 |
build_loop_tree();
|
|
1520 |
// Check for bailout, and return
|
|
1521 |
if (C->failing()) {
|
|
1522 |
return;
|
|
1523 |
}
|
|
1524 |
// Reset loop nesting depth
|
|
1525 |
_ltree_root->set_nest( 0 );
|
|
1526 |
}
|
|
1527 |
}
|
|
1528 |
|
|
1529 |
// Build Dominators for elision of NULL checks & loop finding.
|
|
1530 |
// Since nodes do not have a slot for immediate dominator, make
|
|
1531 |
// a persistant side array for that info indexed on node->_idx.
|
|
1532 |
_idom_size = C->unique();
|
|
1533 |
_idom = NEW_RESOURCE_ARRAY( Node*, _idom_size );
|
|
1534 |
_dom_depth = NEW_RESOURCE_ARRAY( uint, _idom_size );
|
|
1535 |
_dom_stk = NULL; // Allocated on demand in recompute_dom_depth
|
|
1536 |
memset( _dom_depth, 0, _idom_size * sizeof(uint) );
|
|
1537 |
|
|
1538 |
Dominators();
|
|
1539 |
|
|
1540 |
// As a side effect, Dominators removed any unreachable CFG paths
|
|
1541 |
// into RegionNodes. It doesn't do this test against Root, so
|
|
1542 |
// we do it here.
|
|
1543 |
for( uint i = 1; i < C->root()->req(); i++ ) {
|
|
1544 |
if( !_nodes[C->root()->in(i)->_idx] ) { // Dead path into Root?
|
|
1545 |
_igvn.hash_delete(C->root());
|
|
1546 |
C->root()->del_req(i);
|
|
1547 |
_igvn._worklist.push(C->root());
|
|
1548 |
i--; // Rerun same iteration on compressed edges
|
|
1549 |
}
|
|
1550 |
}
|
|
1551 |
|
|
1552 |
// Given dominators, try to find inner loops with calls that must
|
|
1553 |
// always be executed (call dominates loop tail). These loops do
|
|
1554 |
// not need a seperate safepoint.
|
|
1555 |
Node_List cisstack(a);
|
|
1556 |
_ltree_root->check_safepts(visited, cisstack);
|
|
1557 |
|
|
1558 |
// Walk the DATA nodes and place into loops. Find earliest control
|
|
1559 |
// node. For CFG nodes, the _nodes array starts out and remains
|
|
1560 |
// holding the associated IdealLoopTree pointer. For DATA nodes, the
|
|
1561 |
// _nodes array holds the earliest legal controlling CFG node.
|
|
1562 |
|
|
1563 |
// Allocate stack with enough space to avoid frequent realloc
|
|
1564 |
int stack_size = (C->unique() >> 1) + 16; // (unique>>1)+16 from Java2D stats
|
|
1565 |
Node_Stack nstack( a, stack_size );
|
|
1566 |
|
|
1567 |
visited.Clear();
|
|
1568 |
Node_List worklist(a);
|
|
1569 |
// Don't need C->root() on worklist since
|
|
1570 |
// it will be processed among C->top() inputs
|
|
1571 |
worklist.push( C->top() );
|
|
1572 |
visited.set( C->top()->_idx ); // Set C->top() as visited now
|
|
1573 |
build_loop_early( visited, worklist, nstack, verify_me );
|
|
1574 |
|
|
1575 |
// Given early legal placement, try finding counted loops. This placement
|
|
1576 |
// is good enough to discover most loop invariants.
|
|
1577 |
if( !verify_me )
|
|
1578 |
_ltree_root->counted_loop( this );
|
|
1579 |
|
|
1580 |
// Find latest loop placement. Find ideal loop placement.
|
|
1581 |
visited.Clear();
|
|
1582 |
init_dom_lca_tags();
|
|
1583 |
// Need C->root() on worklist when processing outs
|
|
1584 |
worklist.push( C->root() );
|
|
1585 |
NOT_PRODUCT( C->verify_graph_edges(); )
|
|
1586 |
worklist.push( C->top() );
|
|
1587 |
build_loop_late( visited, worklist, nstack, verify_me );
|
|
1588 |
|
|
1589 |
// clear out the dead code
|
|
1590 |
while(_deadlist.size()) {
|
|
1591 |
igvn.remove_globally_dead_node(_deadlist.pop());
|
|
1592 |
}
|
|
1593 |
|
|
1594 |
#ifndef PRODUCT
|
|
1595 |
C->verify_graph_edges();
|
|
1596 |
if( verify_me ) { // Nested verify pass?
|
|
1597 |
// Check to see if the verify mode is broken
|
|
1598 |
assert(C->unique() == unique, "non-optimize mode made Nodes? ? ?");
|
|
1599 |
return;
|
|
1600 |
}
|
|
1601 |
if( VerifyLoopOptimizations ) verify();
|
|
1602 |
#endif
|
|
1603 |
|
|
1604 |
if (ReassociateInvariants) {
|
|
1605 |
// Reassociate invariants and prep for split_thru_phi
|
|
1606 |
for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
|
|
1607 |
IdealLoopTree* lpt = iter.current();
|
|
1608 |
if (!lpt->is_counted() || !lpt->is_inner()) continue;
|
|
1609 |
|
|
1610 |
lpt->reassociate_invariants(this);
|
|
1611 |
|
|
1612 |
// Because RCE opportunities can be masked by split_thru_phi,
|
|
1613 |
// look for RCE candidates and inhibit split_thru_phi
|
|
1614 |
// on just their loop-phi's for this pass of loop opts
|
|
1615 |
if( SplitIfBlocks && do_split_ifs ) {
|
|
1616 |
if (lpt->policy_range_check(this)) {
|
|
1617 |
lpt->_rce_candidate = true;
|
|
1618 |
}
|
|
1619 |
}
|
|
1620 |
}
|
|
1621 |
}
|
|
1622 |
|
|
1623 |
// Check for aggressive application of split-if and other transforms
|
|
1624 |
// that require basic-block info (like cloning through Phi's)
|
|
1625 |
if( SplitIfBlocks && do_split_ifs ) {
|
|
1626 |
visited.Clear();
|
|
1627 |
split_if_with_blocks( visited, nstack );
|
|
1628 |
NOT_PRODUCT( if( VerifyLoopOptimizations ) verify(); );
|
|
1629 |
}
|
|
1630 |
|
|
1631 |
// Perform iteration-splitting on inner loops. Split iterations to avoid
|
|
1632 |
// range checks or one-shot null checks.
|
|
1633 |
|
|
1634 |
// If split-if's didn't hack the graph too bad (no CFG changes)
|
|
1635 |
// then do loop opts.
|
|
1636 |
if( C->has_loops() && !C->major_progress() ) {
|
|
1637 |
memset( worklist.adr(), 0, worklist.Size()*sizeof(Node*) );
|
|
1638 |
_ltree_root->_child->iteration_split( this, worklist );
|
|
1639 |
// No verify after peeling! GCM has hoisted code out of the loop.
|
|
1640 |
// After peeling, the hoisted code could sink inside the peeled area.
|
|
1641 |
// The peeling code does not try to recompute the best location for
|
|
1642 |
// all the code before the peeled area, so the verify pass will always
|
|
1643 |
// complain about it.
|
|
1644 |
}
|
|
1645 |
// Do verify graph edges in any case
|
|
1646 |
NOT_PRODUCT( C->verify_graph_edges(); );
|
|
1647 |
|
|
1648 |
if( !do_split_ifs ) {
|
|
1649 |
// We saw major progress in Split-If to get here. We forced a
|
|
1650 |
// pass with unrolling and not split-if, however more split-if's
|
|
1651 |
// might make progress. If the unrolling didn't make progress
|
|
1652 |
// then the major-progress flag got cleared and we won't try
|
|
1653 |
// another round of Split-If. In particular the ever-common
|
|
1654 |
// instance-of/check-cast pattern requires at least 2 rounds of
|
|
1655 |
// Split-If to clear out.
|
|
1656 |
C->set_major_progress();
|
|
1657 |
}
|
|
1658 |
|
|
1659 |
// Repeat loop optimizations if new loops were seen
|
|
1660 |
if (created_loop_node()) {
|
|
1661 |
C->set_major_progress();
|
|
1662 |
}
|
|
1663 |
|
|
1664 |
// Convert scalar to superword operations
|
|
1665 |
|
|
1666 |
if (UseSuperWord && C->has_loops() && !C->major_progress()) {
|
|
1667 |
// SuperWord transform
|
|
1668 |
SuperWord sw(this);
|
|
1669 |
for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
|
|
1670 |
IdealLoopTree* lpt = iter.current();
|
|
1671 |
if (lpt->is_counted()) {
|
|
1672 |
sw.transform_loop(lpt);
|
|
1673 |
}
|
|
1674 |
}
|
|
1675 |
}
|
|
1676 |
|
|
1677 |
// Cleanup any modified bits
|
|
1678 |
_igvn.optimize();
|
|
1679 |
|
|
1680 |
// Do not repeat loop optimizations if irreducible loops are present
|
|
1681 |
// by claiming no-progress.
|
|
1682 |
if( _has_irreducible_loops )
|
|
1683 |
C->clear_major_progress();
|
|
1684 |
}
|
|
1685 |
|
|
1686 |
#ifndef PRODUCT
|
|
1687 |
//------------------------------print_statistics-------------------------------
|
|
1688 |
int PhaseIdealLoop::_loop_invokes=0;// Count of PhaseIdealLoop invokes
|
|
1689 |
int PhaseIdealLoop::_loop_work=0; // Sum of PhaseIdealLoop x unique
|
|
1690 |
void PhaseIdealLoop::print_statistics() {
|
|
1691 |
tty->print_cr("PhaseIdealLoop=%d, sum _unique=%d", _loop_invokes, _loop_work);
|
|
1692 |
}
|
|
1693 |
|
|
1694 |
//------------------------------verify-----------------------------------------
|
|
1695 |
// Build a verify-only PhaseIdealLoop, and see that it agrees with me.
