1
|
1 |
/*
|
|
2 |
* Copyright 2000-2006 Sun Microsystems, Inc. All Rights Reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation.
|
|
8 |
*
|
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
13 |
* accompanied this code).
|
|
14 |
*
|
|
15 |
* You should have received a copy of the GNU General Public License version
|
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
18 |
*
|
|
19 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
20 |
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
21 |
* have any questions.
|
|
22 |
*
|
|
23 |
*/
|
|
24 |
|
|
25 |
# include "incls/_precompiled.incl"
|
|
26 |
# include "incls/_blockOffsetTable.cpp.incl"
|
|
27 |
|
|
28 |
//////////////////////////////////////////////////////////////////////
|
|
29 |
// BlockOffsetSharedArray
|
|
30 |
//////////////////////////////////////////////////////////////////////
|
|
31 |
|
|
32 |
BlockOffsetSharedArray::BlockOffsetSharedArray(MemRegion reserved,
|
|
33 |
size_t init_word_size):
|
|
34 |
_reserved(reserved), _end(NULL)
|
|
35 |
{
|
|
36 |
size_t size = compute_size(reserved.word_size());
|
|
37 |
ReservedSpace rs(size);
|
|
38 |
if (!rs.is_reserved()) {
|
|
39 |
vm_exit_during_initialization("Could not reserve enough space for heap offset array");
|
|
40 |
}
|
|
41 |
if (!_vs.initialize(rs, 0)) {
|
|
42 |
vm_exit_during_initialization("Could not reserve enough space for heap offset array");
|
|
43 |
}
|
|
44 |
_offset_array = (u_char*)_vs.low_boundary();
|
|
45 |
resize(init_word_size);
|
|
46 |
if (TraceBlockOffsetTable) {
|
|
47 |
gclog_or_tty->print_cr("BlockOffsetSharedArray::BlockOffsetSharedArray: ");
|
|
48 |
gclog_or_tty->print_cr(" "
|
|
49 |
" rs.base(): " INTPTR_FORMAT
|
|
50 |
" rs.size(): " INTPTR_FORMAT
|
|
51 |
" rs end(): " INTPTR_FORMAT,
|
|
52 |
rs.base(), rs.size(), rs.base() + rs.size());
|
|
53 |
gclog_or_tty->print_cr(" "
|
|
54 |
" _vs.low_boundary(): " INTPTR_FORMAT
|
|
55 |
" _vs.high_boundary(): " INTPTR_FORMAT,
|
|
56 |
_vs.low_boundary(),
|
|
57 |
_vs.high_boundary());
|
|
58 |
}
|
|
59 |
}
|
|
60 |
|
|
61 |
void BlockOffsetSharedArray::resize(size_t new_word_size) {
|
|
62 |
assert(new_word_size <= _reserved.word_size(), "Resize larger than reserved");
|
|
63 |
size_t new_size = compute_size(new_word_size);
|
|
64 |
size_t old_size = _vs.committed_size();
|
|
65 |
size_t delta;
|
|
66 |
char* high = _vs.high();
|
|
67 |
_end = _reserved.start() + new_word_size;
|
|
68 |
if (new_size > old_size) {
|
|
69 |
delta = ReservedSpace::page_align_size_up(new_size - old_size);
|
|
70 |
assert(delta > 0, "just checking");
|
|
71 |
if (!_vs.expand_by(delta)) {
|
|
72 |
// Do better than this for Merlin
|
|
73 |
vm_exit_out_of_memory(delta, "offset table expansion");
|
|
74 |
}
|
|
75 |
assert(_vs.high() == high + delta, "invalid expansion");
|
|
76 |
} else {
|
|
77 |
delta = ReservedSpace::page_align_size_down(old_size - new_size);
|
|
78 |
if (delta == 0) return;
|
|
79 |
_vs.shrink_by(delta);
|
|
80 |
assert(_vs.high() == high - delta, "invalid expansion");
|
|
81 |
}
|
|
82 |
}
|
|
83 |
|
|
84 |
bool BlockOffsetSharedArray::is_card_boundary(HeapWord* p) const {
|
|
85 |
assert(p >= _reserved.start(), "just checking");
|
|
86 |
size_t delta = pointer_delta(p, _reserved.start());
|
|
87 |
return (delta & right_n_bits(LogN_words)) == (size_t)NoBits;
|
|
88 |
}
|
|
89 |
|
|
90 |
|
|
91 |
void BlockOffsetSharedArray::serialize(SerializeOopClosure* soc,
|
|
92 |
HeapWord* start, HeapWord* end) {
|
|
93 |
assert(_offset_array[0] == 0, "objects can't cross covered areas");
|
|
94 |
assert(start <= end, "bad address range");
|
|
95 |
size_t start_index = index_for(start);
|
|
96 |
size_t end_index = index_for(end-1)+1;
|
|
97 |
soc->do_region(&_offset_array[start_index],
|
|
98 |
(end_index - start_index) * sizeof(_offset_array[0]));
|
|
99 |
}
|
|
100 |
|
|
101 |
//////////////////////////////////////////////////////////////////////
|
|
102 |
// BlockOffsetArray
|
|
103 |
//////////////////////////////////////////////////////////////////////
|
|
104 |
|
|
105 |
BlockOffsetArray::BlockOffsetArray(BlockOffsetSharedArray* array,
|
|
106 |
MemRegion mr, bool init_to_zero) :
|
|
107 |
BlockOffsetTable(mr.start(), mr.end()),
|
|
108 |
_array(array),
|
|
109 |
_init_to_zero(init_to_zero)
|
|
110 |
{
|
|
111 |
assert(_bottom <= _end, "arguments out of order");
|
|
112 |
if (!_init_to_zero) {
|
|
113 |
// initialize cards to point back to mr.start()
|
|
114 |
set_remainder_to_point_to_start(mr.start() + N_words, mr.end());
|
|
115 |
_array->set_offset_array(0, 0); // set first card to 0
|
|
116 |
}
|
|
117 |
}
|
|
118 |
|
|
119 |
|
|
120 |
// The arguments follow the normal convention of denoting
|
|
121 |
// a right-open interval: [start, end)
|
|
122 |
void
|
|
123 |
BlockOffsetArray::
|
|
124 |
set_remainder_to_point_to_start(HeapWord* start, HeapWord* end) {
|
|
125 |
|
|
126 |
if (start >= end) {
|
|
127 |
// The start address is equal to the end address (or to
|
|
128 |
// the right of the end address) so there are not cards
|
|
129 |
// that need to be updated..
