author | xdono |
Mon, 09 Mar 2009 13:28:46 -0700 | |
changeset 2105 | 347008ce7984 |
parent 2010 | c13462bbad17 |
child 2154 | 72a9b7284ccf |
permissions | -rw-r--r-- |
1374 | 1 |
/* |
2105 | 2 |
* Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved. |
1374 | 3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 |
* |
|
5 |
* This code is free software; you can redistribute it and/or modify it |
|
6 |
* under the terms of the GNU General Public License version 2 only, as |
|
7 |
* published by the Free Software Foundation. |
|
8 |
* |
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT |
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that |
|
13 |
* accompanied this code). |
|
14 |
* |
|
15 |
* You should have received a copy of the GNU General Public License version |
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation, |
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 |
* |
|
19 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, |
|
20 |
* CA 95054 USA or visit www.sun.com if you need additional information or |
|
21 |
* have any questions. |
|
22 |
* |
|
23 |
*/ |
|
24 |
||
25 |
#include "incls/_precompiled.incl" |
|
26 |
#include "incls/_g1CollectedHeap.cpp.incl" |
|
27 |
||
28 |
// turn it on so that the contents of the young list (scan-only / |
|
29 |
// to-be-collected) are printed at "strategic" points before / during |
|
30 |
// / after the collection --- this is useful for debugging |
|
31 |
#define SCAN_ONLY_VERBOSE 0 |
|
32 |
// CURRENT STATUS |
|
33 |
// This file is under construction. Search for "FIXME". |
|
34 |
||
35 |
// INVARIANTS/NOTES |
|
36 |
// |
|
37 |
// All allocation activity covered by the G1CollectedHeap interface is |
|
38 |
// serialized by acquiring the HeapLock. This happens in |
|
39 |
// mem_allocate_work, which all such allocation functions call. |
|
40 |
// (Note that this does not apply to TLAB allocation, which is not part |
|
41 |
// of this interface: it is done by clients of this interface.) |
|
42 |
||
43 |
// Local to this file. |
|
44 |
||
45 |
// Finds the first HeapRegion. |
|
46 |
// No longer used, but might be handy someday. |
|
47 |
||
48 |
class FindFirstRegionClosure: public HeapRegionClosure { |
|
49 |
HeapRegion* _a_region; |
|
50 |
public: |
|
51 |
FindFirstRegionClosure() : _a_region(NULL) {} |
|
52 |
bool doHeapRegion(HeapRegion* r) { |
|
53 |
_a_region = r; |
|
54 |
return true; |
|
55 |
} |
|
56 |
HeapRegion* result() { return _a_region; } |
|
57 |
}; |
|
58 |
||
59 |
||
60 |
class RefineCardTableEntryClosure: public CardTableEntryClosure { |
|
61 |
SuspendibleThreadSet* _sts; |
|
62 |
G1RemSet* _g1rs; |
|
63 |
ConcurrentG1Refine* _cg1r; |
|
64 |
bool _concurrent; |
|
65 |
public: |
|
66 |
RefineCardTableEntryClosure(SuspendibleThreadSet* sts, |
|
67 |
G1RemSet* g1rs, |
|
68 |
ConcurrentG1Refine* cg1r) : |
|
69 |
_sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true) |
|
70 |
{} |
|
71 |
bool do_card_ptr(jbyte* card_ptr, int worker_i) { |
|
72 |
_g1rs->concurrentRefineOneCard(card_ptr, worker_i); |
|
73 |
if (_concurrent && _sts->should_yield()) { |
|
74 |
// Caller will actually yield. |
|
75 |
return false; |
|
76 |
} |
|
77 |
// Otherwise, we finished successfully; return true. |
|
78 |
return true; |
|
79 |
} |
|
80 |
void set_concurrent(bool b) { _concurrent = b; } |
|
81 |
}; |
|
82 |
||
83 |
||
84 |
class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure { |
|
85 |
int _calls; |
|
86 |
G1CollectedHeap* _g1h; |
|
87 |
CardTableModRefBS* _ctbs; |
|
88 |
int _histo[256]; |
|
89 |
public: |
|
90 |
ClearLoggedCardTableEntryClosure() : |
|
91 |
_calls(0) |
|
92 |
{ |
|
93 |
_g1h = G1CollectedHeap::heap(); |
|
94 |
_ctbs = (CardTableModRefBS*)_g1h->barrier_set(); |
|
95 |
for (int i = 0; i < 256; i++) _histo[i] = 0; |
|
96 |
} |
|
97 |
bool do_card_ptr(jbyte* card_ptr, int worker_i) { |
|
98 |
if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) { |
|
99 |
_calls++; |
|
100 |
unsigned char* ujb = (unsigned char*)card_ptr; |
|
101 |
int ind = (int)(*ujb); |
|
102 |
_histo[ind]++; |
|
103 |
*card_ptr = -1; |
|
104 |
} |
|
105 |
return true; |
|
106 |
} |
|
107 |
int calls() { return _calls; } |
|
108 |
void print_histo() { |
|
109 |
gclog_or_tty->print_cr("Card table value histogram:"); |
|
110 |
for (int i = 0; i < 256; i++) { |
|
111 |
if (_histo[i] != 0) { |
|
112 |
gclog_or_tty->print_cr(" %d: %d", i, _histo[i]); |
|
113 |
} |
|
114 |
} |
|
115 |
} |
|
116 |
}; |
|
117 |
||
118 |
class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure { |
|
119 |
int _calls; |
|
120 |
G1CollectedHeap* _g1h; |
|
121 |
CardTableModRefBS* _ctbs; |
|
122 |
public: |
|
123 |
RedirtyLoggedCardTableEntryClosure() : |
|
124 |
_calls(0) |
|
125 |
{ |
|
126 |
_g1h = G1CollectedHeap::heap(); |
|
127 |
_ctbs = (CardTableModRefBS*)_g1h->barrier_set(); |
|
128 |
} |
|
129 |
