1
|
1 |
/*
|
|
2 |
* Copyright 2001-2007 Sun Microsystems, Inc. All Rights Reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation.
|
|
8 |
*
|
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
13 |
* accompanied this code).
|
|
14 |
*
|
|
15 |
* You should have received a copy of the GNU General Public License version
|
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
18 |
*
|
|
19 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
20 |
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
21 |
* have any questions.
|
|
22 |
*
|
|
23 |
*/
|
|
24 |
|
|
25 |
# include "incls/_precompiled.incl"
|
|
26 |
# include "incls/_parNewGeneration.cpp.incl"
|
|
27 |
|
|
28 |
#ifdef _MSC_VER
|
|
29 |
#pragma warning( push )
|
|
30 |
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
|
|
31 |
#endif
|
|
32 |
ParScanThreadState::ParScanThreadState(Space* to_space_,
|
|
33 |
ParNewGeneration* gen_,
|
|
34 |
Generation* old_gen_,
|
|
35 |
int thread_num_,
|
|
36 |
ObjToScanQueueSet* work_queue_set_,
|
|
37 |
size_t desired_plab_sz_,
|
|
38 |
ParallelTaskTerminator& term_) :
|
|
39 |
_to_space(to_space_), _old_gen(old_gen_), _thread_num(thread_num_),
|
|
40 |
_work_queue(work_queue_set_->queue(thread_num_)), _to_space_full(false),
|
|
41 |
_ageTable(false), // false ==> not the global age table, no perf data.
|
|
42 |
_to_space_alloc_buffer(desired_plab_sz_),
|
|
43 |
_to_space_closure(gen_, this), _old_gen_closure(gen_, this),
|
|
44 |
_to_space_root_closure(gen_, this), _old_gen_root_closure(gen_, this),
|
|
45 |
_older_gen_closure(gen_, this),
|
|
46 |
_evacuate_followers(this, &_to_space_closure, &_old_gen_closure,
|
|
47 |
&_to_space_root_closure, gen_, &_old_gen_root_closure,
|
|
48 |
work_queue_set_, &term_),
|
|
49 |
_is_alive_closure(gen_), _scan_weak_ref_closure(gen_, this),
|
|
50 |
_keep_alive_closure(&_scan_weak_ref_closure),
|
|
51 |
_pushes(0), _pops(0), _steals(0), _steal_attempts(0), _term_attempts(0),
|
|
52 |
_strong_roots_time(0.0), _term_time(0.0)
|
|
53 |
{
|
|
54 |
_survivor_chunk_array =
|
|
55 |
(ChunkArray*) old_gen()->get_data_recorder(thread_num());
|
|
56 |
_hash_seed = 17; // Might want to take time-based random value.
|
|
57 |
_start = os::elapsedTime();
|
|
58 |
_old_gen_closure.set_generation(old_gen_);
|
|
59 |
_old_gen_root_closure.set_generation(old_gen_);
|
|
60 |
}
|
|
61 |
#ifdef _MSC_VER
|
|
62 |
#pragma warning( pop )
|
|
63 |
#endif
|
|
64 |
|
|
65 |
void ParScanThreadState::record_survivor_plab(HeapWord* plab_start,
|
|
66 |
size_t plab_word_size) {
|
|
67 |
ChunkArray* sca = survivor_chunk_array();
|
|
68 |
if (sca != NULL) {
|
|
69 |
// A non-null SCA implies that we want the PLAB data recorded.
|
|
70 |
sca->record_sample(plab_start, plab_word_size);
|
|
71 |
}
|
|
72 |
}
|
|
73 |
|
|
74 |
bool ParScanThreadState::should_be_partially_scanned(oop new_obj, oop old_obj) const {
|
|
75 |
return new_obj->is_objArray() &&
|
|
76 |
arrayOop(new_obj)->length() > ParGCArrayScanChunk &&
|
|
77 |
new_obj != old_obj;
|
|
78 |
}
|
|
79 |
|
|
80 |
void ParScanThreadState::scan_partial_array_and_push_remainder(oop old) {
|
|
81 |
assert(old->is_objArray(), "must be obj array");
|
|
82 |
assert(old->is_forwarded(), "must be forwarded");
|
|
83 |
assert(Universe::heap()->is_in_reserved(old), "must be in heap.");
|
|
84 |
assert(!_old_gen->is_in(old), "must be in young generation.");
|
|
85 |
|
|
86 |
objArrayOop obj = objArrayOop(old->forwardee());
|
|
87 |
// Process ParGCArrayScanChunk elements now
|
|
88 |
// and push the remainder back onto queue
|
|
89 |
int start = arrayOop(old)->length();
|
|
90 |
int end = obj->length();
|
|
91 |
int remainder = end - start;
|
|
92 |
assert(start <= end, "just checking");
|
|
93 |
if (remainder > 2 * ParGCArrayScanChunk) {
|
|
94 |
// Test above combines last partial chunk with a full chunk
|
|
95 |
end = start + ParGCArrayScanChunk;
|
|
96 |
arrayOop(old)->set_length(end);
|
|
97 |
// Push remainder.
|
|
98 |
bool ok = work_queue()->push(old);
|
|
99 |
assert(ok, "just popped, push must be okay");
|
|
100 |
note_push();
|
|
101 |
} else {
|
|
102 |
// Restore length so that it can be used if there
|
|
103 |
// is a promotion failure and forwarding pointers
|
|
104 |
// must be removed.
|
|
105 |
arrayOop(old)->set_length(end);
|
|
106 |
}
|
|
107 |
// process our set of indices (include header in first chunk)
|
|
108 |
oop* start_addr = start == 0 ? (oop*)obj : obj->obj_at_addr(start);
|
|
109 |
oop* end_addr = obj->base() + end; // obj_at_addr(end) asserts end < length
|
|
110 |
MemRegion mr((HeapWord*)start_addr, (HeapWord*)end_addr);
|
|
111 |
if ((HeapWord *)obj < young_old_boundary()) {
|
|
112 |
// object is in to_space
|
|
113 |
obj->oop_iterate(&_to_space_closure, mr);
|
|
114 |
} else {
|
|
115 |
// object is in old generation
|
|
116 |
obj->oop_iterate(&_old_gen_closure, mr);
|
|
117 |
}
|
|
118 |
}
|
|
119 |
|
|
120 |
|
|
121 |
void ParScanThreadState::trim_queues(int max_size) {
|
|
122 |
ObjToScanQueue* queue = work_queue();
|
|
123 |
while (queue->size() > (juint)max_size) {
|
|
124 |
oop obj_to_scan;
|
|
125 |
if (queue->pop_local(obj_to_scan)) {
|
|
126 |
note_pop();
|
|
127 |
|
|
128 |
if ((HeapWord *)obj_to_scan < young_old_boundary()) {
|
|
129 |
if (obj_to_scan->is_objArray() &&
|
|
130 |
obj_to_scan->is_forwarded() &&
|
|
131 |
obj_to_scan->forwardee() != obj_to_scan) {
|
|
132 |
scan_partial_array_and_push_remainder(obj_to_scan);
|
|
133 |
} else {
|
|
134 |
// object is in to_space
|
|
135 |
obj_to_scan->oop_iterate(&_to_space_closure);
|
|
136 |
}
|
|
137 |
} else {
|
|
138 |
// object is in old generation
|
|
139 |
obj_to_scan->oop_iterate(&_old_gen_closure);
|
|
140 |
}
|
|
141 |
}
|
|
142 |
}
|
|
143 |
}
|
|
144 |
|
|
145 |
HeapWord* ParScanThreadState::alloc_in_to_space_slow(size_t word_sz) {
|
|
146 |
|
|
147 |
// Otherwise, if the object is small enough, try to reallocate the
|
|
148 |
// buffer.
|
|
149 |
HeapWord* obj = NULL;
|
|
150 |
if (!_to_space_full) {
|
|
151 |
ParGCAllocBuffer* const plab = to_space_alloc_buffer();
|
|
152 |
Space* const sp = to_space();
|
|
153 |
if (word_sz * 100 <
|
|
154 |
ParallelGCBufferWastePct * plab->word_sz()) {
|
|
155 |
// Is small enough; abandon this buffer and start a new one.