|
|
130 |
return;
|
|
131 |
}
|
|
132 |
|
|
133 |
// Write the backskip value for each region.
|
|
134 |
//
|
|
135 |
// offset
|
|
136 |
// card 2nd 3rd
|
|
137 |
// | +- 1st | |
|
|
138 |
// v v v v
|
|
139 |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-
|
|
140 |
// |x|0|0|0|0|0|0|0|1|1|1|1|1|1| ... |1|1|1|1|2|2|2|2|2|2| ...
|
|
141 |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-
|
|
142 |
// 11 19 75
|
|
143 |
// 12
|
|
144 |
//
|
|
145 |
// offset card is the card that points to the start of an object
|
|
146 |
// x - offset value of offset card
|
|
147 |
// 1st - start of first logarithmic region
|
|
148 |
// 0 corresponds to logarithmic value N_words + 0 and 2**(3 * 0) = 1
|
|
149 |
// 2nd - start of second logarithmic region
|
|
150 |
// 1 corresponds to logarithmic value N_words + 1 and 2**(3 * 1) = 8
|
|
151 |
// 3rd - start of third logarithmic region
|
|
152 |
// 2 corresponds to logarithmic value N_words + 2 and 2**(3 * 2) = 64
|
|
153 |
//
|
|
154 |
// integer below the block offset entry is an example of
|
|
155 |
// the index of the entry
|
|
156 |
//
|
|
157 |
// Given an address,
|
|
158 |
// Find the index for the address
|
|
159 |
// Find the block offset table entry
|
|
160 |
// Convert the entry to a back slide
|
|
161 |
// (e.g., with today's, offset = 0x81 =>
|
|
162 |
// back slip = 2**(3*(0x81 - N_words)) = 2**3) = 8
|
|
163 |
// Move back N (e.g., 8) entries and repeat with the
|
|
164 |
// value of the new entry
|
|
165 |
//
|
|
166 |
size_t start_card = _array->index_for(start);
|
|
167 |
size_t end_card = _array->index_for(end-1);
|
|
168 |
assert(start ==_array->address_for_index(start_card), "Precondition");
|
|
169 |
assert(end ==_array->address_for_index(end_card)+N_words, "Precondition");
|
|
170 |
set_remainder_to_point_to_start_incl(start_card, end_card); // closed interval
|
|
171 |
}
|
|
172 |
|
|
173 |
|
|
174 |
// Unlike the normal convention in this code, the argument here denotes
|
|
175 |
// a closed, inclusive interval: [start_card, end_card], cf set_remainder_to_point_to_start()
|
|
176 |
// above.
|
|
177 |
void
|
|
178 |
BlockOffsetArray::set_remainder_to_point_to_start_incl(size_t start_card, size_t end_card) {
|
|
179 |
if (start_card > end_card) {
|
|
180 |
return;
|
|
181 |
}
|
|
182 |
assert(start_card > _array->index_for(_bottom), "Cannot be first card");
|
|
183 |
assert(_array->offset_array(start_card-1) <= N_words,
|
|
184 |
"Offset card has an unexpected value");
|
|
185 |
size_t start_card_for_region = start_card;
|
|
186 |
u_char offset = max_jubyte;
|
1374
|
187 |
for (int i = 0; i < N_powers; i++) {
|
1
|
188 |
// -1 so that the the card with the actual offset is counted. Another -1
|
|
189 |
// so that the reach ends in this region and not at the start
|
|
190 |
// of the next.
|
|
191 |
size_t reach = start_card - 1 + (power_to_cards_back(i+1) - 1);
|
|
192 |
offset = N_words + i;
|
|
193 |
if (reach >= end_card) {
|
|
194 |
_array->set_offset_array(start_card_for_region, end_card, offset);
|
|
195 |
start_card_for_region = reach + 1;
|
|
196 |
break;
|
|
197 |
}
|
|
198 |
_array->set_offset_array(start_card_for_region, reach, offset);
|
|
199 |
start_card_for_region = reach + 1;
|
|
200 |
}
|
|
201 |
assert(start_card_for_region > end_card, "Sanity check");
|
|
202 |
DEBUG_ONLY(check_all_cards(start_card, end_card);)
|
|
203 |
}
|
|
204 |
|
|
205 |
// The card-interval [start_card, end_card] is a closed interval; this
|
|
206 |
// is an expensive check -- use with care and only under protection of
|
|
207 |
// suitable flag.