bool do_card_ptr(jbyte* card_ptr, int worker_i) { |
|
130 |
if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) { |
|
131 |
_calls++; |
|
132 |
*card_ptr = 0; |
|
133 |
} |
|
134 |
return true; |
|
135 |
} |
|
136 |
int calls() { return _calls; } |
|
137 |
}; |
|
138 |
||
139 |
YoungList::YoungList(G1CollectedHeap* g1h) |
|
140 |
: _g1h(g1h), _head(NULL), |
|
141 |
_scan_only_head(NULL), _scan_only_tail(NULL), _curr_scan_only(NULL), |
|
142 |
_length(0), _scan_only_length(0), |
|
143 |
_last_sampled_rs_lengths(0), |
|
2009 | 144 |
_survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) |
1374 | 145 |
{ |
146 |
guarantee( check_list_empty(false), "just making sure..." ); |
|
147 |
} |
|
148 |
||
149 |
void YoungList::push_region(HeapRegion *hr) { |
|
150 |
assert(!hr->is_young(), "should not already be young"); |
|
151 |
assert(hr->get_next_young_region() == NULL, "cause it should!"); |
|
152 |
||
153 |
hr->set_next_young_region(_head); |
|
154 |
_head = hr; |
|
155 |
||
156 |
hr->set_young(); |
|
157 |
double yg_surv_rate = _g1h->g1_policy()->predict_yg_surv_rate((int)_length); |
|
158 |
++_length; |
|
159 |
} |
|
160 |
||
161 |
void YoungList::add_survivor_region(HeapRegion* hr) { |
|
2009 | 162 |
assert(hr->is_survivor(), "should be flagged as survivor region"); |
1374 | 163 |
assert(hr->get_next_young_region() == NULL, "cause it should!"); |
164 |
||
165 |
hr->set_next_young_region(_survivor_head); |
|
166 |
if (_survivor_head == NULL) { |
|
2009 | 167 |
_survivor_tail = hr; |
1374 | 168 |
} |
169 |
_survivor_head = hr; |
|
170 |
||
171 |
++_survivor_length; |
|
172 |
} |
|
173 |
||
174 |
HeapRegion* YoungList::pop_region() { |
|
175 |
while (_head != NULL) { |
|
176 |
assert( length() > 0, "list should not be empty" ); |
|
177 |
HeapRegion* ret = _head; |
|
178 |
_head = ret->get_next_young_region(); |
|
179 |
ret->set_next_young_region(NULL); |
|
180 |
--_length; |
|
181 |
assert(ret->is_young(), "region should be very young"); |
|
182 |
||
183 |
// Replace 'Survivor' region type with 'Young'. So the region will |
|
184 |
// be treated as a young region and will not be 'confused' with |
|
185 |
// newly created survivor regions. |
|
186 |
if (ret->is_survivor()) { |
|
187 |
ret->set_young(); |
|
188 |
} |
|
189 |
||
190 |
if (!ret->is_scan_only()) { |
|
191 |
return ret; |
|
192 |
} |
|
193 |
||
194 |
// scan-only, we'll add it to the scan-only list |
|
195 |
if (_scan_only_tail == NULL) { |
|
196 |
guarantee( _scan_only_head == NULL, "invariant" ); |
|
197 |
||
198 |
_scan_only_head = ret; |
|
199 |
_curr_scan_only = ret; |
|
200 |
} else { |
|
201 |
guarantee( _scan_only_head != NULL, "invariant" ); |
|
202 |
_scan_only_tail->set_next_young_region(ret); |
|
203 |
} |
|
204 |
guarantee( ret->get_next_young_region() == NULL, "invariant" ); |
|
205 |
_scan_only_tail = ret; |
|
206 |
||
207 |
// no need to be tagged as scan-only any more |
|
208 |
ret->set_young(); |
|
209 |
||
210 |
++_scan_only_length; |
|
211 |
} |
|
212 |
assert( length() == 0, "list should be empty" ); |
|
213 |
return NULL; |
|
214 |
} |
|
215 |
||
216 |
void YoungList::empty_list(HeapRegion* list) { |
|
217 |
while (list != NULL) { |
|
218 |
HeapRegion* next = list->get_next_young_region(); |
|
219 |
list->set_next_young_region(NULL); |
|
220 |
list->uninstall_surv_rate_group(); |
|
221 |
list->set_not_young(); |
|
222 |
list = next; |
|
223 |
} |
|
224 |
} |
|
225 |
||
226 |
void YoungList::empty_list() { |
|
227 |
assert(check_list_well_formed(), "young list should be well formed"); |
|
228 |
||
229 |
empty_list(_head); |
|
230 |
_head = NULL; |
|
231 |
_length = 0; |
|
232 |
||
233 |
empty_list(_scan_only_head); |
|
234 |
_scan_only_head = NULL; |
|
235 |
_scan_only_tail = NULL; |
|
236 |
_scan_only_length = 0; |
|
237 |
_curr_scan_only = NULL; |
|
238 |
||
239 |
empty_list(_survivor_head); |
|
240 |
_survivor_head = NULL; |
|
2009 | 241 |
_survivor_tail = NULL; |
1374 | 242 |
_survivor_length = 0; |
243 |
||
244 |
_last_sampled_rs_lengths = 0; |
|
245 |
||
246 |
assert(check_list_empty(false), "just making sure..."); |
|
247 |
} |
|
248 |
||
249 |
bool YoungList::check_list_well_formed() { |
|
250 |
bool ret = true; |
|
251 |
||
252 |
size_t length = 0; |
|
253 |
HeapRegion* curr = _head; |
|
254 |
HeapRegion* last = NULL; |
|
255 |
while (curr != NULL) { |
|
256 |
if (!curr->is_young() || curr->is_scan_only()) { |
|
257 |
gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" " |
|
258 |
"incorrectly tagged (%d, %d)", |
|
259 |
curr->bottom(), curr->end(), |
|
260 |
curr->is_young(), curr->is_scan_only()); |
|
261 |
ret = false; |
|
262 |
} |
|
263 |
++length; |
|
264 |
last = curr; |
|
265 |
curr = curr->get_next_young_region(); |
|
266 |
} |
|
267 |
ret = ret && (length == _length); |
|
268 |
||
269 |
if (!ret) { |
|
270 |
gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!"); |
|
271 |