|
|
156 |
plab->retire(false, false);
|
|
157 |
size_t buf_size = plab->word_sz();
|
|
158 |
HeapWord* buf_space = sp->par_allocate(buf_size);
|
|
159 |
if (buf_space == NULL) {
|
|
160 |
const size_t min_bytes =
|
|
161 |
ParGCAllocBuffer::min_size() << LogHeapWordSize;
|
|
162 |
size_t free_bytes = sp->free();
|
|
163 |
while(buf_space == NULL && free_bytes >= min_bytes) {
|
|
164 |
buf_size = free_bytes >> LogHeapWordSize;
|
|
165 |
assert(buf_size == (size_t)align_object_size(buf_size),
|
|
166 |
"Invariant");
|
|
167 |
buf_space = sp->par_allocate(buf_size);
|
|
168 |
free_bytes = sp->free();
|
|
169 |
}
|
|
170 |
}
|
|
171 |
if (buf_space != NULL) {
|
|
172 |
plab->set_word_size(buf_size);
|
|
173 |
plab->set_buf(buf_space);
|
|
174 |
record_survivor_plab(buf_space, buf_size);
|
|
175 |
obj = plab->allocate(word_sz);
|
|
176 |
// Note that we cannot compare buf_size < word_sz below
|
|
177 |
// because of AlignmentReserve (see ParGCAllocBuffer::allocate()).
|
|
178 |
assert(obj != NULL || plab->words_remaining() < word_sz,
|
|
179 |
"Else should have been able to allocate");
|
|
180 |
// It's conceivable that we may be able to use the
|
|
181 |
// buffer we just grabbed for subsequent small requests
|
|
182 |
// even if not for this one.
|
|
183 |
} else {
|
|
184 |
// We're used up.
|
|
185 |
_to_space_full = true;
|
|
186 |
}
|
|
187 |
|
|
188 |
} else {
|
|
189 |
// Too large; allocate the object individually.
|
|
190 |
obj = sp->par_allocate(word_sz);
|
|
191 |
}
|
|
192 |
}
|
|
193 |
return obj;
|
|
194 |
}
|
|
195 |
|
|
196 |
|
|
197 |
void ParScanThreadState::undo_alloc_in_to_space(HeapWord* obj,
|
|
198 |
size_t word_sz) {
|
|
199 |
// Is the alloc in the current alloc buffer?
|
|
200 |
if (to_space_alloc_buffer()->contains(obj)) {
|
|
201 |
assert(to_space_alloc_buffer()->contains(obj + word_sz - 1),
|
|
202 |
"Should contain whole object.");
|
|
203 |
to_space_alloc_buffer()->undo_allocation(obj, word_sz);
|
|
204 |
} else {
|
|
205 |
SharedHeap::fill_region_with_object(MemRegion(obj, word_sz));
|
|
206 |
}
|
|
207 |
}
|
|
208 |
|
|
209 |
class ParScanThreadStateSet: private ResourceArray {
|
|
210 |
public:
|
|
211 |
// Initializes states for the specified number of threads;
|
|
212 |
ParScanThreadStateSet(int num_threads,
|
|
213 |
Space& to_space,
|
|
214 |
ParNewGeneration& gen,
|
|
215 |
Generation& old_gen,
|
|
216 |
ObjToScanQueueSet& queue_set,
|
|
217 |
size_t desired_plab_sz,
|
|
218 |
ParallelTaskTerminator& term);
|
|
219 |
inline ParScanThreadState& thread_sate(int i);
|
|
220 |
int pushes() { return _pushes; }
|
|
221 |
int pops() { return _pops; }
|
|
222 |
int steals() { return _steals; }
|
|
223 |
void reset();
|
|
224 |
void flush();
|
|
225 |
private:
|
|
226 |
ParallelTaskTerminator& _term;
|
|
227 |
ParNewGeneration& _gen;
|
|
228 |
Generation& _next_gen;
|
|
229 |
// staticstics
|
|
230 |
int _pushes;
|
|
231 |
int _pops;
|
|
232 |
int _steals;
|
|
233 |
};
|
|
234 |
|
|
235 |
|
|
236 |
ParScanThreadStateSet::ParScanThreadStateSet(
|
|
237 |
int num_threads, Space& to_space, ParNewGeneration& gen,
|
|
238 |
Generation& old_gen, ObjToScanQueueSet& queue_set,
|
|
239 |
size_t desired_plab_sz, ParallelTaskTerminator& term)
|
|
240 |
: ResourceArray(sizeof(ParScanThreadState), num_threads),
|
|
241 |
_gen(gen), _next_gen(old_gen), _term(term),
|
|
242 |
_pushes(0), _pops(0), _steals(0)
|
|
243 |
{
|
|
244 |
assert(num_threads > 0, "sanity check!");
|
|
245 |
// Initialize states.
|
|
246 |
for (int i = 0; i < num_threads; ++i) {
|
|
247 |
new ((ParScanThreadState*)_data + i)
|
|
248 |
ParScanThreadState(&to_space, &gen, &old_gen, i, &queue_set,
|
|
249 |
desired_plab_sz, term);
|
|
250 |
}
|
|
251 |
}
|
|
252 |
|
|
253 |
inline ParScanThreadState& ParScanThreadStateSet::thread_sate(int i)
|
|
254 |
{
|
|
255 |
assert(i >= 0 && i < length(), "sanity check!");
|
|
256 |
return ((ParScanThreadState*)_data)[i];
|
|
257 |
}
|
|
258 |
|
|
259 |
|
|
260 |
void ParScanThreadStateSet::reset()
|
|
261 |
{
|
|
262 |
_term.reset_for_reuse();
|
|
263 |
}
|
|
264 |
|
|
265 |
void ParScanThreadStateSet::flush()
|
|
266 |
{
|
|
267 |
for (int i = 0; i < length(); ++i) {
|
|
268 |
ParScanThreadState& par_scan_state = thread_sate(i);
|
|
269 |
|
|
270 |
// Flush stats related to To-space PLAB activity and
|
|
271 |
// retire the last buffer.
|
|
272 |
par_scan_state.to_space_alloc_buffer()->
|
|
273 |
flush_stats_and_retire(_gen.plab_stats(),
|
|
274 |
false /* !retain */);
|
|
275 |
|
|
276 |
// Every thread has its own age table. We need to merge
|
|
277 |
// them all into one.
|
|
278 |
ageTable *local_table = par_scan_state.age_table();
|
|
279 |
_gen.age_table()->merge(local_table);
|
|
280 |
|
|
281 |
// Inform old gen that we're done.
|
|
282 |
_next_gen.par_promote_alloc_done(i);
|
|
283 |
_next_gen.par_oop_since_save_marks_iterate_done(i);
|
|
284 |
|
|
285 |
// Flush stats related to work queue activity (push/pop/steal)
|
|
286 |
// This could conceivably become a bottleneck; if so, we'll put the
|
|
287 |
// stat's gathering under the flag.