|
|
1696 |
static int fail; // debug only, so its multi-thread dont care
|
|
1697 |
void PhaseIdealLoop::verify() const {
|
|
1698 |
int old_progress = C->major_progress();
|
|
1699 |
ResourceMark rm;
|
|
1700 |
PhaseIdealLoop loop_verify( _igvn, this, false );
|
|
1701 |
VectorSet visited(Thread::current()->resource_area());
|
|
1702 |
|
|
1703 |
fail = 0;
|
|
1704 |
verify_compare( C->root(), &loop_verify, visited );
|
|
1705 |
assert( fail == 0, "verify loops failed" );
|
|
1706 |
// Verify loop structure is the same
|
|
1707 |
_ltree_root->verify_tree(loop_verify._ltree_root, NULL);
|
|
1708 |
// Reset major-progress. It was cleared by creating a verify version of
|
|
1709 |
// PhaseIdealLoop.
|
|
1710 |
for( int i=0; i<old_progress; i++ )
|
|
1711 |
C->set_major_progress();
|
|
1712 |
}
|
|
1713 |
|
|
1714 |
//------------------------------verify_compare---------------------------------
|
|
1715 |
// Make sure me and the given PhaseIdealLoop agree on key data structures
|
|
1716 |
void PhaseIdealLoop::verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const {
|
|
1717 |
if( !n ) return;
|
|
1718 |
if( visited.test_set( n->_idx ) ) return;
|
|
1719 |
if( !_nodes[n->_idx] ) { // Unreachable
|
|
1720 |
assert( !loop_verify->_nodes[n->_idx], "both should be unreachable" );
|
|
1721 |
return;
|
|
1722 |
}
|
|
1723 |
|
|
1724 |
uint i;
|
|
1725 |
for( i = 0; i < n->req(); i++ )
|
|
1726 |
verify_compare( n->in(i), loop_verify, visited );
|
|
1727 |
|
|
1728 |
// Check the '_nodes' block/loop structure
|
|
1729 |
i = n->_idx;
|
|
1730 |
if( has_ctrl(n) ) { // We have control; verify has loop or ctrl
|
|
1731 |
if( _nodes[i] != loop_verify->_nodes[i] &&
|
|
1732 |
get_ctrl_no_update(n) != loop_verify->get_ctrl_no_update(n) ) {
|
|
1733 |
tty->print("Mismatched control setting for: ");
|
|
1734 |
n->dump();
|
|
1735 |
if( fail++ > 10 ) return;
|
|
1736 |
Node *c = get_ctrl_no_update(n);
|
|
1737 |
tty->print("We have it as: ");
|
|
1738 |
if( c->in(0) ) c->dump();
|
|
1739 |
else tty->print_cr("N%d",c->_idx);
|
|
1740 |
tty->print("Verify thinks: ");
|
|
1741 |
if( loop_verify->has_ctrl(n) )
|
|
1742 |
loop_verify->get_ctrl_no_update(n)->dump();
|
|
1743 |
else
|
|
1744 |
loop_verify->get_loop_idx(n)->dump();
|
|
1745 |
tty->cr();
|
|
1746 |
}
|
|
1747 |
} else { // We have a loop
|
|
1748 |
IdealLoopTree *us = get_loop_idx(n);
|
|
1749 |
if( loop_verify->has_ctrl(n) ) {
|
|
1750 |
tty->print("Mismatched loop setting for: ");
|
|
1751 |
n->dump();
|
|
1752 |
if( fail++ > 10 ) return;
|
|
1753 |
tty->print("We have it as: ");
|
|
1754 |
us->dump();
|
|
1755 |
tty->print("Verify thinks: ");
|
|
1756 |
loop_verify->get_ctrl_no_update(n)->dump();
|
|
1757 |
tty->cr();
|
|
1758 |
} else if (!C->major_progress()) {
|
|
1759 |
// Loop selection can be messed up if we did a major progress
|
|
1760 |
// operation, like split-if. Do not verify in that case.
|
|
1761 |
IdealLoopTree *them = loop_verify->get_loop_idx(n);
|
|
1762 |
if( us->_head != them->_head || us->_tail != them->_tail ) {
|
|
1763 |
tty->print("Unequals loops for: ");
|
|
1764 |
n->dump();
|
|
1765 |
if( fail++ > 10 ) return;
|
|
1766 |
tty->print("We have it as: ");
|
|
1767 |
us->dump();
|
|
1768 |
tty->print("Verify thinks: ");
|
|
1769 |
them->dump();
|
|
1770 |
tty->cr();
|
|
1771 |
}
|
|
1772 |
}
|
|
1773 |
}
|
|
1774 |
|
|
1775 |
// Check for immediate dominators being equal
|
|
1776 |
if( i >= _idom_size ) {
|
|
1777 |
if( !n->is_CFG() ) return;
|
|
1778 |
tty->print("CFG Node with no idom: ");
|
|
1779 |
n->dump();
|
|
1780 |
return;
|
|
1781 |
}
|
|
1782 |
if( !n->is_CFG() ) return;
|
|
1783 |
if( n == C->root() ) return; // No IDOM here
|
|
1784 |
|
|
1785 |
assert(n->_idx == i, "sanity");
|
|
1786 |
Node *id = idom_no_update(n);
|
|
1787 |
if( id != loop_verify->idom_no_update(n) ) {
|
|
1788 |
tty->print("Unequals idoms for: ");
|
|
1789 |
n->dump();
|
|
1790 |
if( fail++ > 10 ) return;
|
|
1791 |
tty->print("We have it as: ");
|
|
1792 |
id->dump();
|
|
1793 |
tty->print("Verify thinks: ");
|
|
1794 |
loop_verify->idom_no_update(n)->dump();
|
|
1795 |
tty->cr();
|
|
1796 |
}
|
|
1797 |
|
|
1798 |
}
|
|
1799 |
|
|
1800 |
//------------------------------verify_tree------------------------------------
|
|
1801 |
// Verify that tree structures match. Because the CFG can change, siblings
|
|
1802 |
// within the loop tree can be reordered. We attempt to deal with that by
|
|
1803 |
// reordering the verify's loop tree if possible.
|
|
1804 |
void IdealLoopTree::verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const {
|
|
1805 |
assert( _parent == parent, "Badly formed loop tree" );
|
|
1806 |
|
|
1807 |
// Siblings not in same order? Attempt to re-order.
|
|
1808 |
if( _head != loop->_head ) {
|
|
1809 |
// Find _next pointer to update
|
|
1810 |
IdealLoopTree **pp = &loop->_parent->_child;
|
|
1811 |
while( *pp != loop )
|
|
1812 |
pp = &((*pp)->_next);
|
|
1813 |
// Find proper sibling to be next
|
|
1814 |
IdealLoopTree **nn = &loop->_next;
|
|
1815 |
while( (*nn) && (*nn)->_head != _head )
|
|
1816 |
nn = &((*nn)->_next);
|
|
1817 |
|
|
1818 |
// Check for no match.
|
|
1819 |
if( !(*nn) ) {
|
|
1820 |
// Annoyingly, irreducible loops can pick different headers
|
|
1821 |
// after a major_progress operation, so the rest of the loop
|
|
1822 |
// tree cannot be matched.
|
|
1823 |
if (_irreducible && Compile::current()->major_progress()) return;
|
|
1824 |
assert( 0, "failed to match loop tree" );
|
|
1825 |
}
|
|
1826 |
|
|
1827 |
// Move (*nn) to (*pp)
|
|
1828 |
IdealLoopTree *hit = *nn;
|
|
1829 |
*nn = hit->_next;
|
|
1830 |
hit->_next = loop;
|
|
1831 |
*pp = loop;
|
|
1832 |
loop = hit;
|
|
1833 |
// Now try again to verify
|
|
1834 |
}
|
|
1835 |
|
|
1836 |
assert( _head == loop->_head , "mismatched loop head" );
|
|
1837 |
Node *tail = _tail; // Inline a non-updating version of
|
|
1838 |
while( !tail->in(0) ) // the 'tail()' call.
|
|
1839 |
tail = tail->in(1);
|
|
1840 |
assert( tail == loop->_tail, "mismatched loop tail" );
|
|
1841 |
|
|
1842 |
// Counted loops that are guarded should be able to find their guards
|
|
1843 |
if( _head->is_CountedLoop() && _head->as_CountedLoop()->is_main_loop() ) {
|
|
1844 |
CountedLoopNode *cl = _head->as_CountedLoop();
|
|
1845 |
Node *init = cl->init_trip();
|
|
1846 |
Node *ctrl = cl->in(LoopNode::EntryControl);
|
|
1847 |
assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
|
|
1848 |
Node *iff = ctrl->in(0);
|
|
1849 |
assert( iff->Opcode() == Op_If, "" );
|
|
1850 |
Node *bol = iff->in(1);
|
|
1851 |
assert( bol->Opcode() == Op_Bool, "" );
|
|
1852 |
Node *cmp = bol->in(1);
|
|
1853 |
assert( cmp->Opcode() == Op_CmpI, "" );
|
|
1854 |
Node *add = cmp->in(1);
|
|
1855 |
Node *opaq;
|
|
1856 |
if( add->Opcode() == Op_Opaque1 ) {
|
|
1857 |
opaq = add;
|
|
1858 |
} else {
|
|
1859 |
assert( add->Opcode() == Op_AddI || add->Opcode() == Op_ConI , "" );
|
|
1860 |
assert( add == init, "" );
|
|
1861 |
opaq = cmp->in(2);
|
|
1862 |
}
|
|
1863 |
assert( opaq->Opcode() == Op_Opaque1, "" );
|
|
1864 |
|
|
1865 |
}
|
|
1866 |
|
|
1867 |
if (_child != NULL) _child->verify_tree(loop->_child, this);
|
|
1868 |
if (_next != NULL) _next ->verify_tree(loop->_next, parent);
|
|
1869 |
// Innermost loops need to verify loop bodies,
|
|
1870 |
// but only if no 'major_progress'
|
|
1871 |
int fail = 0;
|
|
1872 |
if (!Compile::current()->major_progress() && _child == NULL) {
|
|
1873 |
for( uint i = 0; i < _body.size(); i++ ) {
|
|
1874 |
Node *n = _body.at(i);
|
|
1875 |
if (n->outcnt() == 0) continue; // Ignore dead
|
|
1876 |
uint j;
|
|
1877 |
for( j = 0; j < loop->_body.size(); j++ )
|
|
1878 |
if( loop->_body.at(j) == n )
|
|
1879 |
break;
|
|
1880 |
if( j == loop->_body.size() ) { // Not found in loop body
|
|
1881 |
// Last ditch effort to avoid assertion: Its possible that we
|
|
1882 |
// have some users (so outcnt not zero) but are still dead.