gclog_or_tty->print_cr("### list has %d entries, _length is %d", |
|
272 |
length, _length); |
|
273 |
} |
|
274 |
||
275 |
bool scan_only_ret = true; |
|
276 |
length = 0; |
|
277 |
curr = _scan_only_head; |
|
278 |
last = NULL; |
|
279 |
while (curr != NULL) { |
|
280 |
if (!curr->is_young() || curr->is_scan_only()) { |
|
281 |
gclog_or_tty->print_cr("### SCAN-ONLY REGION "PTR_FORMAT"-"PTR_FORMAT" " |
|
282 |
"incorrectly tagged (%d, %d)", |
|
283 |
curr->bottom(), curr->end(), |
|
284 |
curr->is_young(), curr->is_scan_only()); |
|
285 |
scan_only_ret = false; |
|
286 |
} |
|
287 |
++length; |
|
288 |
last = curr; |
|
289 |
curr = curr->get_next_young_region(); |
|
290 |
} |
|
291 |
scan_only_ret = scan_only_ret && (length == _scan_only_length); |
|
292 |
||
293 |
if ( (last != _scan_only_tail) || |
|
294 |
(_scan_only_head == NULL && _scan_only_tail != NULL) || |
|
295 |
(_scan_only_head != NULL && _scan_only_tail == NULL) ) { |
|
296 |
gclog_or_tty->print_cr("## _scan_only_tail is set incorrectly"); |
|
297 |
scan_only_ret = false; |
|
298 |
} |
|
299 |
||
300 |
if (_curr_scan_only != NULL && _curr_scan_only != _scan_only_head) { |
|
301 |
gclog_or_tty->print_cr("### _curr_scan_only is set incorrectly"); |
|
302 |
scan_only_ret = false; |
|
303 |
} |
|
304 |
||
305 |
if (!scan_only_ret) { |
|
306 |
gclog_or_tty->print_cr("### SCAN-ONLY LIST seems not well formed!"); |
|
307 |
gclog_or_tty->print_cr("### list has %d entries, _scan_only_length is %d", |
|
308 |
length, _scan_only_length); |
|
309 |
} |
|
310 |
||
311 |
return ret && scan_only_ret; |
|
312 |
} |
|
313 |
||
314 |
bool YoungList::check_list_empty(bool ignore_scan_only_list, |
|
315 |
bool check_sample) { |
|
316 |
bool ret = true; |
|
317 |
||
318 |
if (_length != 0) { |
|
319 |
gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %d", |
|
320 |
_length); |
|
321 |
ret = false; |
|
322 |
} |
|
323 |
if (check_sample && _last_sampled_rs_lengths != 0) { |
|
324 |
gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths"); |
|
325 |
ret = false; |
|
326 |
} |
|
327 |
if (_head != NULL) { |
|
328 |
gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head"); |
|
329 |
ret = false; |
|
330 |
} |
|
331 |
if (!ret) { |
|
332 |
gclog_or_tty->print_cr("### YOUNG LIST does not seem empty"); |
|
333 |
} |
|
334 |
||
335 |
if (ignore_scan_only_list) |
|
336 |
return ret; |
|
337 |
||
338 |
bool scan_only_ret = true; |
|
339 |
if (_scan_only_length != 0) { |
|
340 |
gclog_or_tty->print_cr("### SCAN-ONLY LIST should have 0 length, not %d", |
|
341 |
_scan_only_length); |
|
342 |
scan_only_ret = false; |
|
343 |
} |
|
344 |
if (_scan_only_head != NULL) { |
|
345 |
gclog_or_tty->print_cr("### SCAN-ONLY LIST does not have a NULL head"); |
|
346 |
scan_only_ret = false; |
|
347 |
} |
|
348 |
if (_scan_only_tail != NULL) { |
|
349 |
gclog_or_tty->print_cr("### SCAN-ONLY LIST does not have a NULL tail"); |
|
350 |
scan_only_ret = false; |
|
351 |
} |
|
352 |
if (!scan_only_ret) { |
|
353 |
gclog_or_tty->print_cr("### SCAN-ONLY LIST does not seem empty"); |
|
354 |
} |
|
355 |
||
356 |
return ret && scan_only_ret; |
|
357 |
} |
|
358 |
||
359 |
void |
|
360 |
YoungList::rs_length_sampling_init() { |
|
361 |
_sampled_rs_lengths = 0; |
|
362 |
_curr = _head; |
|
363 |
} |
|
364 |
||
365 |
bool |
|
366 |
YoungList::rs_length_sampling_more() { |
|
367 |
return _curr != NULL; |
|
368 |
} |
|
369 |
||
370 |
void |
|
371 |
YoungList::rs_length_sampling_next() { |
|
372 |
assert( _curr != NULL, "invariant" ); |
|
373 |
_sampled_rs_lengths += _curr->rem_set()->occupied(); |
|
374 |
_curr = _curr->get_next_young_region(); |
|
375 |
if (_curr == NULL) { |
|
376 |
_last_sampled_rs_lengths = _sampled_rs_lengths; |
|
377 |
// gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths); |
|
378 |
} |
|
379 |
} |
|
380 |
||
381 |
void |
|
382 |
YoungList::reset_auxilary_lists() { |
|
383 |
// We could have just "moved" the scan-only list to the young list. |
|
384 |
// However, the scan-only list is ordered according to the region |
|
385 |
// age in descending order, so, by moving one entry at a time, we |
|
386 |
// ensure that it is recreated in ascending order. |
|
387 |
||
388 |
guarantee( is_empty(), "young list should be empty" ); |
|
389 |
assert(check_list_well_formed(), "young list should be well formed"); |
|
390 |
||
391 |
// Add survivor regions to SurvRateGroup. |
|
392 |
_g1h->g1_policy()->note_start_adding_survivor_regions(); |
|
2009 | 393 |
_g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */); |
1374 | 394 |
for (HeapRegion* curr = _survivor_head; |
395 |
curr != NULL; |
|
396 |
curr = curr->get_next_young_region()) { |
|
397 |
_g1h->g1_policy()->set_region_survivors(curr); |
|
398 |
} |
|
399 |
_g1h->g1_policy()->note_stop_adding_survivor_regions(); |
|
400 |
||
401 |
if (_survivor_head != NULL) { |
|
402 |
_head = _survivor_head; |
|
403 |