|
|
208 |
void BlockOffsetArray::check_all_cards(size_t start_card, size_t end_card) const {
|
|
209 |
|
|
210 |
if (end_card < start_card) {
|
|
211 |
return;
|
|
212 |
}
|
|
213 |
guarantee(_array->offset_array(start_card) == N_words, "Wrong value in second card");
|
|
214 |
for (size_t c = start_card + 1; c <= end_card; c++ /* yeah! */) {
|
|
215 |
u_char entry = _array->offset_array(c);
|
|
216 |
if (c - start_card > power_to_cards_back(1)) {
|
|
217 |
guarantee(entry > N_words, "Should be in logarithmic region");
|
|
218 |
}
|
|
219 |
size_t backskip = entry_to_cards_back(entry);
|
|
220 |
size_t landing_card = c - backskip;
|
|
221 |
guarantee(landing_card >= (start_card - 1), "Inv");
|
|
222 |
if (landing_card >= start_card) {
|
|
223 |
guarantee(_array->offset_array(landing_card) <= entry, "monotonicity");
|
|
224 |
} else {
|
|
225 |
guarantee(landing_card == start_card - 1, "Tautology");
|
|
226 |
guarantee(_array->offset_array(landing_card) <= N_words, "Offset value");
|
|
227 |
}
|
|
228 |
}
|
|
229 |
}
|
|
230 |
|
|
231 |
|
|
232 |
void
|
|
233 |
BlockOffsetArray::alloc_block(HeapWord* blk_start, HeapWord* blk_end) {
|
|
234 |
assert(blk_start != NULL && blk_end > blk_start,
|
|
235 |
"phantom block");
|
|
236 |
single_block(blk_start, blk_end);
|
|
237 |
}
|
|
238 |
|
|
239 |
// Action_mark - update the BOT for the block [blk_start, blk_end).
|
|
240 |
// Current typical use is for splitting a block.
|
|
241 |
// Action_single - udpate the BOT for an allocation.
|
|
242 |
// Action_verify - BOT verification.
|
|
243 |
void
|
|
244 |
BlockOffsetArray::do_block_internal(HeapWord* blk_start,
|
|
245 |
HeapWord* blk_end,
|
|
246 |
Action action) {
|
|
247 |
assert(Universe::heap()->is_in_reserved(blk_start),
|
|
248 |
"reference must be into the heap");
|
|
249 |
assert(Universe::heap()->is_in_reserved(blk_end-1),
|
|
250 |
"limit must be within the heap");
|
|
251 |
// This is optimized to make the test fast, assuming we only rarely
|
|
252 |
// cross boundaries.
|
|
253 |
uintptr_t end_ui = (uintptr_t)(blk_end - 1);
|
|
254 |
uintptr_t start_ui = (uintptr_t)blk_start;
|
|
255 |
// Calculate the last card boundary preceding end of blk
|
|
256 |
intptr_t boundary_before_end = (intptr_t)end_ui;
|
|
257 |
clear_bits(boundary_before_end, right_n_bits(LogN));
|
|
258 |
if (start_ui <= (uintptr_t)boundary_before_end) {
|
|
259 |
// blk starts at or crosses a boundary
|
|
260 |
// Calculate index of card on which blk begins
|
|
261 |
size_t start_index = _array->index_for(blk_start);
|
|
262 |
// Index of card on which blk ends
|
|
263 |
size_t end_index = _array->index_for(blk_end - 1);
|
|
264 |
// Start address of card on which blk begins
|
|
265 |
HeapWord* boundary = _array->address_for_index(start_index);
|
|
266 |
assert(boundary <= blk_start, "blk should start at or after boundary");
|
|
267 |
if (blk_start != boundary) {
|
|
268 |
// blk starts strictly after boundary
|
|
269 |
// adjust card boundary and start_index forward to next card
|
|
270 |
boundary += N_words;
|
|
271 |
start_index++;
|
|
272 |
}
|
|
273 |
assert(start_index <= end_index, "monotonicity of index_for()");
|
|
274 |
assert(boundary <= (HeapWord*)boundary_before_end, "tautology");
|
|
275 |
switch (action) {
|
|
276 |
case Action_mark: {
|
|
277 |
if (init_to_zero()) {
|
|
278 |
_array->set_offset_array(start_index, boundary, blk_start);
|
|
279 |
break;
|
|
280 |
} // Else fall through to the next case
|
|
281 |
}
|
|
282 |
case Action_single: {
|
|
283 |
_array->set_offset_array(start_index, boundary, blk_start);
|
|
284 |
// We have finished marking the "offset card". We need to now
|
|
285 |
// mark the subsequent cards that this blk spans.
|
|
286 |
if (start_index < end_index) {
|
|
287 |
HeapWord* rem_st = _array->address_for_index(start_index) + N_words;
|
|
288 |
HeapWord* rem_end = _array->address_for_index(end_index) + N_words;
|
|
289 |
set_remainder_to_point_to_start(rem_st, rem_end);
|
|
290 |
}
|
|
291 |
break;
|
|
292 |
}
|
|
293 |
case Action_check: {
|
|
294 |
_array->check_offset_array(start_index, boundary, blk_start);
|
|
295 |
// We have finished checking the "offset card". We need to now
|
|
296 |
// check the subsequent cards that this blk spans.