|
|
1883 |
// Try to find from root.
|
|
1884 |
if (Compile::current()->root()->find(n->_idx)) {
|
|
1885 |
fail++;
|
|
1886 |
tty->print("We have that verify does not: ");
|
|
1887 |
n->dump();
|
|
1888 |
}
|
|
1889 |
}
|
|
1890 |
}
|
|
1891 |
for( uint i2 = 0; i2 < loop->_body.size(); i2++ ) {
|
|
1892 |
Node *n = loop->_body.at(i2);
|
|
1893 |
if (n->outcnt() == 0) continue; // Ignore dead
|
|
1894 |
uint j;
|
|
1895 |
for( j = 0; j < _body.size(); j++ )
|
|
1896 |
if( _body.at(j) == n )
|
|
1897 |
break;
|
|
1898 |
if( j == _body.size() ) { // Not found in loop body
|
|
1899 |
// Last ditch effort to avoid assertion: Its possible that we
|
|
1900 |
// have some users (so outcnt not zero) but are still dead.
|
|
1901 |
// Try to find from root.
|
|
1902 |
if (Compile::current()->root()->find(n->_idx)) {
|
|
1903 |
fail++;
|
|
1904 |
tty->print("Verify has that we do not: ");
|
|
1905 |
n->dump();
|
|
1906 |
}
|
|
1907 |
}
|
|
1908 |
}
|
|
1909 |
assert( !fail, "loop body mismatch" );
|
|
1910 |
}
|
|
1911 |
}
|
|
1912 |
|
|
1913 |
#endif
|
|
1914 |
|
|
1915 |
//------------------------------set_idom---------------------------------------
|
|
1916 |
void PhaseIdealLoop::set_idom(Node* d, Node* n, uint dom_depth) {
|
|
1917 |
uint idx = d->_idx;
|
|
1918 |
if (idx >= _idom_size) {
|
|
1919 |
uint newsize = _idom_size<<1;
|
|
1920 |
while( idx >= newsize ) {
|
|
1921 |
newsize <<= 1;
|
|
1922 |
}
|
|
1923 |
_idom = REALLOC_RESOURCE_ARRAY( Node*, _idom,_idom_size,newsize);
|
|
1924 |
_dom_depth = REALLOC_RESOURCE_ARRAY( uint, _dom_depth,_idom_size,newsize);
|
|
1925 |
memset( _dom_depth + _idom_size, 0, (newsize - _idom_size) * sizeof(uint) );
|
|
1926 |
_idom_size = newsize;
|
|
1927 |
}
|
|
1928 |
_idom[idx] = n;
|
|
1929 |
_dom_depth[idx] = dom_depth;
|
|
1930 |
}
|
|
1931 |
|
|
1932 |
//------------------------------recompute_dom_depth---------------------------------------
|
|
1933 |
// The dominator tree is constructed with only parent pointers.
|
|
1934 |
// This recomputes the depth in the tree by first tagging all
|
|
1935 |
// nodes as "no depth yet" marker. The next pass then runs up
|
|
1936 |
// the dom tree from each node marked "no depth yet", and computes
|
|
1937 |
// the depth on the way back down.
|
|
1938 |
void PhaseIdealLoop::recompute_dom_depth() {
|
|
1939 |
uint no_depth_marker = C->unique();
|
|
1940 |
uint i;
|
|
1941 |
// Initialize depth to "no depth yet"
|
|
1942 |
for (i = 0; i < _idom_size; i++) {
|
|
1943 |
if (_dom_depth[i] > 0 && _idom[i] != NULL) {
|
|
1944 |
_dom_depth[i] = no_depth_marker;
|
|
1945 |
}
|
|
1946 |
}
|
|
1947 |
if (_dom_stk == NULL) {
|
|
1948 |
uint init_size = C->unique() / 100; // Guess that 1/100 is a reasonable initial size.
|
|
1949 |
if (init_size < 10) init_size = 10;
|
|
1950 |
_dom_stk = new (C->node_arena()) GrowableArray<uint>(C->node_arena(), init_size, 0, 0);
|
|
1951 |
}
|
|
1952 |
// Compute new depth for each node.
|
|
1953 |
for (i = 0; i < _idom_size; i++) {
|
|
1954 |
uint j = i;
|
|
1955 |
// Run up the dom tree to find a node with a depth
|
|
1956 |
while (_dom_depth[j] == no_depth_marker) {
|
|
1957 |
_dom_stk->push(j);
|
|
1958 |
j = _idom[j]->_idx;
|
|
1959 |
}
|
|
1960 |
// Compute the depth on the way back down this tree branch
|
|
1961 |
uint dd = _dom_depth[j] + 1;
|
|
1962 |
while (_dom_stk->length() > 0) {
|
|
1963 |
uint j = _dom_stk->pop();
|
|
1964 |
_dom_depth[j] = dd;
|
|
1965 |
dd++;
|
|
1966 |
}
|
|
1967 |
}
|
|
1968 |
}
|
|
1969 |
|
|
1970 |
//------------------------------sort-------------------------------------------
|
|
1971 |
// Insert 'loop' into the existing loop tree. 'innermost' is a leaf of the
|
|
1972 |
// loop tree, not the root.
|
|
1973 |
IdealLoopTree *PhaseIdealLoop::sort( IdealLoopTree *loop, IdealLoopTree *innermost ) {
|
|
1974 |
if( !innermost ) return loop; // New innermost loop
|
|
1975 |
|
|
1976 |
int loop_preorder = get_preorder(loop->_head); // Cache pre-order number
|
|
1977 |
assert( loop_preorder, "not yet post-walked loop" );
|
|
1978 |
IdealLoopTree **pp = &innermost; // Pointer to previous next-pointer
|
|
1979 |
IdealLoopTree *l = *pp; // Do I go before or after 'l'?
|
|
1980 |
|
|
1981 |
// Insert at start of list
|
|
1982 |
while( l ) { // Insertion sort based on pre-order
|
|
1983 |
if( l == loop ) return innermost; // Already on list!
|
|
1984 |
int l_preorder = get_preorder(l->_head); // Cache pre-order number
|
|
1985 |
assert( l_preorder, "not yet post-walked l" );
|
|
1986 |
// Check header pre-order number to figure proper nesting
|
|
1987 |
if( loop_preorder > l_preorder )
|
|
1988 |
break; // End of insertion
|
|
1989 |
// If headers tie (e.g., shared headers) check tail pre-order numbers.
|
|
1990 |
// Since I split shared headers, you'd think this could not happen.
|
|
1991 |
// BUT: I must first do the preorder numbering before I can discover I
|
|
1992 |
// have shared headers, so the split headers all get the same preorder
|
|
1993 |
// number as the RegionNode they split from.
|
|
1994 |
if( loop_preorder == l_preorder &&
|
|
1995 |
get_preorder(loop->_tail) < get_preorder(l->_tail) )
|
|
1996 |
break; // Also check for shared headers (same pre#)
|
|
1997 |
pp = &l->_parent; // Chain up list
|
|
1998 |
l = *pp;
|
|
1999 |
}
|
|
2000 |
// Link into list
|
|
2001 |
// Point predecessor to me
|
|
2002 |
*pp = loop;
|
|
2003 |
// Point me to successor
|
|
2004 |
IdealLoopTree *p = loop->_parent;
|
|
2005 |
loop->_parent = l; // Point me to successor
|
|
2006 |
if( p ) sort( p, innermost ); // Insert my parents into list as well
|
|
2007 |
return innermost;
|
|
2008 |
}
|
|
2009 |
|
|
2010 |
//------------------------------build_loop_tree--------------------------------
|
|
2011 |
// I use a modified Vick/Tarjan algorithm. I need pre- and a post- visit
|
|
2012 |
// bits. The _nodes[] array is mapped by Node index and holds a NULL for
|
|
2013 |
// not-yet-pre-walked, pre-order # for pre-but-not-post-walked and holds the
|
|
2014 |
// tightest enclosing IdealLoopTree for post-walked.
|
|
2015 |
//
|
|
2016 |
// During my forward walk I do a short 1-layer lookahead to see if I can find
|
|
2017 |
// a loop backedge with that doesn't have any work on the backedge. This
|
|
2018 |
// helps me construct nested loops with shared headers better.
|
|
2019 |
//
|
|
2020 |
// Once I've done the forward recursion, I do the post-work. For each child
|
|
2021 |
// I check to see if there is a backedge. Backedges define a loop! I
|
|
2022 |
// insert an IdealLoopTree at the target of the backedge.
|
|
2023 |
//
|
|
2024 |
// During the post-work I also check to see if I have several children
|
|
2025 |
// belonging to different loops. If so, then this Node is a decision point
|
|
2026 |
// where control flow can choose to change loop nests. It is at this
|
|
2027 |
// decision point where I can figure out how loops are nested. At this
|
|
2028 |
// time I can properly order the different loop nests from my children.