_length = _survivor_length + _scan_only_length; |
|
2009 | 404 |
_survivor_tail->set_next_young_region(_scan_only_head); |
1374 | 405 |
} else { |
406 |
_head = _scan_only_head; |
|
407 |
_length = _scan_only_length; |
|
408 |
} |
|
409 |
||
410 |
for (HeapRegion* curr = _scan_only_head; |
|
411 |
curr != NULL; |
|
412 |
curr = curr->get_next_young_region()) { |
|
413 |
curr->recalculate_age_in_surv_rate_group(); |
|
414 |
} |
|
415 |
_scan_only_head = NULL; |
|
416 |
_scan_only_tail = NULL; |
|
417 |
_scan_only_length = 0; |
|
418 |
_curr_scan_only = NULL; |
|
419 |
||
420 |
_survivor_head = NULL; |
|
2009 | 421 |
_survivor_tail = NULL; |
1374 | 422 |
_survivor_length = 0; |
2009 | 423 |
_g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */); |
1374 | 424 |
|
425 |
assert(check_list_well_formed(), "young list should be well formed"); |
|
426 |
} |
|
427 |
||
428 |
void YoungList::print() { |
|
429 |
HeapRegion* lists[] = {_head, _scan_only_head, _survivor_head}; |
|
430 |
const char* names[] = {"YOUNG", "SCAN-ONLY", "SURVIVOR"}; |
|
431 |
||
432 |
for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) { |
|
433 |
gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]); |
|
434 |
HeapRegion *curr = lists[list]; |
|
435 |
if (curr == NULL) |
|
436 |
gclog_or_tty->print_cr(" empty"); |
|
437 |
while (curr != NULL) { |
|
438 |
gclog_or_tty->print_cr(" [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, " |
|
439 |
"age: %4d, y: %d, s-o: %d, surv: %d", |
|
440 |
curr->bottom(), curr->end(), |
|
441 |
curr->top(), |
|
442 |
curr->prev_top_at_mark_start(), |
|
443 |
curr->next_top_at_mark_start(), |
|
444 |
curr->top_at_conc_mark_count(), |
|
445 |
curr->age_in_surv_rate_group_cond(), |
|
446 |
curr->is_young(), |
|
447 |
curr->is_scan_only(), |
|
448 |
curr->is_survivor()); |
|
449 |
curr = curr->get_next_young_region(); |
|
450 |
} |
|
451 |
} |
|
452 |
||
453 |
gclog_or_tty->print_cr(""); |
|
454 |
} |
|
455 |
||
456 |
void G1CollectedHeap::stop_conc_gc_threads() { |
|
457 |
_cg1r->cg1rThread()->stop(); |
|
458 |
_czft->stop(); |
|
459 |
_cmThread->stop(); |
|
460 |
} |
|
461 |
||
462 |
||
463 |
void G1CollectedHeap::check_ct_logs_at_safepoint() { |
|
464 |
DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); |
|
465 |
CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set(); |
|
466 |
||
467 |
// Count the dirty cards at the start. |
|
468 |
CountNonCleanMemRegionClosure count1(this); |
|
469 |
ct_bs->mod_card_iterate(&count1); |
|
470 |
int orig_count = count1.n(); |
|
471 |
||
472 |
// First clear the logged cards. |
|
473 |
ClearLoggedCardTableEntryClosure clear; |
|
474 |
dcqs.set_closure(&clear); |
|
475 |
dcqs.apply_closure_to_all_completed_buffers(); |
|
476 |
dcqs.iterate_closure_all_threads(false); |
|
477 |
clear.print_histo(); |
|
478 |
||
479 |
// Now ensure that there's no dirty cards. |
|
480 |
CountNonCleanMemRegionClosure count2(this); |
|
481 |
ct_bs->mod_card_iterate(&count2); |
|
482 |
if (count2.n() != 0) { |
|
483 |
gclog_or_tty->print_cr("Card table has %d entries; %d originally", |
|
484 |
count2.n(), orig_count); |
|
485 |
} |
|
486 |
guarantee(count2.n() == 0, "Card table should be clean."); |
|
487 |
||
488 |
RedirtyLoggedCardTableEntryClosure redirty; |
|
489 |
JavaThread::dirty_card_queue_set().set_closure(&redirty); |
|
490 |
dcqs.apply_closure_to_all_completed_buffers(); |
|
491 |
dcqs.iterate_closure_all_threads(false); |
|
492 |
gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.", |
|
493 |
clear.calls(), orig_count); |
|
494 |
guarantee(redirty.calls() == clear.calls(), |
|
495 |
"Or else mechanism is broken."); |
|
496 |
||
497 |
CountNonCleanMemRegionClosure count3(this); |
|
498 |
ct_bs->mod_card_iterate(&count3); |
|
499 |
if (count3.n() != orig_count) { |
|
500 |
gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.", |
|
501 |
orig_count, count3.n()); |
|
502 |
guarantee(count3.n() >= orig_count, "Should have restored them all."); |
|
503 |
} |
|
504 |
||
505 |
JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl); |
|
506 |
} |
|
507 |
||
508 |
// Private class members. |
|
509 |
||
510 |
G1CollectedHeap* G1CollectedHeap::_g1h; |
|
511 |
||
512 |
// Private methods. |
|
513 |
||
514 |
// Finds a HeapRegion that can be used to allocate a given size of block. |
|
515 |
||
516 |
||
517 |
HeapRegion* G1CollectedHeap::newAllocRegion_work(size_t word_size, |
|
518 |
bool do_expand, |
|
519 |
bool zero_filled) { |
|
520 |
ConcurrentZFThread::note_region_alloc(); |
|
521 |
HeapRegion* res = alloc_free_region_from_lists(zero_filled); |
|
522 |
if (res == NULL && do_expand) { |
|
523 |
expand(word_size * HeapWordSize); |
|
524 |
res = alloc_free_region_from_lists(zero_filled); |
|
525 |
assert(res == NULL || |
|
526 |
(!res->isHumongous() && |
|
527 |
(!zero_filled || |
|
528 |
res->zero_fill_state() == HeapRegion::Allocated)), |