|
|
288 |
if (PAR_STATS_ENABLED) {
|
|
289 |
_pushes += par_scan_state.pushes();
|
|
290 |
_pops += par_scan_state.pops();
|
|
291 |
_steals += par_scan_state.steals();
|
|
292 |
if (ParallelGCVerbose) {
|
|
293 |
gclog_or_tty->print("Thread %d complete:\n"
|
|
294 |
" Pushes: %7d Pops: %7d Steals %7d (in %d attempts)\n",
|
|
295 |
i, par_scan_state.pushes(), par_scan_state.pops(),
|
|
296 |
par_scan_state.steals(), par_scan_state.steal_attempts());
|
|
297 |
if (par_scan_state.overflow_pushes() > 0 ||
|
|
298 |
par_scan_state.overflow_refills() > 0) {
|
|
299 |
gclog_or_tty->print(" Overflow pushes: %7d "
|
|
300 |
"Overflow refills: %7d for %d objs.\n",
|
|
301 |
par_scan_state.overflow_pushes(),
|
|
302 |
par_scan_state.overflow_refills(),
|
|
303 |
par_scan_state.overflow_refill_objs());
|
|
304 |
}
|
|
305 |
|
|
306 |
double elapsed = par_scan_state.elapsed();
|
|
307 |
double strong_roots = par_scan_state.strong_roots_time();
|
|
308 |
double term = par_scan_state.term_time();
|
|
309 |
gclog_or_tty->print(
|
|
310 |
" Elapsed: %7.2f ms.\n"
|
|
311 |
" Strong roots: %7.2f ms (%6.2f%%)\n"
|
|
312 |
" Termination: %7.2f ms (%6.2f%%) (in %d entries)\n",
|
|
313 |
elapsed * 1000.0,
|
|
314 |
strong_roots * 1000.0, (strong_roots*100.0/elapsed),
|
|
315 |
term * 1000.0, (term*100.0/elapsed),
|
|
316 |
par_scan_state.term_attempts());
|
|
317 |
}
|
|
318 |
}
|
|
319 |
}
|
|
320 |
}
|
|
321 |
|
|
322 |
|
|
323 |
ParScanClosure::ParScanClosure(ParNewGeneration* g,
|
|
324 |
ParScanThreadState* par_scan_state) :
|
|
325 |
OopsInGenClosure(g), _par_scan_state(par_scan_state), _g(g)
|
|
326 |
{
|
|
327 |
assert(_g->level() == 0, "Optimized for youngest generation");
|
|
328 |
_boundary = _g->reserved().end();
|
|
329 |
}
|
|
330 |
|
|
331 |
ParScanWeakRefClosure::ParScanWeakRefClosure(ParNewGeneration* g,
|
|
332 |
ParScanThreadState* par_scan_state)
|
|
333 |
: ScanWeakRefClosure(g), _par_scan_state(par_scan_state)
|
|
334 |
{
|
|
335 |
}
|
|
336 |
|
|
337 |
#ifdef WIN32
|
|
338 |
#pragma warning(disable: 4786) /* identifier was truncated to '255' characters in the browser information */
|
|
339 |
#endif
|
|
340 |
|
|
341 |
ParEvacuateFollowersClosure::ParEvacuateFollowersClosure(
|
|
342 |
ParScanThreadState* par_scan_state_,
|
|
343 |
ParScanWithoutBarrierClosure* to_space_closure_,
|
|
344 |
ParScanWithBarrierClosure* old_gen_closure_,
|
|
345 |
ParRootScanWithoutBarrierClosure* to_space_root_closure_,
|
|
346 |
ParNewGeneration* par_gen_,
|
|
347 |
ParRootScanWithBarrierTwoGensClosure* old_gen_root_closure_,
|
|
348 |
ObjToScanQueueSet* task_queues_,
|
|
349 |
ParallelTaskTerminator* terminator_) :
|
|
350 |
|
|
351 |
_par_scan_state(par_scan_state_),
|
|
352 |
_to_space_closure(to_space_closure_),
|
|
353 |
_old_gen_closure(old_gen_closure_),
|
|
354 |
_to_space_root_closure(to_space_root_closure_),
|
|
355 |
_old_gen_root_closure(old_gen_root_closure_),
|
|
356 |
_par_gen(par_gen_),
|
|
357 |
_task_queues(task_queues_),
|
|
358 |
_terminator(terminator_)
|
|
359 |
{}
|
|
360 |
|
|
361 |
void ParEvacuateFollowersClosure::do_void() {
|
|
362 |
ObjToScanQueue* work_q = par_scan_state()->work_queue();
|
|
363 |
|
|
364 |
while (true) {
|
|
365 |
|
|
366 |
// Scan to-space and old-gen objs until we run out of both.
|
|
367 |
oop obj_to_scan;
|
|
368 |
par_scan_state()->trim_queues(0);
|
|
369 |
|
|
370 |
// We have no local work, attempt to steal from other threads.
|
|
371 |
|
|
372 |
// attempt to steal work from promoted.
|
|
373 |
par_scan_state()->note_steal_attempt();
|
|
374 |
if (task_queues()->steal(par_scan_state()->thread_num(),
|
|
375 |
par_scan_state()->hash_seed(),
|
|
376 |
obj_to_scan)) {
|
|
377 |
par_scan_state()->note_steal();
|
|
378 |
bool res = work_q->push(obj_to_scan);
|
|
379 |
assert(res, "Empty queue should have room for a push.");
|
|
380 |
|
|
381 |
par_scan_state()->note_push();
|
|
382 |
// if successful, goto Start.
|
|
383 |
continue;
|
|
384 |
|
|
385 |
// try global overflow list.
|
|
386 |
} else if (par_gen()->take_from_overflow_list(par_scan_state())) {
|
|
387 |
continue;
|
|
388 |
}
|
|
389 |
|
|
390 |
// Otherwise, offer termination.
|
|
391 |
par_scan_state()->start_term_time();
|
|
392 |
if (terminator()->offer_termination()) break;
|
|
393 |
par_scan_state()->end_term_time();
|
|
394 |
}
|
|
395 |
// Finish the last termination pause.
|
|
396 |
par_scan_state()->end_term_time();
|
|
397 |
}
|
|
398 |
|
|
399 |
ParNewGenTask::ParNewGenTask(ParNewGeneration* gen, Generation* next_gen,
|
|
400 |
HeapWord* young_old_boundary, ParScanThreadStateSet* state_set) :
|
|
401 |
AbstractGangTask("ParNewGeneration collection"),
|
|
402 |
_gen(gen), _next_gen(next_gen),
|
|
403 |
_young_old_boundary(young_old_boundary),
|
|
404 |
_state_set(state_set)
|
|
405 |
{}
|
|
406 |
|
|
407 |
void ParNewGenTask::work(int i) {
|
|
408 |
GenCollectedHeap* gch = GenCollectedHeap::heap();
|
|
409 |
// Since this is being done in a separate thread, need new resource
|
|
410 |
// and handle marks.
|
|
411 |
ResourceMark rm;
|
|
412 |
HandleMark hm;
|
|
413 |
// We would need multiple old-gen queues otherwise.
|
|
414 |
guarantee(gch->n_gens() == 2,
|
|
415 |
"Par young collection currently only works with one older gen.");
|
|
416 |
|
|
417 |
Generation* old_gen = gch->next_gen(_gen);
|
|
418 |
|
|
419 |
ParScanThreadState& par_scan_state = _state_set->thread_sate(i);
|
|
420 |
par_scan_state.set_young_old_boundary(_young_old_boundary);
|
|
421 |
|
|
422 |
par_scan_state.start_strong_roots();
|
|
423 |
gch->gen_process_strong_roots(_gen->level(),
|
|
424 |
true, // Process younger gens, if any,
|
|
425 |
// as strong roots.
|
|
426 |
false,// not collecting perm generation.
|
|
427 |
SharedHeap::SO_AllClasses,
|
|
428 |
&par_scan_state.older_gen_closure(),
|
|
429 |
&par_scan_state.to_space_root_closure());
|
|
430 |
par_scan_state.end_strong_roots();
|
|
431 |
|
|
432 |
// "evacuate followers".