|
|
2029 |
// Note that there may not be any backedges at the decision point!
|
|
2030 |
//
|
|
2031 |
// Since the decision point can be far removed from the backedges, I can't
|
|
2032 |
// order my loops at the time I discover them. Thus at the decision point
|
|
2033 |
// I need to inspect loop header pre-order numbers to properly nest my
|
|
2034 |
// loops. This means I need to sort my childrens' loops by pre-order.
|
|
2035 |
// The sort is of size number-of-control-children, which generally limits
|
|
2036 |
// it to size 2 (i.e., I just choose between my 2 target loops).
|
|
2037 |
void PhaseIdealLoop::build_loop_tree() {
|
|
2038 |
// Allocate stack of size C->unique()/2 to avoid frequent realloc
|
|
2039 |
GrowableArray <Node *> bltstack(C->unique() >> 1);
|
|
2040 |
Node *n = C->root();
|
|
2041 |
bltstack.push(n);
|
|
2042 |
int pre_order = 1;
|
|
2043 |
int stack_size;
|
|
2044 |
|
|
2045 |
while ( ( stack_size = bltstack.length() ) != 0 ) {
|
|
2046 |
n = bltstack.top(); // Leave node on stack
|
|
2047 |
if ( !is_visited(n) ) {
|
|
2048 |
// ---- Pre-pass Work ----
|
|
2049 |
// Pre-walked but not post-walked nodes need a pre_order number.
|
|
2050 |
|
|
2051 |
set_preorder_visited( n, pre_order ); // set as visited
|
|
2052 |
|
|
2053 |
// ---- Scan over children ----
|
|
2054 |
// Scan first over control projections that lead to loop headers.
|
|
2055 |
// This helps us find inner-to-outer loops with shared headers better.
|
|
2056 |
|
|
2057 |
// Scan children's children for loop headers.
|
|
2058 |
for ( int i = n->outcnt() - 1; i >= 0; --i ) {
|
|
2059 |
Node* m = n->raw_out(i); // Child
|
|
2060 |
if( m->is_CFG() && !is_visited(m) ) { // Only for CFG children
|
|
2061 |
// Scan over children's children to find loop
|
|
2062 |
for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
|
|
2063 |
Node* l = m->fast_out(j);
|
|
2064 |
if( is_visited(l) && // Been visited?
|
|
2065 |
!is_postvisited(l) && // But not post-visited
|
|
2066 |
get_preorder(l) < pre_order ) { // And smaller pre-order
|
|
2067 |
// Found! Scan the DFS down this path before doing other paths
|
|
2068 |
bltstack.push(m);
|
|
2069 |
break;
|
|
2070 |
}
|
|
2071 |
}
|
|
2072 |
}
|
|
2073 |
}
|
|
2074 |
pre_order++;
|
|
2075 |
}
|
|
2076 |
else if ( !is_postvisited(n) ) {
|
|
2077 |
// Note: build_loop_tree_impl() adds out edges on rare occasions,
|
|
2078 |
// such as com.sun.rsasign.am::a.
|
|
2079 |
// For non-recursive version, first, process current children.
|
|
2080 |
// On next iteration, check if additional children were added.
|
|
2081 |
for ( int k = n->outcnt() - 1; k >= 0; --k ) {
|
|
2082 |
Node* u = n->raw_out(k);
|
|
2083 |
if ( u->is_CFG() && !is_visited(u) ) {
|
|
2084 |
bltstack.push(u);
|
|
2085 |
}
|
|
2086 |
}
|
|
2087 |
if ( bltstack.length() == stack_size ) {
|
|
2088 |
// There were no additional children, post visit node now
|
|
2089 |
(void)bltstack.pop(); // Remove node from stack
|
|
2090 |
pre_order = build_loop_tree_impl( n, pre_order );
|
|
2091 |
// Check for bailout
|
|
2092 |
if (C->failing()) {
|
|
2093 |
return;
|
|
2094 |
}
|
|
2095 |
// Check to grow _preorders[] array for the case when
|
|
2096 |
// build_loop_tree_impl() adds new nodes.
|
|
2097 |
check_grow_preorders();
|
|
2098 |
}
|
|
2099 |
}
|
|
2100 |
else {
|
|
2101 |
(void)bltstack.pop(); // Remove post-visited node from stack
|
|
2102 |
}
|
|
2103 |
}
|
|
2104 |
}
|
|
2105 |
|
|
2106 |
//------------------------------build_loop_tree_impl---------------------------
|
|
2107 |
int PhaseIdealLoop::build_loop_tree_impl( Node *n, int pre_order ) {
|
|
2108 |
// ---- Post-pass Work ----
|
|
2109 |
// Pre-walked but not post-walked nodes need a pre_order number.
|
|
2110 |
|
|
2111 |
// Tightest enclosing loop for this Node
|
|
2112 |
IdealLoopTree *innermost = NULL;
|
|
2113 |
|
|
2114 |
// For all children, see if any edge is a backedge. If so, make a loop
|
|
2115 |
// for it. Then find the tightest enclosing loop for the self Node.
|
|
2116 |
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
|
|
2117 |
Node* m = n->fast_out(i); // Child
|
|
2118 |
if( n == m ) continue; // Ignore control self-cycles
|
|
2119 |
if( !m->is_CFG() ) continue;// Ignore non-CFG edges
|
|
2120 |
|
|
2121 |
IdealLoopTree *l; // Child's loop
|
|
2122 |
if( !is_postvisited(m) ) { // Child visited but not post-visited?
|
|
2123 |
// Found a backedge
|
|
2124 |
assert( get_preorder(m) < pre_order, "should be backedge" );
|
|
2125 |
// Check for the RootNode, which is already a LoopNode and is allowed
|
|
2126 |
// to have multiple "backedges".
|
|
2127 |
if( m == C->root()) { // Found the root?
|
|
2128 |
l = _ltree_root; // Root is the outermost LoopNode
|
|
2129 |
} else { // Else found a nested loop
|
|
2130 |
// Insert a LoopNode to mark this loop.
|
|
2131 |
l = new IdealLoopTree(this, m, n);
|
|
2132 |
} // End of Else found a nested loop
|
|
2133 |
if( !has_loop(m) ) // If 'm' does not already have a loop set
|
|
2134 |
set_loop(m, l); // Set loop header to loop now
|
|
2135 |
|
|
2136 |
} else { // Else not a nested loop
|
|
2137 |
if( !_nodes[m->_idx] ) continue; // Dead code has no loop
|
|
2138 |
l = get_loop(m); // Get previously determined loop
|
|
2139 |
// If successor is header of a loop (nest), move up-loop till it
|
|
2140 |
// is a member of some outer enclosing loop. Since there are no
|
|
2141 |
// shared headers (I've split them already) I only need to go up
|
|
2142 |
// at most 1 level.
|
|
2143 |
while( l && l->_head == m ) // Successor heads loop?
|
|
2144 |
l = l->_parent; // Move up 1 for me
|
|
2145 |
// If this loop is not properly parented, then this loop
|
|
2146 |
// has no exit path out, i.e. its an infinite loop.
|
|
2147 |
if( !l ) {
|
|
2148 |
// Make loop "reachable" from root so the CFG is reachable. Basically
|
|
2149 |
// insert a bogus loop exit that is never taken. 'm', the loop head,
|
|
2150 |
// points to 'n', one (of possibly many) fall-in paths. There may be
|
|
2151 |
// many backedges as well.
|
|
2152 |
|
|
2153 |
// Here I set the loop to be the root loop. I could have, after
|
|
2154 |
// inserting a bogus loop exit, restarted the recursion and found my
|
|
2155 |
// new loop exit. This would make the infinite loop a first-class
|
|
2156 |
// loop and it would then get properly optimized. What's the use of
|
|
2157 |
// optimizing an infinite loop?
|
|
2158 |
l = _ltree_root; // Oops, found infinite loop
|
|
2159 |
|
|
2160 |
// Insert the NeverBranch between 'm' and it's control user.
|
|
2161 |
NeverBranchNode *iff = new (C, 1) NeverBranchNode( m );
|
|
2162 |
_igvn.register_new_node_with_optimizer(iff);
|
|
2163 |
set_loop(iff, l);
|
|
2164 |
Node *if_t = new (C, 1) CProjNode( iff, 0 );
|
|
2165 |
_igvn.register_new_node_with_optimizer(if_t);
|
|
2166 |
set_loop(if_t, l);
|
|
2167 |
|
|
2168 |
Node* cfg = NULL; // Find the One True Control User of m
|
|
2169 |
for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
|
|
2170 |
Node* x = m->fast_out(j);
|
|
2171 |
if (x->is_CFG() && x != m && x != iff)
|
|
2172 |
{ cfg = x; break; }
|
|
2173 |
}
|
|
2174 |
assert(cfg != NULL, "must find the control user of m");
|
|
2175 |
uint k = 0; // Probably cfg->in(0)
|
|
2176 |
while( cfg->in(k) != m ) k++; // But check incase cfg is a Region
|
|
2177 |
cfg->set_req( k, if_t ); // Now point to NeverBranch
|
|
2178 |
|
|
2179 |
// Now create the never-taken loop exit
|
|
2180 |
Node *if_f = new (C, 1) CProjNode( iff, 1 );
|
|
2181 |
_igvn.register_new_node_with_optimizer(if_f);
|
|
2182 |
set_loop(if_f, l);
|
|
2183 |
// Find frame ptr for Halt. Relies on the optimizer
|
|
2184 |
// V-N'ing. Easier and quicker than searching through
|
|
2185 |
// the program structure.