|
529 |
"Alloc Regions must be zero filled (and non-H)"); |
|
530 |
} |
|
531 |
if (res != NULL && res->is_empty()) _free_regions--; |
|
532 |
assert(res == NULL || |
|
533 |
(!res->isHumongous() && |
|
534 |
(!zero_filled || |
|
535 |
res->zero_fill_state() == HeapRegion::Allocated)), |
|
536 |
"Non-young alloc Regions must be zero filled (and non-H)"); |
|
537 |
||
538 |
if (G1TraceRegions) { |
|
539 |
if (res != NULL) { |
|
540 |
gclog_or_tty->print_cr("new alloc region %d:["PTR_FORMAT", "PTR_FORMAT"], " |
|
541 |
"top "PTR_FORMAT, |
|
542 |
res->hrs_index(), res->bottom(), res->end(), res->top()); |
|
543 |
} |
|
544 |
} |
|
545 |
||
546 |
return res; |
|
547 |
} |
|
548 |
||
549 |
HeapRegion* G1CollectedHeap::newAllocRegionWithExpansion(int purpose, |
|
550 |
size_t word_size, |
|
551 |
bool zero_filled) { |
|
552 |
HeapRegion* alloc_region = NULL; |
|
553 |
if (_gc_alloc_region_counts[purpose] < g1_policy()->max_regions(purpose)) { |
|
554 |
alloc_region = newAllocRegion_work(word_size, true, zero_filled); |
|
555 |
if (purpose == GCAllocForSurvived && alloc_region != NULL) { |
|
2009 | 556 |
alloc_region->set_survivor(); |
1374 | 557 |
} |
558 |
++_gc_alloc_region_counts[purpose]; |
|
559 |
} else { |
|
560 |
g1_policy()->note_alloc_region_limit_reached(purpose); |
|
561 |
} |
|
562 |
return alloc_region; |
|
563 |
} |
|
564 |
||
565 |
// If could fit into free regions w/o expansion, try. |
|
566 |
// Otherwise, if can expand, do so. |
|
567 |
// Otherwise, if using ex regions might help, try with ex given back. |
|
568 |
HeapWord* G1CollectedHeap::humongousObjAllocate(size_t word_size) { |
|
569 |
assert(regions_accounted_for(), "Region leakage!"); |
|
570 |
||
571 |
// We can't allocate H regions while cleanupComplete is running, since |
|
572 |
// some of the regions we find to be empty might not yet be added to the |
|
573 |
// unclean list. (If we're already at a safepoint, this call is |
|
574 |
// unnecessary, not to mention wrong.) |
|
575 |
if (!SafepointSynchronize::is_at_safepoint()) |
|
576 |
wait_for_cleanup_complete(); |
|
577 |
||
578 |
size_t num_regions = |
|
579 |
round_to(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords; |
|
580 |
||
581 |
// Special case if < one region??? |
|
582 |
||
583 |
// Remember the ft size. |
|
584 |
size_t x_size = expansion_regions(); |
|
585 |
||
586 |
HeapWord* res = NULL; |
|
587 |
bool eliminated_allocated_from_lists = false; |
|
588 |
||
589 |
// Can the allocation potentially fit in the free regions? |
|
590 |
if (free_regions() >= num_regions) { |
|
591 |
res = _hrs->obj_allocate(word_size); |
|
592 |
} |
|
593 |
if (res == NULL) { |
|
594 |
// Try expansion. |
|
595 |
size_t fs = _hrs->free_suffix(); |
|
596 |
if (fs + x_size >= num_regions) { |
|
597 |
expand((num_regions - fs) * HeapRegion::GrainBytes); |
|
598 |
res = _hrs->obj_allocate(word_size); |
|
599 |
assert(res != NULL, "This should have worked."); |
|
600 |
} else { |
|
601 |
// Expansion won't help. Are there enough free regions if we get rid |
|
602 |
// of reservations? |
|
603 |
size_t avail = free_regions(); |
|
604 |
if (avail >= num_regions) { |
|
605 |
res = _hrs->obj_allocate(word_size); |
|
606 |
if (res != NULL) { |
|
607 |
remove_allocated_regions_from_lists(); |
|
608 |
eliminated_allocated_from_lists = true; |
|
609 |
} |
|
610 |
} |
|
611 |
} |
|
612 |
} |
|
613 |
if (res != NULL) { |
|
614 |
// Increment by the number of regions allocated. |
|
615 |
// FIXME: Assumes regions all of size GrainBytes. |
|
616 |
#ifndef PRODUCT |
|
617 |
mr_bs()->verify_clean_region(MemRegion(res, res + num_regions * |
|
618 |
HeapRegion::GrainWords)); |
|
619 |
#endif |
|
620 |
if (!eliminated_allocated_from_lists) |
|
621 |
remove_allocated_regions_from_lists(); |
|
622 |
_summary_bytes_used += word_size * HeapWordSize; |
|
623 |
_free_regions -= num_regions; |
|
624 |
_num_humongous_regions += (int) num_regions; |
|
625 |
} |
|
626 |
assert(regions_accounted_for(), "Region Leakage"); |
|
627 |
return res; |
|
628 |
} |
|
629 |
||
630 |
HeapWord* |
|
631 |
G1CollectedHeap::attempt_allocation_slow(size_t word_size, |
|
632 |
bool permit_collection_pause) { |
|
633 |
HeapWord* res = NULL; |
|
634 |
HeapRegion* allocated_young_region = NULL; |
|
635 |
||
636 |
assert( SafepointSynchronize::is_at_safepoint() || |
|
637 |
Heap_lock->owned_by_self(), "pre condition of the call" ); |
|
638 |
||
639 |
if (isHumongous(word_size)) { |
|
640 |
// Allocation of a humongous object can, in a sense, complete a |
|
641 |
// partial region, if the previous alloc was also humongous, and |
|
642 |
// caused the test below to succeed. |
|
643 |
if (permit_collection_pause) |
|
644 |
do_collection_pause_if_appropriate(word_size); |
|
645 |
res = humongousObjAllocate(word_size); |
|
646 |
assert(_cur_alloc_region == NULL |
|
647 |
|| !_cur_alloc_region->isHumongous(), |