|
|
297 |
check_all_cards(start_index + 1, end_index);
|
|
298 |
break;
|
|
299 |
}
|
|
300 |
default:
|
|
301 |
ShouldNotReachHere();
|
|
302 |
}
|
|
303 |
}
|
|
304 |
}
|
|
305 |
|
|
306 |
// The range [blk_start, blk_end) represents a single contiguous block
|
|
307 |
// of storage; modify the block offset table to represent this
|
|
308 |
// information; Right-open interval: [blk_start, blk_end)
|
|
309 |
// NOTE: this method does _not_ adjust _unallocated_block.
|
|
310 |
void
|
|
311 |
BlockOffsetArray::single_block(HeapWord* blk_start,
|
|
312 |
HeapWord* blk_end) {
|
|
313 |
do_block_internal(blk_start, blk_end, Action_single);
|
|
314 |
}
|
|
315 |
|
|
316 |
void BlockOffsetArray::verify() const {
|
|
317 |
// For each entry in the block offset table, verify that
|
|
318 |
// the entry correctly finds the start of an object at the
|
|
319 |
// first address covered by the block or to the left of that
|
|
320 |
// first address.
|
|
321 |
|
|
322 |
size_t next_index = 1;
|
|
323 |
size_t last_index = last_active_index();
|
|
324 |
|
|
325 |
// Use for debugging. Initialize to NULL to distinguish the
|
|
326 |
// first iteration through the while loop.
|
|
327 |
HeapWord* last_p = NULL;
|
|
328 |
HeapWord* last_start = NULL;
|
|
329 |
oop last_o = NULL;
|
|
330 |
|
|
331 |
while (next_index <= last_index) {
|
|
332 |
// Use an address past the start of the address for
|
|
333 |
// the entry.
|
|
334 |
HeapWord* p = _array->address_for_index(next_index) + 1;
|
|
335 |
if (p >= _end) {
|
|
336 |
// That's all of the allocated block table.
|
|
337 |
return;
|
|
338 |
}
|
|
339 |
// block_start() asserts that start <= p.
|
|
340 |
HeapWord* start = block_start(p);
|
|
341 |
// First check if the start is an allocated block and only
|
|
342 |
// then if it is a valid object.
|
|
343 |
oop o = oop(start);
|
|
344 |
assert(!Universe::is_fully_initialized() ||
|
|
345 |
_sp->is_free_block(start) ||
|
|
346 |
o->is_oop_or_null(), "Bad object was found");
|
|
347 |
next_index++;
|
|
348 |
last_p = p;
|
|
349 |
last_start = start;
|
|
350 |
last_o = o;
|
|
351 |
}
|
|
352 |
}
|
|
353 |
|
|
354 |
//////////////////////////////////////////////////////////////////////
|
|
355 |
// BlockOffsetArrayNonContigSpace
|
|
356 |
//////////////////////////////////////////////////////////////////////
|
|
357 |
|
|
358 |
// The block [blk_start, blk_end) has been allocated;
|
|
359 |
// adjust the block offset table to represent this information;
|
|
360 |
// NOTE: Clients of BlockOffsetArrayNonContigSpace: consider using
|
|
361 |
// the somewhat more lightweight split_block() or
|
|
362 |
// (when init_to_zero()) mark_block() wherever possible.
|
|
363 |
// right-open interval: [blk_start, blk_end)
|
|
364 |
void
|
|
365 |
BlockOffsetArrayNonContigSpace::alloc_block(HeapWord* blk_start,
|
|
366 |
HeapWord* blk_end) {
|
|
367 |
assert(blk_start != NULL && blk_end > blk_start,
|
|
368 |
"phantom block");
|
|
369 |
single_block(blk_start, blk_end);
|
|
370 |
allocated(blk_start, blk_end);
|
|
371 |
}
|
|
372 |
|
|
373 |
// Adjust BOT to show that a previously whole block has been split
|
|
374 |
// into two. We verify the BOT for the first part (prefix) and
|
|
375 |
// update the BOT for the second part (suffix).
|
|
376 |
// blk is the start of the block
|
|
377 |
// blk_size is the size of the original block
|
|
378 |
// left_blk_size is the size of the first part of the split
|
|
379 |
void BlockOffsetArrayNonContigSpace::split_block(HeapWord* blk,
|
|
380 |
size_t blk_size,
|
|
381 |
size_t left_blk_size) {
|
|
382 |
// Verify that the BOT shows [blk, blk + blk_size) to be one block.
|
|
383 |
verify_single_block(blk, blk_size);
|
|
384 |
// Update the BOT to indicate that [blk + left_blk_size, blk + blk_size)
|
|
385 |
// is one single block.
|
|
386 |
assert(blk_size > 0, "Should be positive");
|
|
387 |
assert(left_blk_size > 0, "Should be positive");
|
|
388 |
assert(left_blk_size < blk_size, "Not a split");
|
|
389 |
|
|
390 |
// Start addresses of prefix block and suffix block.
|
|
391 |
HeapWord* pref_addr = blk;
|
|
392 |
HeapWord* suff_addr = blk + left_blk_size;
|
|
393 |
HeapWord* end_addr = blk + blk_size;
|
|
394 |
|
|
395 |
// Indices for starts of prefix block and suffix block.