|
|
2186 |
Node *frame = new (C, 1) ParmNode( C->start(), TypeFunc::FramePtr );
|
|
2187 |
_igvn.register_new_node_with_optimizer(frame);
|
|
2188 |
// Halt & Catch Fire
|
|
2189 |
Node *halt = new (C, TypeFunc::Parms) HaltNode( if_f, frame );
|
|
2190 |
_igvn.register_new_node_with_optimizer(halt);
|
|
2191 |
set_loop(halt, l);
|
|
2192 |
C->root()->add_req(halt);
|
|
2193 |
set_loop(C->root(), _ltree_root);
|
|
2194 |
}
|
|
2195 |
}
|
|
2196 |
// Weeny check for irreducible. This child was already visited (this
|
|
2197 |
// IS the post-work phase). Is this child's loop header post-visited
|
|
2198 |
// as well? If so, then I found another entry into the loop.
|
|
2199 |
while( is_postvisited(l->_head) ) {
|
|
2200 |
// found irreducible
|
|
2201 |
l->_irreducible = true;
|
|
2202 |
l = l->_parent;
|
|
2203 |
_has_irreducible_loops = true;
|
|
2204 |
// Check for bad CFG here to prevent crash, and bailout of compile
|
|
2205 |
if (l == NULL) {
|
|
2206 |
C->record_method_not_compilable("unhandled CFG detected during loop optimization");
|
|
2207 |
return pre_order;
|
|
2208 |
}
|
|
2209 |
}
|
|
2210 |
|
|
2211 |
// This Node might be a decision point for loops. It is only if
|
|
2212 |
// it's children belong to several different loops. The sort call
|
|
2213 |
// does a trivial amount of work if there is only 1 child or all
|
|
2214 |
// children belong to the same loop. If however, the children
|
|
2215 |
// belong to different loops, the sort call will properly set the
|
|
2216 |
// _parent pointers to show how the loops nest.
|
|
2217 |
//
|
|
2218 |
// In any case, it returns the tightest enclosing loop.
|
|
2219 |
innermost = sort( l, innermost );
|
|
2220 |
}
|
|
2221 |
|
|
2222 |
// Def-use info will have some dead stuff; dead stuff will have no
|
|
2223 |
// loop decided on.
|
|
2224 |
|
|
2225 |
// Am I a loop header? If so fix up my parent's child and next ptrs.
|
|
2226 |
if( innermost && innermost->_head == n ) {
|
|
2227 |
assert( get_loop(n) == innermost, "" );
|
|
2228 |
IdealLoopTree *p = innermost->_parent;
|
|
2229 |
IdealLoopTree *l = innermost;
|
|
2230 |
while( p && l->_head == n ) {
|
|
2231 |
l->_next = p->_child; // Put self on parents 'next child'
|
|
2232 |
p->_child = l; // Make self as first child of parent
|
|
2233 |
l = p; // Now walk up the parent chain
|
|
2234 |
p = l->_parent;
|
|
2235 |
}
|
|
2236 |
} else {
|
|
2237 |
// Note that it is possible for a LoopNode to reach here, if the
|
|
2238 |
// backedge has been made unreachable (hence the LoopNode no longer
|
|
2239 |
// denotes a Loop, and will eventually be removed).
|
|
2240 |
|
|
2241 |
// Record tightest enclosing loop for self. Mark as post-visited.
|
|
2242 |
set_loop(n, innermost);
|
|
2243 |
// Also record has_call flag early on
|
|
2244 |
if( innermost ) {
|
|
2245 |
if( n->is_Call() && !n->is_CallLeaf() && !n->is_macro() ) {
|
|
2246 |
// Do not count uncommon calls
|
|
2247 |
if( !n->is_CallStaticJava() || !n->as_CallStaticJava()->_name ) {
|
|
2248 |
Node *iff = n->in(0)->in(0);
|
|
2249 |
if( !iff->is_If() ||
|
|
2250 |
(n->in(0)->Opcode() == Op_IfFalse &&
|
|
2251 |
(1.0 - iff->as_If()->_prob) >= 0.01) ||
|
|
2252 |
(iff->as_If()->_prob >= 0.01) )
|
|
2253 |
innermost->_has_call = 1;
|
|
2254 |
}
|
|
2255 |
}
|
|
2256 |
}
|
|
2257 |
}
|
|
2258 |
|
|
2259 |
// Flag as post-visited now
|
|
2260 |
set_postvisited(n);
|
|
2261 |
return pre_order;
|
|
2262 |
}
|
|
2263 |
|
|
2264 |
|
|
2265 |
//------------------------------build_loop_early-------------------------------
|
|
2266 |
// Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
|
|
2267 |
// First pass computes the earliest controlling node possible. This is the
|
|
2268 |
// controlling input with the deepest dominating depth.
|
|
2269 |
void PhaseIdealLoop::build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack, const PhaseIdealLoop *verify_me ) {
|
|
2270 |
while (worklist.size() != 0) {
|
|
2271 |
// Use local variables nstack_top_n & nstack_top_i to cache values
|
|
2272 |
// on nstack's top.
|
|
2273 |
Node *nstack_top_n = worklist.pop();
|
|
2274 |
uint nstack_top_i = 0;
|
|
2275 |
//while_nstack_nonempty:
|
|
2276 |
while (true) {
|
|
2277 |
// Get parent node and next input's index from stack's top.
|
|
2278 |
Node *n = nstack_top_n;
|
|
2279 |
uint i = nstack_top_i;
|
|
2280 |
uint cnt = n->req(); // Count of inputs
|
|
2281 |
if (i == 0) { // Pre-process the node.
|
|
2282 |
if( has_node(n) && // Have either loop or control already?
|
|
2283 |
!has_ctrl(n) ) { // Have loop picked out already?
|
|
2284 |
// During "merge_many_backedges" we fold up several nested loops
|
|
2285 |
// into a single loop. This makes the members of the original
|
|
2286 |
// loop bodies pointing to dead loops; they need to move up
|
|
2287 |
// to the new UNION'd larger loop. I set the _head field of these
|
|
2288 |
// dead loops to NULL and the _parent field points to the owning
|
|
2289 |
// loop. Shades of UNION-FIND algorithm.
|
|
2290 |
IdealLoopTree *ilt;
|
|
2291 |
while( !(ilt = get_loop(n))->_head ) {
|
|
2292 |
// Normally I would use a set_loop here. But in this one special
|
|
2293 |
// case, it is legal (and expected) to change what loop a Node
|
|
2294 |
// belongs to.
|
|
2295 |
_nodes.map(n->_idx, (Node*)(ilt->_parent) );
|
|
2296 |
}
|
|
2297 |
// Remove safepoints ONLY if I've already seen I don't need one.
|
|
2298 |
// (the old code here would yank a 2nd safepoint after seeing a
|
|
2299 |
// first one, even though the 1st did not dominate in the loop body
|
|
2300 |
// and thus could be avoided indefinitely)
|
|
2301 |
if( !verify_me && ilt->_has_sfpt && n->Opcode() == Op_SafePoint &&
|
|
2302 |
is_deleteable_safept(n)) {
|
|
2303 |
Node *in = n->in(TypeFunc::Control);
|
|
2304 |
lazy_replace(n,in); // Pull safepoint now
|
|
2305 |
// Carry on with the recursion "as if" we are walking
|
|
2306 |
// only the control input
|
|
2307 |
if( !visited.test_set( in->_idx ) ) {
|
|
2308 |
worklist.push(in); // Visit this guy later, using worklist
|
|
2309 |
}
|
|
2310 |
// Get next node from nstack:
|
|
2311 |
// - skip n's inputs processing by setting i > cnt;
|
|
2312 |
// - we also will not call set_early_ctrl(n) since
|
|
2313 |
// has_node(n) == true (see the condition above).
|
|
2314 |
i = cnt + 1;
|
|
2315 |
}
|
|
2316 |
}
|
|
2317 |
} // if (i == 0)
|
|
2318 |
|
|
2319 |
// Visit all inputs
|
|
2320 |
bool done = true; // Assume all n's inputs will be processed
|
|
2321 |
while (i < cnt) {
|
|
2322 |
Node *in = n->in(i);
|
|
2323 |
++i;
|
|
2324 |
if (in == NULL) continue;
|
|
2325 |
if (in->pinned() && !in->is_CFG())
|
|
2326 |
set_ctrl(in, in->in(0));
|
|
2327 |
int is_visited = visited.test_set( in->_idx );
|
|
2328 |
if (!has_node(in)) { // No controlling input yet?
|
|
2329 |
assert( !in->is_CFG(), "CFG Node with no controlling input?" );
|
|
2330 |
assert( !is_visited, "visit only once" );
|
|
2331 |
nstack.push(n, i); // Save parent node and next input's index.
|
|
2332 |
nstack_top_n = in; // Process current input now.
|
|
2333 |
nstack_top_i = 0;
|
|
2334 |
done = false; // Not all n's inputs processed.
|
|
2335 |
break; // continue while_nstack_nonempty;
|
|
2336 |
} else if (!is_visited) {
|
|
2337 |
// This guy has a location picked out for him, but has not yet
|
|
2338 |
// been visited. Happens to all CFG nodes, for instance.
|
|
2339 |
// Visit him using the worklist instead of recursion, to break
|
|
2340 |
// cycles. Since he has a location already we do not need to
|
|
2341 |
// find his location before proceeding with the current Node.
|
|
2342 |
worklist.push(in); // Visit this guy later, using worklist
|
|
2343 |
}
|
|
2344 |
}
|
|
2345 |
if (done) {
|
|
2346 |
// All of n's inputs have been processed, complete post-processing.
|
|
2347 |
|
|
2348 |
// Compute earilest point this Node can go.
|
|
2349 |
// CFG, Phi, pinned nodes already know their controlling input.
|
|
2350 |
if (!has_node(n)) {
|
|
2351 |
// Record earliest legal location
|
|
2352 |
set_early_ctrl( n );
|
|
2353 |
}
|
|
2354 |
if (nstack.is_empty()) {
|
|
2355 |
// Finished all nodes on stack.
|
|
2356 |
// Process next node on the worklist.