|
|
433 |
par_scan_state.evacuate_followers_closure().do_void();
|
|
434 |
}
|
|
435 |
|
|
436 |
#ifdef _MSC_VER
|
|
437 |
#pragma warning( push )
|
|
438 |
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
|
|
439 |
#endif
|
|
440 |
ParNewGeneration::
|
|
441 |
ParNewGeneration(ReservedSpace rs, size_t initial_byte_size, int level)
|
|
442 |
: DefNewGeneration(rs, initial_byte_size, level, "PCopy"),
|
|
443 |
_overflow_list(NULL),
|
|
444 |
_is_alive_closure(this),
|
|
445 |
_plab_stats(YoungPLABSize, PLABWeight)
|
|
446 |
{
|
|
447 |
_task_queues = new ObjToScanQueueSet(ParallelGCThreads);
|
|
448 |
guarantee(_task_queues != NULL, "task_queues allocation failure.");
|
|
449 |
|
|
450 |
for (uint i1 = 0; i1 < ParallelGCThreads; i1++) {
|
|
451 |
ObjToScanQueuePadded *q_padded = new ObjToScanQueuePadded();
|
|
452 |
guarantee(q_padded != NULL, "work_queue Allocation failure.");
|
|
453 |
|
|
454 |
_task_queues->register_queue(i1, &q_padded->work_queue);
|
|
455 |
}
|
|
456 |
|
|
457 |
for (uint i2 = 0; i2 < ParallelGCThreads; i2++)
|
|
458 |
_task_queues->queue(i2)->initialize();
|
|
459 |
|
|
460 |
if (UsePerfData) {
|
|
461 |
EXCEPTION_MARK;
|
|
462 |
ResourceMark rm;
|
|
463 |
|
|
464 |
const char* cname =
|
|
465 |
PerfDataManager::counter_name(_gen_counters->name_space(), "threads");
|
|
466 |
PerfDataManager::create_constant(SUN_GC, cname, PerfData::U_None,
|
|
467 |
ParallelGCThreads, CHECK);
|
|
468 |
}
|
|
469 |
}
|
|
470 |
#ifdef _MSC_VER
|
|
471 |
#pragma warning( pop )
|
|
472 |
#endif
|
|
473 |
|
|
474 |
// ParNewGeneration::
|
|
475 |
ParKeepAliveClosure::ParKeepAliveClosure(ParScanWeakRefClosure* cl) :
|
|
476 |
DefNewGeneration::KeepAliveClosure(cl), _par_cl(cl) {}
|
|
477 |
|
|
478 |
void
|
|
479 |
// ParNewGeneration::
|
|
480 |
ParKeepAliveClosure::do_oop(oop* p) {
|
|
481 |
// We never expect to see a null reference being processed
|
|
482 |
// as a weak reference.
|
|
483 |
assert (*p != NULL, "expected non-null ref");
|
|
484 |
assert ((*p)->is_oop(), "expected an oop while scanning weak refs");
|
|
485 |
|
|
486 |
_par_cl->do_oop_nv(p);
|
|
487 |
|
|
488 |
if (Universe::heap()->is_in_reserved(p)) {
|
|
489 |
_rs->write_ref_field_gc_par(p, *p);
|
|
490 |
}
|
|
491 |
}
|
|
492 |
|
|
493 |
// ParNewGeneration::
|
|
494 |
KeepAliveClosure::KeepAliveClosure(ScanWeakRefClosure* cl) :
|
|
495 |
DefNewGeneration::KeepAliveClosure(cl) {}
|
|
496 |
|
|
497 |
void
|
|
498 |
// ParNewGeneration::
|
|
499 |
KeepAliveClosure::do_oop(oop* p) {
|
|
500 |
// We never expect to see a null reference being processed
|
|
501 |
// as a weak reference.
|
|
502 |
assert (*p != NULL, "expected non-null ref");
|
|
503 |
assert ((*p)->is_oop(), "expected an oop while scanning weak refs");
|
|
504 |
|
|
505 |
_cl->do_oop_nv(p);
|
|
506 |
|
|
507 |
if (Universe::heap()->is_in_reserved(p)) {
|
|
508 |
_rs->write_ref_field_gc_par(p, *p);
|
|
509 |
}
|
|
510 |
}
|
|
511 |
|
|
512 |
void ScanClosureWithParBarrier::do_oop(oop* p) {
|
|
513 |
oop obj = *p;
|
|
514 |
// Should we copy the obj?
|
|
515 |
if (obj != NULL) {
|
|
516 |
if ((HeapWord*)obj < _boundary) {
|
|
517 |
assert(!_g->to()->is_in_reserved(obj), "Scanning field twice?");
|
|
518 |
if (obj->is_forwarded()) {
|
|
519 |
*p = obj->forwardee();
|
|
520 |
} else {
|
|
521 |
*p = _g->DefNewGeneration::copy_to_survivor_space(obj, p);
|
|
522 |
}
|
|
523 |
}
|
|
524 |
if (_gc_barrier) {
|
|
525 |
// If p points to a younger generation, mark the card.
|
|
526 |
if ((HeapWord*)obj < _gen_boundary) {
|
|
527 |
_rs->write_ref_field_gc_par(p, obj);
|
|
528 |
}
|
|
529 |
}
|
|
530 |
}
|
|
531 |
}
|
|
532 |
|
|
533 |
class ParNewRefProcTaskProxy: public AbstractGangTask {
|
|
534 |
typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
|
|
535 |
public:
|
|
536 |
ParNewRefProcTaskProxy(ProcessTask& task, ParNewGeneration& gen,
|
|
537 |
Generation& next_gen,
|
|
538 |
HeapWord* young_old_boundary,
|
|
539 |
ParScanThreadStateSet& state_set);
|
|
540 |
|
|
541 |
private:
|
|
542 |
virtual void work(int i);
|
|
543 |
|
|
544 |
private:
|
|
545 |
ParNewGeneration& _gen;
|
|
546 |
ProcessTask& _task;
|
|
547 |
Generation& _next_gen;
|
|
548 |
HeapWord* _young_old_boundary;
|
|
549 |
ParScanThreadStateSet& _state_set;
|
|
550 |
};
|
|
551 |
|
|
552 |
ParNewRefProcTaskProxy::ParNewRefProcTaskProxy(
|
|
553 |
ProcessTask& task, ParNewGeneration& gen,
|
|
554 |
Generation& next_gen,
|
|
555 |
HeapWord* young_old_boundary,
|
|
556 |
ParScanThreadStateSet& state_set)
|
|
557 |
: AbstractGangTask("ParNewGeneration parallel reference processing"),
|
|
558 |
_gen(gen),
|
|
559 |
_task(task),
|
|
560 |
_next_gen(next_gen),
|
|
561 |
_young_old_boundary(young_old_boundary),
|
|
562 |
_state_set(state_set)
|
|
563 |
{
|
|
564 |
}
|
|
565 |
|
|
566 |
void ParNewRefProcTaskProxy::work(int i)
|
|
567 |
{
|
|
568 |
ResourceMark rm;
|
|
569 |
HandleMark hm;
|
|
570 |
ParScanThreadState& par_scan_state = _state_set.thread_sate(i);
|
|
571 |
par_scan_state.set_young_old_boundary(_young_old_boundary);
|
|
572 |
_task.work(i, par_scan_state.is_alive_closure(),
|
|
573 |
par_scan_state.keep_alive_closure(),
|
|
574 |
par_scan_state.evacuate_followers_closure());
|
|
575 |
}
|
|
576 |
|
|
577 |
class ParNewRefEnqueueTaskProxy: public AbstractGangTask {
|
|
578 |
typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
|
|
579 |
EnqueueTask& _task;
|
|
580 |
|
|
581 |
public:
|
|
582 |
ParNewRefEnqueueTaskProxy(EnqueueTask& task)
|
|
583 |
: AbstractGangTask("ParNewGeneration parallel reference enqueue"),
|
|
584 |
_task(task)
|
|
585 |
{ }
|
|
586 |
|
|
587 |
virtual void work(int i)
|
|
588 |
{
|
|
589 |
_task.work(i);
|
|
590 |
}
|
|
591 |
};
|
|
592 |
|
|
593 |
|
|
594 |
void ParNewRefProcTaskExecutor::execute(ProcessTask& task)
|
|
595 |
{
|
|
596 |
GenCollectedHeap* gch = GenCollectedHeap::heap();
|
|
597 |
assert(gch->kind() == CollectedHeap::GenCollectedHeap,
|
|
598 |
"not a generational heap");
|
|
599 |
WorkGang* workers = gch->workers();
|
|
600 |
assert(workers != NULL, "Need parallel worker threads.");
|
|
601 |
ParNewRefProcTaskProxy rp_task(task, _generation, *_generation.next_gen(),
|
|
602 |
_generation.reserved().end(), _state_set);
|
|
603 |
workers->run_task(&rp_task);
|
|
604 |
_state_set.reset();
|
|
605 |
}
|
|
606 |
|
|
607 |
void ParNewRefProcTaskExecutor::execute(EnqueueTask& task)
|
|
608 |
{
|
|
609 |
GenCollectedHeap* gch = GenCollectedHeap::heap();
|
|
610 |
WorkGang* workers = gch->workers();
|
|
611 |
assert(workers != NULL, "Need parallel worker threads.");
|
|
612 |
ParNewRefEnqueueTaskProxy enq_task(task);
|
|
613 |
workers->run_task(&enq_task);
|
|
614 |
}
|
|
615 |
|
|
616 |
void ParNewRefProcTaskExecutor::set_single_threaded_mode()
|
|
617 |
{
|
|
618 |
_state_set.flush();
|
|
619 |
GenCollectedHeap* gch = GenCollectedHeap::heap();
|
|
620 |
gch->set_par_threads(0); // 0 ==> non-parallel.