|
|
396 |
size_t pref_index = _array->index_for(pref_addr);
|
|
397 |
if (_array->address_for_index(pref_index) != pref_addr) {
|
|
398 |
// pref_addr deos not begin pref_index
|
|
399 |
pref_index++;
|
|
400 |
}
|
|
401 |
|
|
402 |
size_t suff_index = _array->index_for(suff_addr);
|
|
403 |
if (_array->address_for_index(suff_index) != suff_addr) {
|
|
404 |
// suff_addr does not begin suff_index
|
|
405 |
suff_index++;
|
|
406 |
}
|
|
407 |
|
|
408 |
// Definition: A block B, denoted [B_start, B_end) __starts__
|
|
409 |
// a card C, denoted [C_start, C_end), where C_start and C_end
|
|
410 |
// are the heap addresses that card C covers, iff
|
|
411 |
// B_start <= C_start < B_end.
|
|
412 |
//
|
|
413 |
// We say that a card C "is started by" a block B, iff
|
|
414 |
// B "starts" C.
|
|
415 |
//
|
|
416 |
// Note that the cardinality of the set of cards {C}
|
|
417 |
// started by a block B can be 0, 1, or more.
|
|
418 |
//
|
|
419 |
// Below, pref_index and suff_index are, respectively, the
|
|
420 |
// first (least) card indices that the prefix and suffix of
|
|
421 |
// the split start; end_index is one more than the index of
|
|
422 |
// the last (greatest) card that blk starts.
|
|
423 |
size_t end_index = _array->index_for(end_addr - 1) + 1;
|
|
424 |
|
|
425 |
// Calculate the # cards that the prefix and suffix affect.
|
|
426 |
size_t num_pref_cards = suff_index - pref_index;
|
|
427 |
|
|
428 |
size_t num_suff_cards = end_index - suff_index;
|
|
429 |
// Change the cards that need changing
|
|
430 |
if (num_suff_cards > 0) {
|
|
431 |
HeapWord* boundary = _array->address_for_index(suff_index);
|
|
432 |
// Set the offset card for suffix block
|
|
433 |
_array->set_offset_array(suff_index, boundary, suff_addr);
|
|
434 |
// Change any further cards that need changing in the suffix
|
|
435 |
if (num_pref_cards > 0) {
|
|
436 |
if (num_pref_cards >= num_suff_cards) {
|
|
437 |
// Unilaterally fix all of the suffix cards: closed card
|
|
438 |
// index interval in args below.
|
|
439 |
set_remainder_to_point_to_start_incl(suff_index + 1, end_index - 1);
|
|
440 |
} else {
|
|
441 |
// Unilaterally fix the first (num_pref_cards - 1) following
|
|
442 |
// the "offset card" in the suffix block.
|
|
443 |
set_remainder_to_point_to_start_incl(suff_index + 1,
|
|
444 |
suff_index + num_pref_cards - 1);
|
|
445 |
// Fix the appropriate cards in the remainder of the
|
|
446 |
// suffix block -- these are the last num_pref_cards
|
|
447 |
// cards in each power block of the "new" range plumbed
|
|
448 |
// from suff_addr.
|
|
449 |
bool more = true;
|
|
450 |
uint i = 1;
|
|
451 |
while (more && (i < N_powers)) {
|
|
452 |
size_t back_by = power_to_cards_back(i);
|
|
453 |
size_t right_index = suff_index + back_by - 1;
|
|
454 |
size_t left_index = right_index - num_pref_cards + 1;
|
|
455 |
if (right_index >= end_index - 1) { // last iteration
|
|
456 |
right_index = end_index - 1;
|
|
457 |
more = false;
|
|
458 |
}
|
|
459 |
if (back_by > num_pref_cards) {
|
|
460 |
// Fill in the remainder of this "power block", if it
|
|
461 |
// is non-null.
|
|
462 |
if (left_index <= right_index) {
|
|
463 |
_array->set_offset_array(left_index, right_index,
|
|
464 |
N_words + i - 1);
|
|
465 |
} else {
|
|
466 |
more = false; // we are done
|
|
467 |
}
|
|
468 |
i++;
|
|
469 |
break;
|
|
470 |
}
|
|
471 |
i++;
|
|
472 |
}
|
|
473 |
while (more && (i < N_powers)) {
|
|
474 |
size_t back_by = power_to_cards_back(i);
|
|
475 |
size_t right_index = suff_index + back_by - 1;
|
|
476 |
size_t left_index = right_index - num_pref_cards + 1;
|
|
477 |
if (right_index >= end_index - 1) { // last iteration
|
|
478 |
right_index = end_index - 1;
|
|
479 |
if (left_index > right_index) {
|
|
480 |
break;
|
|
481 |
}
|
|
482 |
more = false;
|
|
483 |
}
|
|
484 |
assert(left_index <= right_index, "Error");
|
|
485 |
_array->set_offset_array(left_index, right_index, N_words + i - 1);
|
|
486 |
i++;
|
|
487 |
}
|
|
488 |
}
|
|
489 |
} // else no more cards to fix in suffix
|
|
490 |
} // else nothing needs to be done
|
|
491 |
// Verify that we did the right thing
|
|
492 |
verify_single_block(pref_addr, left_blk_size);
|
|
493 |
verify_single_block(suff_addr, blk_size - left_blk_size);
|
|
494 |
}
|
|
495 |
|
|
496 |
|
|
497 |
// Mark the BOT such that if [blk_start, blk_end) straddles a card
|
|
498 |
// boundary, the card following the first such boundary is marked
|
|
499 |
// with the appropriate offset.