|
|
2357 |
break;
|
|
2358 |
}
|
|
2359 |
// Get saved parent node and next input's index.
|
|
2360 |
nstack_top_n = nstack.node();
|
|
2361 |
nstack_top_i = nstack.index();
|
|
2362 |
nstack.pop();
|
|
2363 |
}
|
|
2364 |
} // while (true)
|
|
2365 |
}
|
|
2366 |
}
|
|
2367 |
|
|
2368 |
//------------------------------dom_lca_internal--------------------------------
|
|
2369 |
// Pair-wise LCA
|
|
2370 |
Node *PhaseIdealLoop::dom_lca_internal( Node *n1, Node *n2 ) const {
|
|
2371 |
if( !n1 ) return n2; // Handle NULL original LCA
|
|
2372 |
assert( n1->is_CFG(), "" );
|
|
2373 |
assert( n2->is_CFG(), "" );
|
|
2374 |
// find LCA of all uses
|
|
2375 |
uint d1 = dom_depth(n1);
|
|
2376 |
uint d2 = dom_depth(n2);
|
|
2377 |
while (n1 != n2) {
|
|
2378 |
if (d1 > d2) {
|
|
2379 |
n1 = idom(n1);
|
|
2380 |
d1 = dom_depth(n1);
|
|
2381 |
} else if (d1 < d2) {
|
|
2382 |
n2 = idom(n2);
|
|
2383 |
d2 = dom_depth(n2);
|
|
2384 |
} else {
|
|
2385 |
// Here d1 == d2. Due to edits of the dominator-tree, sections
|
|
2386 |
// of the tree might have the same depth. These sections have
|
|
2387 |
// to be searched more carefully.
|
|
2388 |
|
|
2389 |
// Scan up all the n1's with equal depth, looking for n2.
|
|
2390 |
Node *t1 = idom(n1);
|
|
2391 |
while (dom_depth(t1) == d1) {
|
|
2392 |
if (t1 == n2) return n2;
|
|
2393 |
t1 = idom(t1);
|
|
2394 |
}
|
|
2395 |
// Scan up all the n2's with equal depth, looking for n1.
|
|
2396 |
Node *t2 = idom(n2);
|
|
2397 |
while (dom_depth(t2) == d2) {
|
|
2398 |
if (t2 == n1) return n1;
|
|
2399 |
t2 = idom(t2);
|
|
2400 |
}
|
|
2401 |
// Move up to a new dominator-depth value as well as up the dom-tree.
|
|
2402 |
n1 = t1;
|
|
2403 |
n2 = t2;
|
|
2404 |
d1 = dom_depth(n1);
|
|
2405 |
d2 = dom_depth(n2);
|
|
2406 |
}
|
|
2407 |
}
|
|
2408 |
return n1;
|
|
2409 |
}
|
|
2410 |
|
|
2411 |
//------------------------------compute_idom-----------------------------------
|
|
2412 |
// Locally compute IDOM using dom_lca call. Correct only if the incoming
|
|
2413 |
// IDOMs are correct.
|
|
2414 |
Node *PhaseIdealLoop::compute_idom( Node *region ) const {
|
|
2415 |
assert( region->is_Region(), "" );
|
|
2416 |
Node *LCA = NULL;
|
|
2417 |
for( uint i = 1; i < region->req(); i++ ) {
|
|
2418 |
if( region->in(i) != C->top() )
|
|
2419 |
LCA = dom_lca( LCA, region->in(i) );
|
|
2420 |
}
|
|
2421 |
return LCA;
|
|
2422 |
}
|
|
2423 |
|
|
2424 |
//------------------------------get_late_ctrl----------------------------------
|
|
2425 |
// Compute latest legal control.
|
|
2426 |
Node *PhaseIdealLoop::get_late_ctrl( Node *n, Node *early ) {
|
|
2427 |
assert(early != NULL, "early control should not be NULL");
|
|
2428 |
|
|
2429 |
// Compute LCA over list of uses
|
|
2430 |
Node *LCA = NULL;
|
|
2431 |
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && LCA != early; i++) {
|
|
2432 |
Node* c = n->fast_out(i);
|
|
2433 |
if (_nodes[c->_idx] == NULL)
|
|
2434 |
continue; // Skip the occasional dead node
|
|
2435 |
if( c->is_Phi() ) { // For Phis, we must land above on the path
|
|
2436 |
for( uint j=1; j<c->req(); j++ ) {// For all inputs
|
|
2437 |
if( c->in(j) == n ) { // Found matching input?
|
|
2438 |
Node *use = c->in(0)->in(j);
|
|
2439 |
LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
|
|
2440 |
}
|
|
2441 |
}
|
|
2442 |
} else {
|
|
2443 |
// For CFG data-users, use is in the block just prior
|
|
2444 |
Node *use = has_ctrl(c) ? get_ctrl(c) : c->in(0);
|
|
2445 |
LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
|
|
2446 |
}
|
|
2447 |
}
|
|
2448 |
|
|
2449 |
// if this is a load, check for anti-dependent stores
|
|
2450 |
// We use a conservative algorithm to identify potential interfering
|
|
2451 |
// instructions and for rescheduling the load. The users of the memory
|
|
2452 |
// input of this load are examined. Any use which is not a load and is
|
|
2453 |
// dominated by early is considered a potentially interfering store.
|
|
2454 |
// This can produce false positives.
|
|
2455 |
if (n->is_Load() && LCA != early) {
|
|
2456 |
Node_List worklist;
|
|
2457 |
|
|
2458 |
Node *mem = n->in(MemNode::Memory);
|
|
2459 |
for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
|
|
2460 |
Node* s = mem->fast_out(i);
|
|
2461 |
worklist.push(s);
|
|
2462 |
}
|
|
2463 |
while(worklist.size() != 0 && LCA != early) {
|
|
2464 |
Node* s = worklist.pop();
|
|
2465 |
if (s->is_Load()) {
|
|
2466 |
continue;
|
|
2467 |
} else if (s->is_MergeMem()) {
|
|
2468 |
for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) {
|
|
2469 |
Node* s1 = s->fast_out(i);
|
|
2470 |
worklist.push(s1);
|
|
2471 |
}
|
|
2472 |
} else {
|
|
2473 |
Node *sctrl = has_ctrl(s) ? get_ctrl(s) : s->in(0);
|
|
2474 |
assert(sctrl != NULL || s->outcnt() == 0, "must have control");
|
|
2475 |
if (sctrl != NULL && !sctrl->is_top() && is_dominator(early, sctrl)) {
|
|
2476 |
LCA = dom_lca_for_get_late_ctrl(LCA, sctrl, n);
|
|
2477 |
}
|
|
2478 |
}
|
|
2479 |
}
|
|
2480 |
}
|
|
2481 |
|
|
2482 |
assert(LCA == find_non_split_ctrl(LCA), "unexpected late control");
|
|
2483 |
return LCA;
|
|
2484 |
}
|
|
2485 |
|
|
2486 |
// true if CFG node d dominates CFG node n
|
|
2487 |
bool PhaseIdealLoop::is_dominator(Node *d, Node *n) {
|
|
2488 |
if (d == n)
|
|
2489 |
return true;
|
|
2490 |
assert(d->is_CFG() && n->is_CFG(), "must have CFG nodes");
|
|
2491 |
uint dd = dom_depth(d);
|
|
2492 |
while (dom_depth(n) >= dd) {
|
|
2493 |
if (n == d)
|
|
2494 |
return true;
|
|
2495 |
n = idom(n);
|
|
2496 |
}
|
|
2497 |
return false;
|
|
2498 |
}
|
|
2499 |
|
|
2500 |
//------------------------------dom_lca_for_get_late_ctrl_internal-------------
|
|
2501 |
// Pair-wise LCA with tags.
|
|
2502 |
// Tag each index with the node 'tag' currently being processed
|
|
2503 |
// before advancing up the dominator chain using idom().
|
|
2504 |
// Later calls that find a match to 'tag' know that this path has already
|
|
2505 |
// been considered in the current LCA (which is input 'n1' by convention).
|
|
2506 |
// Since get_late_ctrl() is only called once for each node, the tag array
|
|
2507 |
// does not need to be cleared between calls to get_late_ctrl().
|
|
2508 |
// Algorithm trades a larger constant factor for better asymptotic behavior
|
|
2509 |
//
|
|
2510 |
Node *PhaseIdealLoop::dom_lca_for_get_late_ctrl_internal( Node *n1, Node *n2, Node *tag ) {
|
|
2511 |
uint d1 = dom_depth(n1);
|
|
2512 |
uint d2 = dom_depth(n2);
|
|
2513 |
|
|
2514 |
do {
|
|
2515 |
if (d1 > d2) {
|
|
2516 |
// current lca is deeper than n2
|
|
2517 |
_dom_lca_tags.map(n1->_idx, tag);
|
|
2518 |
n1 = idom(n1);
|
|
2519 |
d1 = dom_depth(n1);
|
|
2520 |
} else if (d1 < d2) {
|
|
2521 |
// n2 is deeper than current lca
|
|
2522 |
Node *memo = _dom_lca_tags[n2->_idx];
|
|
2523 |
if( memo == tag ) {
|
|
2524 |
return n1; // Return the current LCA
|
|
2525 |
}
|
|
2526 |
_dom_lca_tags.map(n2->_idx, tag);
|
|
2527 |
n2 = idom(n2);
|
|
2528 |
d2 = dom_depth(n2);
|
|
2529 |
} else {
|
|
2530 |
// Here d1 == d2. Due to edits of the dominator-tree, sections
|
|
2531 |
// of the tree might have the same depth. These sections have
|
|
2532 |
// to be searched more carefully.
|
|
2533 |
|
|
2534 |
// Scan up all the n1's with equal depth, looking for n2.