|
|
621 |
gch->save_marks();
|
|
622 |
}
|
|
623 |
|
|
624 |
ScanClosureWithParBarrier::
|
|
625 |
ScanClosureWithParBarrier(ParNewGeneration* g, bool gc_barrier) :
|
|
626 |
ScanClosure(g, gc_barrier) {}
|
|
627 |
|
|
628 |
EvacuateFollowersClosureGeneral::
|
|
629 |
EvacuateFollowersClosureGeneral(GenCollectedHeap* gch, int level,
|
|
630 |
OopsInGenClosure* cur,
|
|
631 |
OopsInGenClosure* older) :
|
|
632 |
_gch(gch), _level(level),
|
|
633 |
_scan_cur_or_nonheap(cur), _scan_older(older)
|
|
634 |
{}
|
|
635 |
|
|
636 |
void EvacuateFollowersClosureGeneral::do_void() {
|
|
637 |
do {
|
|
638 |
// Beware: this call will lead to closure applications via virtual
|
|
639 |
// calls.
|
|
640 |
_gch->oop_since_save_marks_iterate(_level,
|
|
641 |
_scan_cur_or_nonheap,
|
|
642 |
_scan_older);
|
|
643 |
} while (!_gch->no_allocs_since_save_marks(_level));
|
|
644 |
}
|
|
645 |
|
|
646 |
|
|
647 |
bool ParNewGeneration::_avoid_promotion_undo = false;
|
|
648 |
|
|
649 |
void ParNewGeneration::adjust_desired_tenuring_threshold() {
|
|
650 |
// Set the desired survivor size to half the real survivor space
|
|
651 |
_tenuring_threshold =
|
|
652 |
age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize);
|
|
653 |
}
|
|
654 |
|
|
655 |
// A Generation that does parallel young-gen collection.
|
|
656 |
|
|
657 |
void ParNewGeneration::collect(bool full,
|
|
658 |
bool clear_all_soft_refs,
|
|
659 |
size_t size,
|
|
660 |
bool is_tlab) {
|
|
661 |
assert(full || size > 0, "otherwise we don't want to collect");
|
|
662 |
GenCollectedHeap* gch = GenCollectedHeap::heap();
|
|
663 |
assert(gch->kind() == CollectedHeap::GenCollectedHeap,
|
|
664 |
"not a CMS generational heap");
|
|
665 |
AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
|
|
666 |
WorkGang* workers = gch->workers();
|
|
667 |
_next_gen = gch->next_gen(this);
|
|
668 |
assert(_next_gen != NULL,
|
|
669 |
"This must be the youngest gen, and not the only gen");
|
|
670 |
assert(gch->n_gens() == 2,
|
|
671 |
"Par collection currently only works with single older gen.");
|
|
672 |
// Do we have to avoid promotion_undo?
|
|
673 |
if (gch->collector_policy()->is_concurrent_mark_sweep_policy()) {
|
|
674 |
set_avoid_promotion_undo(true);
|
|
675 |
}
|
|
676 |
|
|
677 |
// If the next generation is too full to accomodate worst-case promotion
|
|
678 |
// from this generation, pass on collection; let the next generation
|
|
679 |
// do it.
|
|
680 |
if (!collection_attempt_is_safe()) {
|
|
681 |
gch->set_incremental_collection_will_fail();
|
|
682 |
return;
|
|
683 |
}
|
|
684 |
assert(to()->is_empty(), "Else not collection_attempt_is_safe");
|
|
685 |
|
|
686 |
init_assuming_no_promotion_failure();
|
|
687 |
|
|
688 |
if (UseAdaptiveSizePolicy) {
|
|
689 |
set_survivor_overflow(false);
|
|
690 |
size_policy->minor_collection_begin();
|
|
691 |
}
|
|
692 |
|
|
693 |
TraceTime t1("GC", PrintGC && !PrintGCDetails, true, gclog_or_tty);
|
|
694 |
// Capture heap used before collection (for printing).
|
|
695 |
size_t gch_prev_used = gch->used();
|
|
696 |
|
|
697 |
SpecializationStats::clear();
|
|
698 |
|
|
699 |
age_table()->clear();
|
|
700 |
to()->clear();
|
|
701 |
|
|
702 |
gch->save_marks();
|
|
703 |
assert(workers != NULL, "Need parallel worker threads.");
|
|
704 |
ParallelTaskTerminator _term(workers->total_workers(), task_queues());
|
|
705 |
ParScanThreadStateSet thread_state_set(workers->total_workers(),
|
|
706 |
*to(), *this, *_next_gen, *task_queues(),
|
|
707 |
desired_plab_sz(), _term);
|
|
708 |
|
|
709 |
ParNewGenTask tsk(this, _next_gen, reserved().end(), &thread_state_set);
|
|
710 |
int n_workers = workers->total_workers();
|
|
711 |
gch->set_par_threads(n_workers);
|
|
712 |
gch->change_strong_roots_parity();
|
|
713 |
gch->rem_set()->prepare_for_younger_refs_iterate(true);
|
|
714 |
// It turns out that even when we're using 1 thread, doing the work in a
|
|
715 |
// separate thread causes wide variance in run times. We can't help this
|
|
716 |
// in the multi-threaded case, but we special-case n=1 here to get
|
|
717 |
// repeatable measurements of the 1-thread overhead of the parallel code.
|
|
718 |
if (n_workers > 1) {
|
|
719 |
workers->run_task(&tsk);
|
|
720 |
} else {
|
|
721 |
tsk.work(0);
|
|
722 |
}
|
|
723 |
thread_state_set.reset();
|
|
724 |
|
|
725 |
if (PAR_STATS_ENABLED && ParallelGCVerbose) {
|
|
726 |
gclog_or_tty->print("Thread totals:\n"
|
|
727 |
" Pushes: %7d Pops: %7d Steals %7d (sum = %7d).\n",
|
|
728 |
thread_state_set.pushes(), thread_state_set.pops(),
|
|
729 |
thread_state_set.steals(),
|
|
730 |
thread_state_set.pops()+thread_state_set.steals());
|
|
731 |
}
|
|
732 |
assert(thread_state_set.pushes() == thread_state_set.pops() + thread_state_set.steals(),
|
|
733 |
"Or else the queues are leaky.");
|
|
734 |
|
|
735 |
// For now, process discovered weak refs sequentially.
|
|
736 |
#ifdef COMPILER2
|
|
737 |
ReferencePolicy *soft_ref_policy = new LRUMaxHeapPolicy();
|
|
738 |
#else
|
|
739 |
ReferencePolicy *soft_ref_policy = new LRUCurrentHeapPolicy();
|
|
740 |
#endif // COMPILER2
|
|
741 |
|
|
742 |
// Process (weak) reference objects found during scavenge.
|
|
743 |
IsAliveClosure is_alive(this);
|
|
744 |
ScanWeakRefClosure scan_weak_ref(this);
|
|
745 |
KeepAliveClosure keep_alive(&scan_weak_ref);
|
|
746 |
ScanClosure scan_without_gc_barrier(this, false);
|
|
747 |
ScanClosureWithParBarrier scan_with_gc_barrier(this, true);
|
|
748 |
set_promo_failure_scan_stack_closure(&scan_without_gc_barrier);
|
|
749 |
EvacuateFollowersClosureGeneral evacuate_followers(gch, _level,
|
|
750 |
&scan_without_gc_barrier, &scan_with_gc_barrier);
|
|
751 |
if (ref_processor()->processing_is_mt()) {
|
|
752 |
ParNewRefProcTaskExecutor task_executor(*this, thread_state_set);
|
|
753 |
ref_processor()->process_discovered_references(
|
|
754 |
soft_ref_policy, &is_alive, &keep_alive, &evacuate_followers,
|
|
755 |
&task_executor);
|
|
756 |
} else {
|
|
757 |
thread_state_set.flush();
|
|
758 |
gch->set_par_threads(0); // 0 ==> non-parallel.