|
648 |
"Prevent a regression of this bug."); |
|
649 |
||
650 |
} else { |
|
1386
e20a51f0d970
6652160: G1: assert(cur_used_bytes == _g1->recalculate_used(),"It should!") at g1CollectorPolicy.cpp:1425
iveresov
parents:
1385
diff
changeset
|
651 |
// We may have concurrent cleanup working at the time. Wait for it |
e20a51f0d970
6652160: G1: assert(cur_used_bytes == _g1->recalculate_used(),"It should!") at g1CollectorPolicy.cpp:1425
iveresov
parents:
1385
diff
changeset
|
652 |
// to complete. In the future we would probably want to make the |
e20a51f0d970
6652160: G1: assert(cur_used_bytes == _g1->recalculate_used(),"It should!") at g1CollectorPolicy.cpp:1425
iveresov
parents:
1385
diff
changeset
|
653 |
// concurrent cleanup truly concurrent by decoupling it from the |
e20a51f0d970
6652160: G1: assert(cur_used_bytes == _g1->recalculate_used(),"It should!") at g1CollectorPolicy.cpp:1425
iveresov
parents:
1385
diff
changeset
|
654 |
// allocation. |
e20a51f0d970
6652160: G1: assert(cur_used_bytes == _g1->recalculate_used(),"It should!") at g1CollectorPolicy.cpp:1425
iveresov
parents:
1385
diff
changeset
|
655 |
if (!SafepointSynchronize::is_at_safepoint()) |
e20a51f0d970
6652160: G1: assert(cur_used_bytes == _g1->recalculate_used(),"It should!") at g1CollectorPolicy.cpp:1425
iveresov
parents:
1385
diff
changeset
|
656 |
wait_for_cleanup_complete(); |
1374 | 657 |
// If we do a collection pause, this will be reset to a non-NULL |
658 |
// value. If we don't, nulling here ensures that we allocate a new |
|
659 |
// region below. |
|
660 |
if (_cur_alloc_region != NULL) { |
|
661 |
// We're finished with the _cur_alloc_region. |
|
662 |
_summary_bytes_used += _cur_alloc_region->used(); |
|
663 |
_cur_alloc_region = NULL; |
|
664 |
} |
|
665 |
assert(_cur_alloc_region == NULL, "Invariant."); |
|
666 |
// Completion of a heap region is perhaps a good point at which to do |
|
667 |
// a collection pause. |
|
668 |
if (permit_collection_pause) |
|
669 |
do_collection_pause_if_appropriate(word_size); |
|
670 |
// Make sure we have an allocation region available. |
|
671 |
if (_cur_alloc_region == NULL) { |
|
672 |
if (!SafepointSynchronize::is_at_safepoint()) |
|
673 |
wait_for_cleanup_complete(); |
|
674 |
bool next_is_young = should_set_young_locked(); |
|
675 |
// If the next region is not young, make sure it's zero-filled. |
|
676 |
_cur_alloc_region = newAllocRegion(word_size, !next_is_young); |
|
677 |
if (_cur_alloc_region != NULL) { |
|
678 |
_summary_bytes_used -= _cur_alloc_region->used(); |
|
679 |
if (next_is_young) { |
|
680 |
set_region_short_lived_locked(_cur_alloc_region); |
|
681 |
allocated_young_region = _cur_alloc_region; |
|
682 |
} |
|
683 |
} |
|
684 |
} |
|
685 |
assert(_cur_alloc_region == NULL || !_cur_alloc_region->isHumongous(), |
|
686 |
"Prevent a regression of this bug."); |
|
687 |
||
688 |
// Now retry the allocation. |
|
689 |
if (_cur_alloc_region != NULL) { |
|
690 |
res = _cur_alloc_region->allocate(word_size); |
|
691 |
} |
|
692 |
} |
|
693 |
||
694 |
// NOTE: fails frequently in PRT |
|
695 |
assert(regions_accounted_for(), "Region leakage!"); |
|
696 |
||
697 |
if (res != NULL) { |
|
698 |
if (!SafepointSynchronize::is_at_safepoint()) { |
|
699 |
assert( permit_collection_pause, "invariant" ); |
|
700 |
assert( Heap_lock->owned_by_self(), "invariant" ); |
|
701 |
Heap_lock->unlock(); |
|
702 |
} |
|
703 |
||
704 |
if (allocated_young_region != NULL) { |
|
705 |
HeapRegion* hr = allocated_young_region; |
|
706 |
HeapWord* bottom = hr->bottom(); |
|
707 |
HeapWord* end = hr->end(); |
|
708 |
MemRegion mr(bottom, end); |
|
709 |
((CardTableModRefBS*)_g1h->barrier_set())->dirty(mr); |
|
710 |
} |
|
711 |
} |
|
712 |
||
713 |
assert( SafepointSynchronize::is_at_safepoint() || |
|
714 |
(res == NULL && Heap_lock->owned_by_self()) || |
|
715 |
(res != NULL && !Heap_lock->owned_by_self()), |
|
716 |
"post condition of the call" ); |
|
717 |
||
718 |
return res; |
|
719 |
} |
|
720 |
||
721 |
HeapWord* |
|
722 |
G1CollectedHeap::mem_allocate(size_t word_size, |
|
723 |
bool is_noref, |
|
724 |
bool is_tlab, |
|
725 |
bool* gc_overhead_limit_was_exceeded) { |
|
726 |
debug_only(check_for_valid_allocation_state()); |
|
727 |
assert(no_gc_in_progress(), "Allocation during gc not allowed"); |
|
728 |
HeapWord* result = NULL; |
|
729 |
||
730 |
// Loop until the allocation is satisified, |
|
731 |
// or unsatisfied after GC. |
|
732 |
for (int try_count = 1; /* return or throw */; try_count += 1) { |
|
733 |
int gc_count_before; |
|
734 |
{ |
|
735 |
Heap_lock->lock(); |
|
736 |
result = attempt_allocation(word_size); |
|
737 |
if (result != NULL) { |
|
738 |
// attempt_allocation should have unlocked the heap lock |
|
739 |
assert(is_in(result), "result not in heap"); |
|
740 |
return result; |
|
741 |
} |
|
742 |
// Read the gc count while the heap lock is held. |