|
|
500 |
// NOTE: this method does _not_ adjust _unallocated_block or
|
|
501 |
// any cards subsequent to the first one.
|
|
502 |
void
|
|
503 |
BlockOffsetArrayNonContigSpace::mark_block(HeapWord* blk_start,
|
|
504 |
HeapWord* blk_end) {
|
|
505 |
do_block_internal(blk_start, blk_end, Action_mark);
|
|
506 |
}
|
|
507 |
|
|
508 |
HeapWord* BlockOffsetArrayNonContigSpace::block_start_unsafe(
|
|
509 |
const void* addr) const {
|
|
510 |
assert(_array->offset_array(0) == 0, "objects can't cross covered areas");
|
|
511 |
|
|
512 |
assert(_bottom <= addr && addr < _end,
|
|
513 |
"addr must be covered by this Array");
|
|
514 |
// Must read this exactly once because it can be modified by parallel
|
|
515 |
// allocation.
|
|
516 |
HeapWord* ub = _unallocated_block;
|
|
517 |
if (BlockOffsetArrayUseUnallocatedBlock && addr >= ub) {
|
|
518 |
assert(ub < _end, "tautology (see above)");
|
|
519 |
return ub;
|
|
520 |
}
|
|
521 |
|
|
522 |
// Otherwise, find the block start using the table.
|
|
523 |
size_t index = _array->index_for(addr);
|
|
524 |
HeapWord* q = _array->address_for_index(index);
|
|
525 |
|
|
526 |
uint offset = _array->offset_array(index); // Extend u_char to uint.
|
|
527 |
while (offset >= N_words) {
|
|
528 |
// The excess of the offset from N_words indicates a power of Base
|
|
529 |
// to go back by.
|
|
530 |
size_t n_cards_back = entry_to_cards_back(offset);
|
|
531 |
q -= (N_words * n_cards_back);
|
|
532 |
assert(q >= _sp->bottom(), "Went below bottom!");
|
|
533 |
index -= n_cards_back;
|
|
534 |
offset = _array->offset_array(index);
|
|
535 |
}
|
|
536 |
assert(offset < N_words, "offset too large");
|
|
537 |
index--;
|
|
538 |
q -= offset;
|
|
539 |
HeapWord* n = q;
|
|
540 |
|
|
541 |
while (n <= addr) {
|
|
542 |
debug_only(HeapWord* last = q); // for debugging
|
|
543 |
q = n;
|
|
544 |
n += _sp->block_size(n);
|
|
545 |
}
|
|
546 |
assert(q <= addr, "wrong order for current and arg");
|
|
547 |
assert(addr <= n, "wrong order for arg and next");
|
|
548 |
return q;
|
|
549 |
}
|
|
550 |
|
|
551 |
HeapWord* BlockOffsetArrayNonContigSpace::block_start_careful(
|
|
552 |
const void* addr) const {
|
|
553 |
assert(_array->offset_array(0) == 0, "objects can't cross covered areas");
|
|
554 |
|
|
555 |
assert(_bottom <= addr && addr < _end,
|
|
556 |
"addr must be covered by this Array");
|
|
557 |
// Must read this exactly once because it can be modified by parallel
|
|
558 |
// allocation.
|
|
559 |
HeapWord* ub = _unallocated_block;
|
|
560 |
if (BlockOffsetArrayUseUnallocatedBlock && addr >= ub) {
|
|
561 |
assert(ub < _end, "tautology (see above)");
|
|
562 |
return ub;
|
|
563 |
}
|
|
564 |
|
|
565 |
// Otherwise, find the block start using the table, but taking
|
|
566 |
// care (cf block_start_unsafe() above) not to parse any objects/blocks
|
|
567 |
// on the cards themsleves.
|
|
568 |
size_t index = _array->index_for(addr);
|
|
569 |
assert(_array->address_for_index(index) == addr,
|
|
570 |
"arg should be start of card");
|
|
571 |
|
|
572 |
HeapWord* q = (HeapWord*)addr;
|
|
573 |
uint offset;
|
|
574 |
do {
|
|
575 |
offset = _array->offset_array(index);
|
|
576 |
if (offset < N_words) {
|
|
577 |
q -= offset;
|
|
578 |
} else {
|
|
579 |
size_t n_cards_back = entry_to_cards_back(offset);
|
|
580 |
q -= (n_cards_back * N_words);
|
|
581 |
index -= n_cards_back;
|
|
582 |
}
|
|
583 |
} while (offset >= N_words);
|
|
584 |
assert(q <= addr, "block start should be to left of arg");
|
|
585 |
return q;
|
|
586 |
}
|
|
587 |
|
|
588 |
#ifndef PRODUCT
|
|
589 |
// Verification & debugging - ensure that the offset table reflects the fact
|
|
590 |
// that the block [blk_start, blk_end) or [blk, blk + size) is a
|
|
591 |
// single block of storage. NOTE: can't const this because of
|
|
592 |
// call to non-const do_block_internal() below.