|
|
759 |
gch->save_marks();
|
|
760 |
ref_processor()->process_discovered_references(
|
|
761 |
soft_ref_policy, &is_alive, &keep_alive, &evacuate_followers,
|
|
762 |
NULL);
|
|
763 |
}
|
|
764 |
if (!promotion_failed()) {
|
|
765 |
// Swap the survivor spaces.
|
|
766 |
eden()->clear();
|
|
767 |
from()->clear();
|
|
768 |
swap_spaces();
|
|
769 |
|
|
770 |
assert(to()->is_empty(), "to space should be empty now");
|
|
771 |
} else {
|
|
772 |
assert(HandlePromotionFailure,
|
|
773 |
"Should only be here if promotion failure handling is on");
|
|
774 |
if (_promo_failure_scan_stack != NULL) {
|
|
775 |
// Can be non-null because of reference processing.
|
|
776 |
// Free stack with its elements.
|
|
777 |
delete _promo_failure_scan_stack;
|
|
778 |
_promo_failure_scan_stack = NULL;
|
|
779 |
}
|
|
780 |
remove_forwarding_pointers();
|
|
781 |
if (PrintGCDetails) {
|
|
782 |
gclog_or_tty->print(" (promotion failed)");
|
|
783 |
}
|
|
784 |
// All the spaces are in play for mark-sweep.
|
|
785 |
swap_spaces(); // Make life simpler for CMS || rescan; see 6483690.
|
|
786 |
from()->set_next_compaction_space(to());
|
|
787 |
gch->set_incremental_collection_will_fail();
|
|
788 |
}
|
|
789 |
// set new iteration safe limit for the survivor spaces
|
|
790 |
from()->set_concurrent_iteration_safe_limit(from()->top());
|
|
791 |
to()->set_concurrent_iteration_safe_limit(to()->top());
|
|
792 |
|
|
793 |
adjust_desired_tenuring_threshold();
|
|
794 |
if (ResizePLAB) {
|
|
795 |
plab_stats()->adjust_desired_plab_sz();
|
|
796 |
}
|
|
797 |
|
|
798 |
if (PrintGC && !PrintGCDetails) {
|
|
799 |
gch->print_heap_change(gch_prev_used);
|
|
800 |
}
|
|
801 |
|
|
802 |
if (UseAdaptiveSizePolicy) {
|
|
803 |
size_policy->minor_collection_end(gch->gc_cause());
|
|
804 |
size_policy->avg_survived()->sample(from()->used());
|
|
805 |
}
|
|
806 |
|
|
807 |
update_time_of_last_gc(os::javaTimeMillis());
|
|
808 |
|
|
809 |
SpecializationStats::print();
|
|
810 |
|
|
811 |
ref_processor()->set_enqueuing_is_done(true);
|
|
812 |
if (ref_processor()->processing_is_mt()) {
|
|
813 |
ParNewRefProcTaskExecutor task_executor(*this, thread_state_set);
|
|
814 |
ref_processor()->enqueue_discovered_references(&task_executor);
|
|
815 |
} else {
|
|
816 |
ref_processor()->enqueue_discovered_references(NULL);
|
|
817 |
}
|
|
818 |
ref_processor()->verify_no_references_recorded();
|
|
819 |
}
|
|
820 |
|
|
821 |
static int sum;
|
|
822 |
void ParNewGeneration::waste_some_time() {
|
|
823 |
for (int i = 0; i < 100; i++) {
|
|
824 |
sum += i;
|
|
825 |
}
|
|
826 |
}
|
|
827 |
|
|
828 |
static const oop ClaimedForwardPtr = oop(0x4);
|
|
829 |
|
|
830 |
// Because of concurrency, there are times where an object for which
|
|
831 |
// "is_forwarded()" is true contains an "interim" forwarding pointer
|
|
832 |
// value. Such a value will soon be overwritten with a real value.
|
|
833 |
// This method requires "obj" to have a forwarding pointer, and waits, if
|
|
834 |
// necessary for a real one to be inserted, and returns it.
|
|
835 |
|
|
836 |
oop ParNewGeneration::real_forwardee(oop obj) {
|
|
837 |
oop forward_ptr = obj->forwardee();
|
|
838 |
if (forward_ptr != ClaimedForwardPtr) {
|
|
839 |
return forward_ptr;
|
|
840 |
} else {
|
|
841 |
return real_forwardee_slow(obj);
|
|
842 |
}
|
|
843 |
}
|
|
844 |
|
|
845 |
oop ParNewGeneration::real_forwardee_slow(oop obj) {
|
|
846 |
// Spin-read if it is claimed but not yet written by another thread.
|
|
847 |
oop forward_ptr = obj->forwardee();
|
|
848 |
while (forward_ptr == ClaimedForwardPtr) {
|
|
849 |
waste_some_time();
|
|
850 |
assert(obj->is_forwarded(), "precondition");
|
|
851 |
forward_ptr = obj->forwardee();
|
|
852 |
}
|
|
853 |
return forward_ptr;
|
|
854 |
}
|
|
855 |
|
|
856 |
#ifdef ASSERT
|
|
857 |
bool ParNewGeneration::is_legal_forward_ptr(oop p) {
|
|
858 |
return
|
|
859 |
(_avoid_promotion_undo && p == ClaimedForwardPtr)
|
|
860 |
|| Universe::heap()->is_in_reserved(p);
|
|
861 |
}
|
|
862 |
#endif
|
|
863 |
|
|
864 |
void ParNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
|
|
865 |
if ((m != markOopDesc::prototype()) &&
|
|
866 |
(!UseBiasedLocking || (m != markOopDesc::biased_locking_prototype()))) {
|
|
867 |
MutexLocker ml(ParGCRareEvent_lock);
|
|
868 |
DefNewGeneration::preserve_mark_if_necessary(obj, m);
|
|
869 |
}
|
|
870 |
}
|
|
871 |
|
|
872 |
// Multiple GC threads may try to promote an object. If the object
|
|
873 |
// is successfully promoted, a forwarding pointer will be installed in
|
|
874 |
// the object in the young generation. This method claims the right
|
|
875 |
// to install the forwarding pointer before it copies the object,
|
|
876 |
// thus avoiding the need to undo the copy as in
|
|
877 |
// copy_to_survivor_space_avoiding_with_undo.
|
|
878 |
|
|
879 |
oop ParNewGeneration::copy_to_survivor_space_avoiding_promotion_undo(
|
|
880 |
ParScanThreadState* par_scan_state, oop old, size_t sz, markOop m) {
|
|
881 |
// In the sequential version, this assert also says that the object is
|
|
882 |
// not forwarded. That might not be the case here. It is the case that
|
|
883 |
// the caller observed it to be not forwarded at some time in the past.
|
|
884 |
assert(is_in_reserved(old), "shouldn't be scavenging this oop");
|
|
885 |
|
|
886 |
// The sequential code read "old->age()" below. That doesn't work here,
|
|
887 |
// since the age is in the mark word, and that might be overwritten with
|
|
888 |
// a forwarding pointer by a parallel thread. So we must save the mark
|
|
889 |
// word in a local and then analyze it.
|
|
890 |
oopDesc dummyOld;
|
|
891 |
dummyOld.set_mark(m);
|
|
892 |
assert(!dummyOld.is_forwarded(),
|
|
893 |
"should not be called with forwarding pointer mark word.");
|
|
894 |
|
|
895 |
oop new_obj = NULL;
|
|
896 |
oop forward_ptr;
|
|
897 |
|
|
898 |
// Try allocating obj in to-space (unless too old)
|
|
899 |
if (dummyOld.age() < tenuring_threshold()) {
|
|
900 |
new_obj = (oop)par_scan_state->alloc_in_to_space(sz);
|
|
901 |
if (new_obj == NULL) {
|
|
902 |
set_survivor_overflow(true);
|
|
903 |
}
|
|
904 |
}
|
|
905 |
|
|
906 |
if (new_obj == NULL) {
|
|
907 |
// Either to-space is full or we decided to promote
|
|
908 |
// try allocating obj tenured
|
|
909 |
|
|
910 |
// Attempt to install a null forwarding pointer (atomically),
|
|
911 |
// to claim the right to install the real forwarding pointer.