|
743 |
gc_count_before = SharedHeap::heap()->total_collections(); |
|
744 |
Heap_lock->unlock(); |
|
745 |
} |
|
746 |
||
747 |
// Create the garbage collection operation... |
|
748 |
VM_G1CollectForAllocation op(word_size, |
|
749 |
gc_count_before); |
|
750 |
||
751 |
// ...and get the VM thread to execute it. |
|
752 |
VMThread::execute(&op); |
|
753 |
if (op.prologue_succeeded()) { |
|
754 |
result = op.result(); |
|
755 |
assert(result == NULL || is_in(result), "result not in heap"); |
|
756 |
return result; |
|
757 |
} |
|
758 |
||
759 |
// Give a warning if we seem to be looping forever. |
|
760 |
if ((QueuedAllocationWarningCount > 0) && |
|
761 |
(try_count % QueuedAllocationWarningCount == 0)) { |
|
762 |
warning("G1CollectedHeap::mem_allocate_work retries %d times", |
|
763 |
try_count); |
|
764 |
} |
|
765 |
} |
|
766 |
} |
|
767 |
||
768 |
void G1CollectedHeap::abandon_cur_alloc_region() { |
|
769 |
if (_cur_alloc_region != NULL) { |
|
770 |
// We're finished with the _cur_alloc_region. |
|
771 |
if (_cur_alloc_region->is_empty()) { |
|
772 |
_free_regions++; |
|
773 |
free_region(_cur_alloc_region); |
|
774 |
} else { |
|
775 |
_summary_bytes_used += _cur_alloc_region->used(); |
|
776 |
} |
|
777 |
_cur_alloc_region = NULL; |
|
778 |
} |
|
779 |
} |
|
780 |
||
781 |
class PostMCRemSetClearClosure: public HeapRegionClosure { |
|
782 |
ModRefBarrierSet* _mr_bs; |
|
783 |
public: |
|
784 |
PostMCRemSetClearClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {} |
|
785 |
bool doHeapRegion(HeapRegion* r) { |
|
786 |
r->reset_gc_time_stamp(); |
|
787 |
if (r->continuesHumongous()) |
|
788 |
return false; |
|
789 |
HeapRegionRemSet* hrrs = r->rem_set(); |
|
790 |
if (hrrs != NULL) hrrs->clear(); |
|
791 |
// You might think here that we could clear just the cards |
|
792 |
// corresponding to the used region. But no: if we leave a dirty card |
|
793 |
// in a region we might allocate into, then it would prevent that card |
|
794 |
// from being enqueued, and cause it to be missed. |
|
795 |
// Re: the performance cost: we shouldn't be doing full GC anyway! |
|
796 |
_mr_bs->clear(MemRegion(r->bottom(), r->end())); |
|
797 |
return false; |
|
798 |
} |
|
799 |
}; |
|
800 |
||
801 |
||
802 |
class PostMCRemSetInvalidateClosure: public HeapRegionClosure { |
|
803 |
ModRefBarrierSet* _mr_bs; |
|
804 |
public: |
|
805 |
PostMCRemSetInvalidateClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {} |
|
806 |
bool doHeapRegion(HeapRegion* r) { |
|
807 |
if (r->continuesHumongous()) return false; |
|
808 |
if (r->used_region().word_size() != 0) { |
|
809 |
_mr_bs->invalidate(r->used_region(), true /*whole heap*/); |
|
810 |
} |
|
811 |
return false; |
|
812 |
} |
|
813 |
}; |
|
814 |
||
815 |
void G1CollectedHeap::do_collection(bool full, bool clear_all_soft_refs, |
|
816 |
size_t word_size) { |
|
817 |
ResourceMark rm; |
|
818 |
||
819 |
if (full && DisableExplicitGC) { |
|
820 |
gclog_or_tty->print("\n\n\nDisabling Explicit GC\n\n\n"); |
|
821 |
return; |
|
822 |
} |
|
823 |
||
824 |
assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint"); |
|
825 |
assert(Thread::current() == VMThread::vm_thread(), "should be in vm thread"); |
|
826 |
||
827 |
if (GC_locker::is_active()) { |
|
828 |
return; // GC is disabled (e.g. JNI GetXXXCritical operation) |
|
829 |
} |
|
830 |
||
831 |
{ |
|
832 |
IsGCActiveMark x; |
|
833 |
||
834 |
// Timing |
|
835 |
gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps); |
|
836 |
TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty); |
|
837 |
TraceTime t(full ? "Full GC (System.gc())" : "Full GC", PrintGC, true, gclog_or_tty); |
|
838 |
||
839 |
double start = os::elapsedTime(); |
|
840 |
GCOverheadReporter::recordSTWStart(start); |
|
841 |
g1_policy()->record_full_collection_start(); |
|
842 |
||
843 |
gc_prologue(true); |
|
844 |
increment_total_collections(); |
|
845 |
||
846 |
size_t g1h_prev_used = used(); |
|
847 |
assert(used() == recalculate_used(), "Should be equal"); |
|
848 |
||
849 |
if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) { |
|
850 |
HandleMark hm; // Discard invalid handles created during verification |
|
851 |
prepare_for_verify(); |
|
852 |
gclog_or_tty->print(" VerifyBeforeGC:"); |
|
853 |
Universe::verify(true); |
|
854 |
} |
|
855 |
assert(regions_accounted_for(), "Region leakage!"); |
|
856 |
||
857 |
COMPILER2_PRESENT(DerivedPointerTable::clear()); |
|
858 |
||
859 |
// We want to discover references, but not process them yet. |
|
860 |
// This mode is disabled in |
|
861 |
// instanceRefKlass::process_discovered_references if the |
|
862 |
// generation does some collection work, or |
|
863 |
// instanceRefKlass::enqueue_discovered_references if the |
|
864 |
// generation returns without doing any work. |
|
865 |
ref_processor()->disable_discovery(); |
|
866 |
ref_processor()->abandon_partial_discovery(); |