|
|
2535 |
_dom_lca_tags.map(n1->_idx, tag);
|
|
2536 |
Node *t1 = idom(n1);
|
|
2537 |
while (dom_depth(t1) == d1) {
|
|
2538 |
if (t1 == n2) return n2;
|
|
2539 |
_dom_lca_tags.map(t1->_idx, tag);
|
|
2540 |
t1 = idom(t1);
|
|
2541 |
}
|
|
2542 |
// Scan up all the n2's with equal depth, looking for n1.
|
|
2543 |
_dom_lca_tags.map(n2->_idx, tag);
|
|
2544 |
Node *t2 = idom(n2);
|
|
2545 |
while (dom_depth(t2) == d2) {
|
|
2546 |
if (t2 == n1) return n1;
|
|
2547 |
_dom_lca_tags.map(t2->_idx, tag);
|
|
2548 |
t2 = idom(t2);
|
|
2549 |
}
|
|
2550 |
// Move up to a new dominator-depth value as well as up the dom-tree.
|
|
2551 |
n1 = t1;
|
|
2552 |
n2 = t2;
|
|
2553 |
d1 = dom_depth(n1);
|
|
2554 |
d2 = dom_depth(n2);
|
|
2555 |
}
|
|
2556 |
} while (n1 != n2);
|
|
2557 |
return n1;
|
|
2558 |
}
|
|
2559 |
|
|
2560 |
//------------------------------init_dom_lca_tags------------------------------
|
|
2561 |
// Tag could be a node's integer index, 32bits instead of 64bits in some cases
|
|
2562 |
// Intended use does not involve any growth for the array, so it could
|
|
2563 |
// be of fixed size.
|
|
2564 |
void PhaseIdealLoop::init_dom_lca_tags() {
|
|
2565 |
uint limit = C->unique() + 1;
|
|
2566 |
_dom_lca_tags.map( limit, NULL );
|
|
2567 |
#ifdef ASSERT
|
|
2568 |
for( uint i = 0; i < limit; ++i ) {
|
|
2569 |
assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
|
|
2570 |
}
|
|
2571 |
#endif // ASSERT
|
|
2572 |
}
|
|
2573 |
|
|
2574 |
//------------------------------clear_dom_lca_tags------------------------------
|
|
2575 |
// Tag could be a node's integer index, 32bits instead of 64bits in some cases
|
|
2576 |
// Intended use does not involve any growth for the array, so it could
|
|
2577 |
// be of fixed size.
|
|
2578 |
void PhaseIdealLoop::clear_dom_lca_tags() {
|
|
2579 |
uint limit = C->unique() + 1;
|
|
2580 |
_dom_lca_tags.map( limit, NULL );
|
|
2581 |
_dom_lca_tags.clear();
|
|
2582 |
#ifdef ASSERT
|
|
2583 |
for( uint i = 0; i < limit; ++i ) {
|
|
2584 |
assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
|
|
2585 |
}
|
|
2586 |
#endif // ASSERT
|
|
2587 |
}
|
|
2588 |
|
|
2589 |
//------------------------------build_loop_late--------------------------------
|
|
2590 |
// Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
|
|
2591 |
// Second pass finds latest legal placement, and ideal loop placement.
|
|
2592 |
void PhaseIdealLoop::build_loop_late( VectorSet &visited, Node_List &worklist, Node_Stack &nstack, const PhaseIdealLoop *verify_me ) {
|
|
2593 |
while (worklist.size() != 0) {
|
|
2594 |
Node *n = worklist.pop();
|
|
2595 |
// Only visit once
|
|
2596 |
if (visited.test_set(n->_idx)) continue;
|
|
2597 |
uint cnt = n->outcnt();
|
|
2598 |
uint i = 0;
|
|
2599 |
while (true) {
|
|
2600 |
assert( _nodes[n->_idx], "no dead nodes" );
|
|
2601 |
// Visit all children
|
|
2602 |
if (i < cnt) {
|
|
2603 |
Node* use = n->raw_out(i);
|
|
2604 |
++i;
|
|
2605 |
// Check for dead uses. Aggressively prune such junk. It might be
|
|
2606 |
// dead in the global sense, but still have local uses so I cannot
|
|
2607 |
// easily call 'remove_dead_node'.
|
|
2608 |
if( _nodes[use->_idx] != NULL || use->is_top() ) { // Not dead?
|
|
2609 |
// Due to cycles, we might not hit the same fixed point in the verify
|
|
2610 |
// pass as we do in the regular pass. Instead, visit such phis as
|
|
2611 |
// simple uses of the loop head.
|
|
2612 |
if( use->in(0) && (use->is_CFG() || use->is_Phi()) ) {
|
|
2613 |
if( !visited.test(use->_idx) )
|
|
2614 |
worklist.push(use);
|
|
2615 |
} else if( !visited.test_set(use->_idx) ) {
|
|
2616 |
nstack.push(n, i); // Save parent and next use's index.
|
|
2617 |
n = use; // Process all children of current use.
|
|
2618 |
cnt = use->outcnt();
|
|
2619 |
i = 0;
|
|
2620 |
}
|
|
2621 |
} else {
|
|
2622 |
// Do not visit around the backedge of loops via data edges.
|
|
2623 |
// push dead code onto a worklist
|
|
2624 |
_deadlist.push(use);
|
|
2625 |
}
|
|
2626 |
} else {
|
|
2627 |
// All of n's children have been processed, complete post-processing.
|
|
2628 |
build_loop_late_post(n, verify_me);
|
|
2629 |
if (nstack.is_empty()) {
|
|
2630 |
// Finished all nodes on stack.
|
|
2631 |
// Process next node on the worklist.
|
|
2632 |
break;
|
|
2633 |
}
|
|
2634 |
// Get saved parent node and next use's index. Visit the rest of uses.
|
|
2635 |
n = nstack.node();
|
|
2636 |
cnt = n->outcnt();
|
|
2637 |
i = nstack.index();
|
|
2638 |
nstack.pop();
|
|
2639 |
}
|
|
2640 |
}
|
|
2641 |
}
|
|
2642 |
}
|
|
2643 |
|
|
2644 |
//------------------------------build_loop_late_post---------------------------
|
|
2645 |
// Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
|
|
2646 |
// Second pass finds latest legal placement, and ideal loop placement.
|
|
2647 |
void PhaseIdealLoop::build_loop_late_post( Node *n, const PhaseIdealLoop *verify_me ) {
|
|
2648 |
|
|
2649 |
if (n->req() == 2 && n->Opcode() == Op_ConvI2L && !C->major_progress()) {
|
|
2650 |
_igvn._worklist.push(n); // Maybe we'll normalize it, if no more loops.
|
|
2651 |
}
|
|
2652 |
|
|
2653 |
// CFG and pinned nodes already handled
|
|
2654 |
if( n->in(0) ) {
|
|
2655 |
if( n->in(0)->is_top() ) return; // Dead?
|
|
2656 |
|
|
2657 |
// We'd like +VerifyLoopOptimizations to not believe that Mod's/Loads
|
|
2658 |
// _must_ be pinned (they have to observe their control edge of course).
|
|
2659 |
// Unlike Stores (which modify an unallocable resource, the memory
|
|
2660 |
// state), Mods/Loads can float around. So free them up.
|
|
2661 |
bool pinned = true;
|
|
2662 |
switch( n->Opcode() ) {
|
|
2663 |
case Op_DivI:
|
|
2664 |
case Op_DivF:
|
|
2665 |
case Op_DivD:
|
|
2666 |
case Op_ModI:
|
|
2667 |
case Op_ModF:
|
|
2668 |
case Op_ModD:
|
|
2669 |
case Op_LoadB: // Same with Loads; they can sink
|
|
2670 |
case Op_LoadC: // during loop optimizations.
|
|
2671 |
case Op_LoadD:
|
|
2672 |
case Op_LoadF:
|
|
2673 |
case Op_LoadI:
|
|
2674 |
case Op_LoadKlass:
|
|
2675 |
case Op_LoadL:
|
|
2676 |
case Op_LoadS:
|
|
2677 |
case Op_LoadP:
|
|
2678 |
case Op_LoadRange:
|
|
2679 |
case Op_LoadD_unaligned:
|
|
2680 |
case Op_LoadL_unaligned:
|
|
2681 |
case Op_StrComp: // Does a bunch of load-like effects
|
|
2682 |
pinned = false;
|
|
2683 |
}
|
|
2684 |
if( pinned ) {
|
|
2685 |
IdealLoopTree *choosen_loop = get_loop(n->is_CFG() ? n : get_ctrl(n));
|
|
2686 |
if( !choosen_loop->_child ) // Inner loop?
|
|
2687 |
choosen_loop->_body.push(n); // Collect inner loops
|
|
2688 |
return;
|
|
2689 |
}
|
|
2690 |
} else { // No slot zero
|
|
2691 |
if( n->is_CFG() ) { // CFG with no slot 0 is dead
|
|
2692 |
_nodes.map(n->_idx,0); // No block setting, it's globally dead
|
|
2693 |
return;
|
|
2694 |
}
|
|
2695 |
assert(!n->is_CFG() || n->outcnt() == 0, "");
|
|
2696 |
}
|
|
2697 |
|
|
2698 |
// Do I have a "safe range" I can select over?