|
|
912 |
forward_ptr = old->forward_to_atomic(ClaimedForwardPtr);
|
|
913 |
if (forward_ptr != NULL) {
|
|
914 |
// someone else beat us to it.
|
|
915 |
return real_forwardee(old);
|
|
916 |
}
|
|
917 |
|
|
918 |
new_obj = _next_gen->par_promote(par_scan_state->thread_num(),
|
|
919 |
old, m, sz);
|
|
920 |
|
|
921 |
if (new_obj == NULL) {
|
|
922 |
if (!HandlePromotionFailure) {
|
|
923 |
// A failed promotion likely means the MaxLiveObjectEvacuationRatio flag
|
|
924 |
// is incorrectly set. In any case, its seriously wrong to be here!
|
|
925 |
vm_exit_out_of_memory(sz*wordSize, "promotion");
|
|
926 |
}
|
|
927 |
// promotion failed, forward to self
|
|
928 |
_promotion_failed = true;
|
|
929 |
new_obj = old;
|
|
930 |
|
|
931 |
preserve_mark_if_necessary(old, m);
|
|
932 |
}
|
|
933 |
|
|
934 |
old->forward_to(new_obj);
|
|
935 |
forward_ptr = NULL;
|
|
936 |
} else {
|
|
937 |
// Is in to-space; do copying ourselves.
|
|
938 |
Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)new_obj, sz);
|
|
939 |
forward_ptr = old->forward_to_atomic(new_obj);
|
|
940 |
// Restore the mark word copied above.
|
|
941 |
new_obj->set_mark(m);
|
|
942 |
// Increment age if obj still in new generation
|
|
943 |
new_obj->incr_age();
|
|
944 |
par_scan_state->age_table()->add(new_obj, sz);
|
|
945 |
}
|
|
946 |
assert(new_obj != NULL, "just checking");
|
|
947 |
|
|
948 |
if (forward_ptr == NULL) {
|
|
949 |
oop obj_to_push = new_obj;
|
|
950 |
if (par_scan_state->should_be_partially_scanned(obj_to_push, old)) {
|
|
951 |
// Length field used as index of next element to be scanned.
|
|
952 |
// Real length can be obtained from real_forwardee()
|
|
953 |
arrayOop(old)->set_length(0);
|
|
954 |
obj_to_push = old;
|
|
955 |
assert(obj_to_push->is_forwarded() && obj_to_push->forwardee() != obj_to_push,
|
|
956 |
"push forwarded object");
|
|
957 |
}
|
|
958 |
// Push it on one of the queues of to-be-scanned objects.
|
|
959 |
if (!par_scan_state->work_queue()->push(obj_to_push)) {
|
|
960 |
// Add stats for overflow pushes.
|
|
961 |
if (Verbose && PrintGCDetails) {
|
|
962 |
gclog_or_tty->print("queue overflow!\n");
|
|
963 |
}
|
|
964 |
push_on_overflow_list(old);
|
|
965 |
par_scan_state->note_overflow_push();
|
|
966 |
}
|
|
967 |
par_scan_state->note_push();
|
|
968 |
|
|
969 |
return new_obj;
|
|
970 |
}
|
|
971 |
|
|
972 |
// Oops. Someone beat us to it. Undo the allocation. Where did we
|
|
973 |
// allocate it?
|
|
974 |
if (is_in_reserved(new_obj)) {
|
|
975 |
// Must be in to_space.
|
|
976 |
assert(to()->is_in_reserved(new_obj), "Checking");
|
|
977 |
if (forward_ptr == ClaimedForwardPtr) {
|
|
978 |
// Wait to get the real forwarding pointer value.
|
|
979 |
forward_ptr = real_forwardee(old);
|
|
980 |
}
|
|
981 |
par_scan_state->undo_alloc_in_to_space((HeapWord*)new_obj, sz);
|
|
982 |
}
|
|
983 |
|
|
984 |
return forward_ptr;
|
|
985 |
}
|
|
986 |
|
|
987 |
|
|
988 |
// Multiple GC threads may try to promote the same object. If two
|
|
989 |
// or more GC threads copy the object, only one wins the race to install
|
|
990 |
// the forwarding pointer. The other threads have to undo their copy.
|
|
991 |
|
|
992 |
oop ParNewGeneration::copy_to_survivor_space_with_undo(
|
|
993 |
ParScanThreadState* par_scan_state, oop old, size_t sz, markOop m) {
|
|
994 |
|
|
995 |
// In the sequential version, this assert also says that the object is
|
|
996 |
// not forwarded. That might not be the case here. It is the case that
|
|
997 |
// the caller observed it to be not forwarded at some time in the past.
|
|
998 |
assert(is_in_reserved(old), "shouldn't be scavenging this oop");
|
|
999 |
|
|
1000 |
// The sequential code read "old->age()" below. That doesn't work here,
|
|
1001 |
// since the age is in the mark word, and that might be overwritten with
|
|
1002 |
// a forwarding pointer by a parallel thread. So we must save the mark
|
|
1003 |
// word here, install it in a local oopDesc, and then analyze it.
|
|
1004 |
oopDesc dummyOld;
|
|
1005 |
dummyOld.set_mark(m);
|
|
1006 |
assert(!dummyOld.is_forwarded(),
|
|
1007 |
"should not be called with forwarding pointer mark word.");
|
|
1008 |
|
|
1009 |
bool failed_to_promote = false;
|
|
1010 |
oop new_obj = NULL;
|
|
1011 |
oop forward_ptr;
|
|
1012 |
|
|
1013 |
// Try allocating obj in to-space (unless too old)
|
|
1014 |
if (dummyOld.age() < tenuring_threshold()) {
|
|
1015 |
new_obj = (oop)par_scan_state->alloc_in_to_space(sz);
|
|
1016 |
if (new_obj == NULL) {
|
|
1017 |
set_survivor_overflow(true);
|
|
1018 |
}
|
|
1019 |
}
|
|
1020 |
|
|
1021 |
if (new_obj == NULL) {
|
|
1022 |
// Either to-space is full or we decided to promote
|
|
1023 |
// try allocating obj tenured
|
|
1024 |
new_obj = _next_gen->par_promote(par_scan_state->thread_num(),
|
|
1025 |
old, m, sz);
|
|
1026 |
|
|
1027 |
if (new_obj == NULL) {
|
|
1028 |
if (!HandlePromotionFailure) {
|
|
1029 |
// A failed promotion likely means the MaxLiveObjectEvacuationRatio
|
|
1030 |
// flag is incorrectly set. In any case, its seriously wrong to be
|
|
1031 |
// here!
|
|
1032 |
vm_exit_out_of_memory(sz*wordSize, "promotion");
|
|
1033 |
}
|
|
1034 |
// promotion failed, forward to self
|
|
1035 |
forward_ptr = old->forward_to_atomic(old);
|
|
1036 |
new_obj = old;
|
|
1037 |
|
|
1038 |
if (forward_ptr != NULL) {
|
|
1039 |
return forward_ptr; // someone else succeeded
|
|
1040 |
}
|
|
1041 |
|
|
1042 |
_promotion_failed = true;
|
|
1043 |
failed_to_promote = true;
|
|
1044 |
|
|
1045 |
preserve_mark_if_necessary(old, m);
|
|
1046 |
}
|
|
1047 |
} else {
|
|
1048 |
// Is in to-space; do copying ourselves.
|
|
1049 |
Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)new_obj, sz);
|
|
1050 |
// Restore the mark word copied above.
|
|
1051 |
new_obj->set_mark(m);
|
|
1052 |
// Increment age if new_obj still in new generation
|
|
1053 |
new_obj->incr_age();
|
|
1054 |
par_scan_state->age_table()->add(new_obj, sz);
|
|
1055 |
}
|
|
1056 |
assert(new_obj != NULL, "just checking");
|
|
1057 |
|
|
1058 |
// Now attempt to install the forwarding pointer (atomically).