|
|
593 |
void BlockOffsetArrayNonContigSpace::verify_single_block(
|
|
594 |
HeapWord* blk_start, HeapWord* blk_end) {
|
|
595 |
if (VerifyBlockOffsetArray) {
|
|
596 |
do_block_internal(blk_start, blk_end, Action_check);
|
|
597 |
}
|
|
598 |
}
|
|
599 |
|
|
600 |
void BlockOffsetArrayNonContigSpace::verify_single_block(
|
|
601 |
HeapWord* blk, size_t size) {
|
|
602 |
verify_single_block(blk, blk + size);
|
|
603 |
}
|
|
604 |
|
|
605 |
// Verify that the given block is before _unallocated_block
|
|
606 |
void BlockOffsetArrayNonContigSpace::verify_not_unallocated(
|
|
607 |
HeapWord* blk_start, HeapWord* blk_end) const {
|
|
608 |
if (BlockOffsetArrayUseUnallocatedBlock) {
|
|
609 |
assert(blk_start < blk_end, "Block inconsistency?");
|
|
610 |
assert(blk_end <= _unallocated_block, "_unallocated_block problem");
|
|
611 |
}
|
|
612 |
}
|
|
613 |
|
|
614 |
void BlockOffsetArrayNonContigSpace::verify_not_unallocated(
|
|
615 |
HeapWord* blk, size_t size) const {
|
|
616 |
verify_not_unallocated(blk, blk + size);
|
|
617 |
}
|
|
618 |
#endif // PRODUCT
|
|
619 |
|
|
620 |
size_t BlockOffsetArrayNonContigSpace::last_active_index() const {
|
|
621 |
if (_unallocated_block == _bottom) {
|
|
622 |
return 0;
|
|
623 |
} else {
|
|
624 |
return _array->index_for(_unallocated_block - 1);
|
|
625 |
}
|
|
626 |
}
|
|
627 |
|
|
628 |
//////////////////////////////////////////////////////////////////////
|
|
629 |
// BlockOffsetArrayContigSpace
|
|
630 |
//////////////////////////////////////////////////////////////////////
|
|
631 |
|
|
632 |
HeapWord* BlockOffsetArrayContigSpace::block_start_unsafe(const void* addr) const {
|
|
633 |
assert(_array->offset_array(0) == 0, "objects can't cross covered areas");
|
|
634 |
|
|
635 |
// Otherwise, find the block start using the table.
|
|
636 |
assert(_bottom <= addr && addr < _end,
|
|
637 |
"addr must be covered by this Array");
|
|
638 |
size_t index = _array->index_for(addr);
|
|
639 |
// We must make sure that the offset table entry we use is valid. If
|
|
640 |
// "addr" is past the end, start at the last known one and go forward.
|
|
641 |
index = MIN2(index, _next_offset_index-1);
|
|
642 |
HeapWord* q = _array->address_for_index(index);
|
|
643 |
|
|
644 |
uint offset = _array->offset_array(index); // Extend u_char to uint.
|
|
645 |
while (offset > N_words) {
|
|
646 |
// The excess of the offset from N_words indicates a power of Base
|
|
647 |
// to go back by.
|
|
648 |
size_t n_cards_back = entry_to_cards_back(offset);
|
|
649 |
q -= (N_words * n_cards_back);
|
|
650 |
assert(q >= _sp->bottom(), "Went below bottom!");
|
|
651 |
index -= n_cards_back;
|
|
652 |
offset = _array->offset_array(index);
|
|
653 |
}
|
|
654 |
while (offset == N_words) {
|
|
655 |
assert(q >= _sp->bottom(), "Went below bottom!");
|
|
656 |
q -= N_words;
|
|
657 |
index--;
|
|
658 |
offset = _array->offset_array(index);
|
|
659 |
}
|
|
660 |
assert(offset < N_words, "offset too large");
|
|
661 |
q -= offset;
|
|
662 |
HeapWord* n = q;
|
|
663 |
|
|
664 |
while (n <= addr) {
|
|
665 |
debug_only(HeapWord* last = q); // for debugging
|
|
666 |
q = n;
|
|
667 |
n += _sp->block_size(n);
|
|
668 |
}
|
|
669 |
assert(q <= addr, "wrong order for current and arg");
|
|
670 |
assert(addr <= n, "wrong order for arg and next");
|
|
671 |
return q;
|
|
672 |
}
|
|
673 |
|
|
674 |
//
|
|
675 |
// _next_offset_threshold
|
|
676 |
// | _next_offset_index
|
|
677 |
// v v
|
|
678 |
// +-------+-------+-------+-------+-------+
|
|
679 |
// | i-1 | i | i+1 | i+2 | i+3 |
|
|
680 |
// +-------+-------+-------+-------+-------+
|
|
681 |
// ( ^ ]
|
|
682 |
// block-start
|
|
683 |
//
|
|
684 |
|
|
685 |
void BlockOffsetArrayContigSpace::alloc_block_work(HeapWord* blk_start,
|
|
686 |
HeapWord* blk_end) {
|
|
687 |
assert(blk_start != NULL && blk_end > blk_start,
|
|
688 |
"phantom block");
|
|
689 |
assert(blk_end > _next_offset_threshold,
|
|
690 |
"should be past threshold");
|
|
691 |
assert(blk_start <= _next_offset_threshold,
|
|
692 |
"blk_start should be at or before threshold")
|
|
693 |
assert(pointer_delta(_next_offset_threshold, blk_start) <= N_words,
|
|
694 |
"offset should be <= BlockOffsetSharedArray::N");
|
|
695 |
assert(Universe::heap()->is_in_reserved(blk_start),
|
|
696 |
"reference must be into the heap");
|
|
697 |
assert(Universe::heap()->is_in_reserved(blk_end-1),
|
|
698 |
"limit must be within the heap");
|
|
699 |
assert(_next_offset_threshold ==
|
|
700 |
_array->_reserved.start() + _next_offset_index*N_words,
|
|
701 |
"index must agree with threshold");
|
|
702 |
|
|
703 |
debug_only(size_t orig_next_offset_index = _next_offset_index;)
|
|
704 |
|
|
705 |
// Mark the card that holds the offset into the block. Note
|
|
706 |
// that _next_offset_index and _next_offset_threshold are not
|
|
707 |
// updated until the end of this method.