|
|
2699 |
Node *early = get_ctrl(n);// Early location already computed
|
|
2700 |
|
|
2701 |
// Compute latest point this Node can go
|
|
2702 |
Node *LCA = get_late_ctrl( n, early );
|
|
2703 |
// LCA is NULL due to uses being dead
|
|
2704 |
if( LCA == NULL ) {
|
|
2705 |
#ifdef ASSERT
|
|
2706 |
for (DUIterator i1 = n->outs(); n->has_out(i1); i1++) {
|
|
2707 |
assert( _nodes[n->out(i1)->_idx] == NULL, "all uses must also be dead");
|
|
2708 |
}
|
|
2709 |
#endif
|
|
2710 |
_nodes.map(n->_idx, 0); // This node is useless
|
|
2711 |
_deadlist.push(n);
|
|
2712 |
return;
|
|
2713 |
}
|
|
2714 |
assert(LCA != NULL && !LCA->is_top(), "no dead nodes");
|
|
2715 |
|
|
2716 |
Node *legal = LCA; // Walk 'legal' up the IDOM chain
|
|
2717 |
Node *least = legal; // Best legal position so far
|
|
2718 |
while( early != legal ) { // While not at earliest legal
|
|
2719 |
// Find least loop nesting depth
|
|
2720 |
legal = idom(legal); // Bump up the IDOM tree
|
|
2721 |
// Check for lower nesting depth
|
|
2722 |
if( get_loop(legal)->_nest < get_loop(least)->_nest )
|
|
2723 |
least = legal;
|
|
2724 |
}
|
|
2725 |
|
|
2726 |
// Try not to place code on a loop entry projection
|
|
2727 |
// which can inhibit range check elimination.
|
|
2728 |
if (least != early) {
|
|
2729 |
Node* ctrl_out = least->unique_ctrl_out();
|
|
2730 |
if (ctrl_out && ctrl_out->is_CountedLoop() &&
|
|
2731 |
least == ctrl_out->in(LoopNode::EntryControl)) {
|
|
2732 |
Node* least_dom = idom(least);
|
|
2733 |
if (get_loop(least_dom)->is_member(get_loop(least))) {
|
|
2734 |
least = least_dom;
|
|
2735 |
}
|
|
2736 |
}
|
|
2737 |
}
|
|
2738 |
|
|
2739 |
#ifdef ASSERT
|
|
2740 |
// If verifying, verify that 'verify_me' has a legal location
|
|
2741 |
// and choose it as our location.
|
|
2742 |
if( verify_me ) {
|
|
2743 |
Node *v_ctrl = verify_me->get_ctrl_no_update(n);
|
|
2744 |
Node *legal = LCA;
|
|
2745 |
while( early != legal ) { // While not at earliest legal
|
|
2746 |
if( legal == v_ctrl ) break; // Check for prior good location
|
|
2747 |
legal = idom(legal) ;// Bump up the IDOM tree
|
|
2748 |
}
|
|
2749 |
// Check for prior good location
|
|
2750 |
if( legal == v_ctrl ) least = legal; // Keep prior if found
|
|
2751 |
}
|
|
2752 |
#endif
|
|
2753 |
|
|
2754 |
// Assign discovered "here or above" point
|
|
2755 |
least = find_non_split_ctrl(least);
|
|
2756 |
set_ctrl(n, least);
|
|
2757 |
|
|
2758 |
// Collect inner loop bodies
|
|
2759 |
IdealLoopTree *choosen_loop = get_loop(least);
|
|
2760 |
if( !choosen_loop->_child ) // Inner loop?
|
|
2761 |
choosen_loop->_body.push(n);// Collect inner loops
|
|
2762 |
}
|
|
2763 |
|
|
2764 |
#ifndef PRODUCT
|
|
2765 |
//------------------------------dump-------------------------------------------
|
|
2766 |
void PhaseIdealLoop::dump( ) const {
|
|
2767 |
ResourceMark rm;
|
|
2768 |
Arena* arena = Thread::current()->resource_area();
|
|
2769 |
Node_Stack stack(arena, C->unique() >> 2);
|
|
2770 |
Node_List rpo_list;
|
|
2771 |
VectorSet visited(arena);
|
|
2772 |
visited.set(C->top()->_idx);
|
|
2773 |
rpo( C->root(), stack, visited, rpo_list );
|
|
2774 |
// Dump root loop indexed by last element in PO order
|
|
2775 |
dump( _ltree_root, rpo_list.size(), rpo_list );
|
|
2776 |
}
|
|
2777 |
|
|
2778 |
void PhaseIdealLoop::dump( IdealLoopTree *loop, uint idx, Node_List &rpo_list ) const {
|
|
2779 |
|
|
2780 |
// Indent by loop nesting depth
|
|
2781 |
for( uint x = 0; x < loop->_nest; x++ )
|
|
2782 |
tty->print(" ");
|
|
2783 |
tty->print_cr("---- Loop N%d-N%d ----", loop->_head->_idx,loop->_tail->_idx);
|
|
2784 |
|
|
2785 |
// Now scan for CFG nodes in the same loop
|
|
2786 |
for( uint j=idx; j > 0; j-- ) {
|
|
2787 |
Node *n = rpo_list[j-1];
|
|
2788 |
if( !_nodes[n->_idx] ) // Skip dead nodes
|
|
2789 |
continue;
|
|
2790 |
if( get_loop(n) != loop ) { // Wrong loop nest
|
|
2791 |
if( get_loop(n)->_head == n && // Found nested loop?
|
|
2792 |
get_loop(n)->_parent == loop )
|
|
2793 |
dump(get_loop(n),rpo_list.size(),rpo_list); // Print it nested-ly
|
|
2794 |
continue;
|
|
2795 |
}
|
|
2796 |
|
|
2797 |
// Dump controlling node
|
|
2798 |
for( uint x = 0; x < loop->_nest; x++ )
|
|
2799 |
tty->print(" ");
|
|
2800 |
tty->print("C");
|
|
2801 |
if( n == C->root() ) {
|
|
2802 |
n->dump();
|
|
2803 |
} else {
|
|
2804 |
Node* cached_idom = idom_no_update(n);
|
|
2805 |
Node *computed_idom = n->in(0);
|
|
2806 |
if( n->is_Region() ) {
|
|
2807 |
computed_idom = compute_idom(n);
|
|
2808 |
// computed_idom() will return n->in(0) when idom(n) is an IfNode (or
|
|
2809 |
// any MultiBranch ctrl node), so apply a similar transform to
|
|
2810 |
// the cached idom returned from idom_no_update.
|
|
2811 |
cached_idom = find_non_split_ctrl(cached_idom);
|
|
2812 |
}
|
|
2813 |
tty->print(" ID:%d",computed_idom->_idx);
|
|
2814 |
n->dump();
|
|
2815 |
if( cached_idom != computed_idom ) {
|
|
2816 |
tty->print_cr("*** BROKEN IDOM! Computed as: %d, cached as: %d",
|
|
2817 |
computed_idom->_idx, cached_idom->_idx);
|
|
2818 |
}
|
|
2819 |
}
|
|
2820 |
// Dump nodes it controls
|
|
2821 |
for( uint k = 0; k < _nodes.Size(); k++ ) {
|
|
2822 |
// (k < C->unique() && get_ctrl(find(k)) == n)
|
|
2823 |
if (k < C->unique() && _nodes[k] == (Node*)((intptr_t)n + 1)) {
|
|
2824 |
Node *m = C->root()->find(k);
|
|
2825 |
if( m && m->outcnt() > 0 ) {
|
|
2826 |
if (!(has_ctrl(m) && get_ctrl_no_update(m) == n)) {
|
|
2827 |
tty->print_cr("*** BROKEN CTRL ACCESSOR! _nodes[k] is %p, ctrl is %p",
|
|
2828 |
_nodes[k], has_ctrl(m) ? get_ctrl_no_update(m) : NULL);
|
|
2829 |
}
|
|
2830 |
for( uint j = 0; j < loop->_nest; j++ )
|
|
2831 |
tty->print(" ");
|
|
2832 |
tty->print(" ");
|
|
2833 |
m->dump();
|
|
2834 |
}
|
|
2835 |
}
|
|
2836 |
}
|
|
2837 |
}
|
|
2838 |
}
|
|
2839 |
|
|
2840 |
// Collect a R-P-O for the whole CFG.
|
|
2841 |
// Result list is in post-order (scan backwards for RPO)
|
|
2842 |
void PhaseIdealLoop::rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const {
|
|
2843 |
stk.push(start, 0);
|
|
2844 |
visited.set(start->_idx);
|
|
2845 |
|
|
2846 |
while (stk.is_nonempty()) {
|
|
2847 |
Node* m = stk.node();
|
|
2848 |
uint idx = stk.index();
|
|
2849 |
if (idx < m->outcnt()) {
|
|
2850 |
stk.set_index(idx + 1);
|
|
2851 |
Node* n = m->raw_out(idx);
|
|
2852 |
if (n->is_CFG() && !visited.test_set(n->_idx)) {
|
|
2853 |
stk.push(n, 0);
|
|
2854 |
}
|
|
2855 |
} else {
|
|
2856 |
rpo_list.push(m);
|
|
2857 |
stk.pop();
|
|
2858 |
}
|
|
2859 |
}
|
|
2860 |
}
|
|
2861 |
#endif
|
|
2862 |
|
|
2863 |
|
|
2864 |
//=============================================================================
|
|
2865 |
//------------------------------LoopTreeIterator-----------------------------------
|
|
2866 |
|
|
2867 |
// Advance to next loop tree using a preorder, left-to-right traversal.
|
|
2868 |
void LoopTreeIterator::next() {
|
|
2869 |
assert(!done(), "must not be done.");
|
|
2870 |
if (_curnt->_child != NULL) {
|
|
2871 |
_curnt = _curnt->_child;
|
|
2872 |
} else if (_curnt->_next != NULL) {
|
|
2873 |
_curnt = _curnt->_next;
|
|
2874 |
} else {
|
|
2875 |
while (_curnt != _root && _curnt->_next == NULL) {
|
|
2876 |
_curnt = _curnt->_parent;
|
|
2877 |
}
|
|
2878 |
if (_curnt == _root) {
|
|
2879 |
_curnt = NULL;
|
|
2880 |
assert(done(), "must be done.");
|
|
2881 |
} else {
|
|
2882 |
assert(_curnt->_next != NULL, "must be more to do");
|
|
2883 |
_curnt = _curnt->_next;
|
|
2884 |
}
|
|
2885 |
}
|
|
2886 |
}
|