|
|
1059 |
// We have to copy the mark word before overwriting with forwarding
|
|
1060 |
// ptr, so we can restore it below in the copy.
|
|
1061 |
if (!failed_to_promote) {
|
|
1062 |
forward_ptr = old->forward_to_atomic(new_obj);
|
|
1063 |
}
|
|
1064 |
|
|
1065 |
if (forward_ptr == NULL) {
|
|
1066 |
oop obj_to_push = new_obj;
|
|
1067 |
if (par_scan_state->should_be_partially_scanned(obj_to_push, old)) {
|
|
1068 |
// Length field used as index of next element to be scanned.
|
|
1069 |
// Real length can be obtained from real_forwardee()
|
|
1070 |
arrayOop(old)->set_length(0);
|
|
1071 |
obj_to_push = old;
|
|
1072 |
assert(obj_to_push->is_forwarded() && obj_to_push->forwardee() != obj_to_push,
|
|
1073 |
"push forwarded object");
|
|
1074 |
}
|
|
1075 |
// Push it on one of the queues of to-be-scanned objects.
|
|
1076 |
if (!par_scan_state->work_queue()->push(obj_to_push)) {
|
|
1077 |
// Add stats for overflow pushes.
|
|
1078 |
push_on_overflow_list(old);
|
|
1079 |
par_scan_state->note_overflow_push();
|
|
1080 |
}
|
|
1081 |
par_scan_state->note_push();
|
|
1082 |
|
|
1083 |
return new_obj;
|
|
1084 |
}
|
|
1085 |
|
|
1086 |
// Oops. Someone beat us to it. Undo the allocation. Where did we
|
|
1087 |
// allocate it?
|
|
1088 |
if (is_in_reserved(new_obj)) {
|
|
1089 |
// Must be in to_space.
|
|
1090 |
assert(to()->is_in_reserved(new_obj), "Checking");
|
|
1091 |
par_scan_state->undo_alloc_in_to_space((HeapWord*)new_obj, sz);
|
|
1092 |
} else {
|
|
1093 |
assert(!_avoid_promotion_undo, "Should not be here if avoiding.");
|
|
1094 |
_next_gen->par_promote_alloc_undo(par_scan_state->thread_num(),
|
|
1095 |
(HeapWord*)new_obj, sz);
|
|
1096 |
}
|
|
1097 |
|
|
1098 |
return forward_ptr;
|
|
1099 |
}
|
|
1100 |
|
|
1101 |
void ParNewGeneration::push_on_overflow_list(oop from_space_obj) {
|
|
1102 |
oop cur_overflow_list = _overflow_list;
|
|
1103 |
// if the object has been forwarded to itself, then we cannot
|
|
1104 |
// use the klass pointer for the linked list. Instead we have
|
|
1105 |
// to allocate an oopDesc in the C-Heap and use that for the linked list.
|
|
1106 |
if (from_space_obj->forwardee() == from_space_obj) {
|
|
1107 |
oopDesc* listhead = NEW_C_HEAP_ARRAY(oopDesc, 1);
|
|
1108 |
listhead->forward_to(from_space_obj);
|
|
1109 |
from_space_obj = listhead;
|
|
1110 |
}
|
|
1111 |
while (true) {
|
|
1112 |
from_space_obj->set_klass_to_list_ptr(cur_overflow_list);
|
|
1113 |
oop observed_overflow_list =
|
|
1114 |
(oop)Atomic::cmpxchg_ptr(from_space_obj, &_overflow_list, cur_overflow_list);
|
|
1115 |
if (observed_overflow_list == cur_overflow_list) break;
|
|
1116 |
// Otherwise...
|
|
1117 |
cur_overflow_list = observed_overflow_list;
|
|
1118 |
}
|
|
1119 |
}
|
|
1120 |
|
|
1121 |
bool
|
|
1122 |
ParNewGeneration::take_from_overflow_list(ParScanThreadState* par_scan_state) {
|
|
1123 |
ObjToScanQueue* work_q = par_scan_state->work_queue();
|
|
1124 |
// How many to take?
|
|
1125 |
int objsFromOverflow = MIN2(work_q->max_elems()/4,
|
|
1126 |
(juint)ParGCDesiredObjsFromOverflowList);
|
|
1127 |
|
|
1128 |
if (_overflow_list == NULL) return false;
|
|
1129 |
|
|
1130 |
// Otherwise, there was something there; try claiming the list.
|
|
1131 |
oop prefix = (oop)Atomic::xchg_ptr(NULL, &_overflow_list);
|
|
1132 |
|
|
1133 |
if (prefix == NULL) {
|
|
1134 |
return false;
|
|
1135 |
}
|
|
1136 |
// Trim off a prefix of at most objsFromOverflow items
|
|
1137 |
int i = 1;
|
|
1138 |
oop cur = prefix;
|
|
1139 |
while (i < objsFromOverflow && cur->klass() != NULL) {
|
|
1140 |
i++; cur = oop(cur->klass());
|
|
1141 |
}
|
|
1142 |
|
|
1143 |
// Reattach remaining (suffix) to overflow list
|
|
1144 |
if (cur->klass() != NULL) {
|
|
1145 |
oop suffix = oop(cur->klass());
|
|
1146 |
cur->set_klass_to_list_ptr(NULL);
|
|
1147 |
|
|
1148 |
// Find last item of suffix list
|
|
1149 |
oop last = suffix;
|
|
1150 |
while (last->klass() != NULL) {
|
|
1151 |
last = oop(last->klass());
|
|
1152 |
}
|
|
1153 |
// Atomically prepend suffix to current overflow list
|
|
1154 |
oop cur_overflow_list = _overflow_list;
|
|
1155 |
while (true) {
|
|
1156 |
last->set_klass_to_list_ptr(cur_overflow_list);
|
|
1157 |
oop observed_overflow_list =
|
|
1158 |
(oop)Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
|
|
1159 |
if (observed_overflow_list == cur_overflow_list) break;
|
|
1160 |
// Otherwise...
|
|
1161 |
cur_overflow_list = observed_overflow_list;
|
|
1162 |
}
|
|
1163 |
}
|
|
1164 |
|
|
1165 |
// Push objects on prefix list onto this thread's work queue
|
|
1166 |
assert(cur != NULL, "program logic");
|
|
1167 |
cur = prefix;
|
|
1168 |
int n = 0;
|
|
1169 |
while (cur != NULL) {
|
|
1170 |
oop obj_to_push = cur->forwardee();
|
|
1171 |
oop next = oop(cur->klass());
|
|
1172 |
cur->set_klass(obj_to_push->klass());
|
|
1173 |
if (par_scan_state->should_be_partially_scanned(obj_to_push, cur)) {
|
|
1174 |
obj_to_push = cur;
|
|
1175 |
assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
|
|
1176 |
}
|
|
1177 |
work_q->push(obj_to_push);
|
|
1178 |
cur = next;
|
|
1179 |
n++;
|
|
1180 |
}
|
|
1181 |
par_scan_state->note_overflow_refill(n);
|
|
1182 |
return true;
|
|
1183 |
}
|
|
1184 |
|
|
1185 |
void ParNewGeneration::ref_processor_init()
|
|
1186 |
{
|
|
1187 |
if (_ref_processor == NULL) {
|
|
1188 |
// Allocate and initialize a reference processor
|
|
1189 |
_ref_processor = ReferenceProcessor::create_ref_processor(
|
|
1190 |
_reserved, // span
|
|
1191 |
refs_discovery_is_atomic(), // atomic_discovery
|
|
1192 |
refs_discovery_is_mt(), // mt_discovery
|
|
1193 |
NULL, // is_alive_non_header
|
|
1194 |
ParallelGCThreads,
|
|
1195 |
ParallelRefProcEnabled);
|
|
1196 |
}
|
|
1197 |
}
|
|
1198 |
|
|
1199 |
const char* ParNewGeneration::name() const {
|
|
1200 |
return "par new generation";
|
|
1201 |
}
|