|
|
708 |
_array->set_offset_array(_next_offset_index,
|
|
709 |
_next_offset_threshold,
|
|
710 |
blk_start);
|
|
711 |
|
|
712 |
// We need to now mark the subsequent cards that this blk spans.
|
|
713 |
|
|
714 |
// Index of card on which blk ends.
|
|
715 |
size_t end_index = _array->index_for(blk_end - 1);
|
|
716 |
|
|
717 |
// Are there more cards left to be updated?
|
|
718 |
if (_next_offset_index + 1 <= end_index) {
|
|
719 |
HeapWord* rem_st = _array->address_for_index(_next_offset_index + 1);
|
|
720 |
// Calculate rem_end this way because end_index
|
|
721 |
// may be the last valid index in the covered region.
|
|
722 |
HeapWord* rem_end = _array->address_for_index(end_index) + N_words;
|
|
723 |
set_remainder_to_point_to_start(rem_st, rem_end);
|
|
724 |
}
|
|
725 |
|
|
726 |
// _next_offset_index and _next_offset_threshold updated here.
|
|
727 |
_next_offset_index = end_index + 1;
|
|
728 |
// Calculate _next_offset_threshold this way because end_index
|
|
729 |
// may be the last valid index in the covered region.
|
|
730 |
_next_offset_threshold = _array->address_for_index(end_index) +
|
|
731 |
N_words;
|
|
732 |
assert(_next_offset_threshold >= blk_end, "Incorrent offset threshold");
|
|
733 |
|
|
734 |
#ifdef ASSERT
|
|
735 |
// The offset can be 0 if the block starts on a boundary. That
|
|
736 |
// is checked by an assertion above.
|
|
737 |
size_t start_index = _array->index_for(blk_start);
|
|
738 |
HeapWord* boundary = _array->address_for_index(start_index);
|
|
739 |
assert((_array->offset_array(orig_next_offset_index) == 0 &&
|
|
740 |
blk_start == boundary) ||
|
|
741 |
(_array->offset_array(orig_next_offset_index) > 0 &&
|
|
742 |
_array->offset_array(orig_next_offset_index) <= N_words),
|
|
743 |
"offset array should have been set");
|
|
744 |
for (size_t j = orig_next_offset_index + 1; j <= end_index; j++) {
|
|
745 |
assert(_array->offset_array(j) > 0 &&
|
|
746 |
_array->offset_array(j) <= (u_char) (N_words+N_powers-1),
|
|
747 |
"offset array should have been set");
|
|
748 |
}
|
|
749 |
#endif
|
|
750 |
}
|
|
751 |
|
|
752 |
HeapWord* BlockOffsetArrayContigSpace::initialize_threshold() {
|
|
753 |
assert(!Universe::heap()->is_in_reserved(_array->_offset_array),
|
|
754 |
"just checking");
|
|
755 |
_next_offset_index = _array->index_for(_bottom);
|
|
756 |
_next_offset_index++;
|
|
757 |
_next_offset_threshold =
|
|
758 |
_array->address_for_index(_next_offset_index);
|
|
759 |
return _next_offset_threshold;
|
|
760 |
}
|
|
761 |
|
|
762 |
void BlockOffsetArrayContigSpace::zero_bottom_entry() {
|
|
763 |
assert(!Universe::heap()->is_in_reserved(_array->_offset_array),
|
|
764 |
"just checking");
|
|
765 |
size_t bottom_index = _array->index_for(_bottom);
|
|
766 |
_array->set_offset_array(bottom_index, 0);
|
|
767 |
}
|
|
768 |
|
|
769 |
|
|
770 |
void BlockOffsetArrayContigSpace::serialize(SerializeOopClosure* soc) {
|
|
771 |
if (soc->reading()) {
|
|
772 |
// Null these values so that the serializer won't object to updating them.
|
|
773 |
_next_offset_threshold = NULL;
|
|
774 |
_next_offset_index = 0;
|
|
775 |
}
|
|
776 |
soc->do_ptr(&_next_offset_threshold);
|
|
777 |
soc->do_size_t(&_next_offset_index);
|
|
778 |
}
|
|
779 |
|
|
780 |
size_t BlockOffsetArrayContigSpace::last_active_index() const {
|
|
781 |
size_t result = _next_offset_index - 1;
|
|
782 |
return result >= 0 ? result : 0;
|
|
783 |
}
|