|
867 |
ref_processor()->verify_no_references_recorded(); |
|
868 |
||
869 |
// Abandon current iterations of concurrent marking and concurrent |
|
870 |
// refinement, if any are in progress. |
|
871 |
concurrent_mark()->abort(); |
|
872 |
||
873 |
// Make sure we'll choose a new allocation region afterwards. |
|
874 |
abandon_cur_alloc_region(); |
|
875 |
assert(_cur_alloc_region == NULL, "Invariant."); |
|
876 |
g1_rem_set()->as_HRInto_G1RemSet()->cleanupHRRS(); |
|
877 |
tear_down_region_lists(); |
|
878 |
set_used_regions_to_need_zero_fill(); |
|
879 |
if (g1_policy()->in_young_gc_mode()) { |
|
880 |
empty_young_list(); |
|
881 |
g1_policy()->set_full_young_gcs(true); |
|
882 |
} |
|
883 |
||
884 |
// Temporarily make reference _discovery_ single threaded (non-MT). |
|
885 |
ReferenceProcessorMTMutator rp_disc_ser(ref_processor(), false); |
|
886 |
||
887 |
// Temporarily make refs discovery atomic |
|
888 |
ReferenceProcessorAtomicMutator rp_disc_atomic(ref_processor(), true); |
|
889 |
||
890 |
// Temporarily clear _is_alive_non_header |
|
891 |
ReferenceProcessorIsAliveMutator rp_is_alive_null(ref_processor(), NULL); |
|
892 |
||
893 |
ref_processor()->enable_discovery(); |
|
1610
5dddd195cc86
6778647: snap(), snap_policy() should be renamed setup(), setup_policy()
ysr
parents:
1606
diff
changeset
|
894 |
ref_processor()->setup_policy(clear_all_soft_refs); |
1374 | 895 |
|
896 |
// Do collection work |
|
897 |
{ |
|
898 |
HandleMark hm; // Discard invalid handles created during gc |
|
899 |
G1MarkSweep::invoke_at_safepoint(ref_processor(), clear_all_soft_refs); |
|
900 |
} |
|
901 |
// Because freeing humongous regions may have added some unclean |
|
902 |
// regions, it is necessary to tear down again before rebuilding. |
|
903 |
tear_down_region_lists(); |
|
904 |
rebuild_region_lists(); |
|
905 |
||
906 |
_summary_bytes_used = recalculate_used(); |
|
907 |
||
908 |
ref_processor()->enqueue_discovered_references(); |
|
909 |
||
910 |
COMPILER2_PRESENT(DerivedPointerTable::update_pointers()); |
|
911 |
||
912 |
if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) { |
|
913 |
HandleMark hm; // Discard invalid handles created during verification |
|
914 |
gclog_or_tty->print(" VerifyAfterGC:"); |
|
915 |
Universe::verify(false); |
|
916 |
} |
|
917 |
NOT_PRODUCT(ref_processor()->verify_no_references_recorded()); |
|
918 |
||
919 |
reset_gc_time_stamp(); |
|
920 |
// Since everything potentially moved, we will clear all remembered |
|
921 |
// sets, and clear all cards. Later we will also cards in the used |
|
922 |
// portion of the heap after the resizing (which could be a shrinking.) |
|
923 |
// We will also reset the GC time stamps of the regions. |
|
924 |
PostMCRemSetClearClosure rs_clear(mr_bs()); |
|
925 |
heap_region_iterate(&rs_clear); |
|
926 |
||
927 |
// Resize the heap if necessary. |
|
928 |
resize_if_necessary_after_full_collection(full ? 0 : word_size); |
|
929 |
||
930 |
// Since everything potentially moved, we will clear all remembered |
|
931 |
// sets, but also dirty all cards corresponding to used regions. |
|
932 |
PostMCRemSetInvalidateClosure rs_invalidate(mr_bs()); |
|
933 |
heap_region_iterate(&rs_invalidate); |
|
934 |
if (_cg1r->use_cache()) { |
|
935 |
_cg1r->clear_and_record_card_counts(); |
|
936 |
_cg1r->clear_hot_cache(); |
|
937 |
} |
|
938 |
||
939 |
if (PrintGC) { |
|
940 |
print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity()); |
|
941 |
} |
|
942 |
||
943 |
if (true) { // FIXME |
|
944 |
// Ask the permanent generation to adjust size for full collections |
|
945 |
perm()->compute_new_size(); |
|
946 |
} |
|
947 |
||
948 |
double end = os::elapsedTime(); |
|
949 |
GCOverheadReporter::recordSTWEnd(end); |
|
950 |
g1_policy()->record_full_collection_end(); |
|
951 |
||
2010
c13462bbad17
6690928: Use spinning in combination with yields for workstealing termination.
jmasa
parents:
2009
diff
changeset
|
952 |
#ifdef TRACESPINNING |
c13462bbad17
6690928: Use spinning in combination with yields for workstealing termination.
jmasa
parents:
2009
diff
changeset
|
953 |
ParallelTaskTerminator::print_termination_counts(); |
c13462bbad17
6690928: Use spinning in combination with yields for workstealing termination.
jmasa
parents:
2009
diff
changeset
|
954 |
#endif |
c13462bbad17
6690928: Use spinning in combination with yields for workstealing termination.
jmasa
parents:
2009
diff
changeset
|
955 |
|
1374 | 956 |
gc_epilogue(true); |
957 |
||
958 |
// Abandon concurrent refinement. This must happen last: in the |
|
959 |
// dirty-card logging system, some cards may be dirty by weak-ref |
|
960 |
// processing, and may be enqueued. But the whole card table is |
|
961 |
// dirtied, so this should abandon those logs, and set "do_traversal" |
|
962 |
// to true. |
|
963 |
concurrent_g1_refine()->set_pya_restart(); |
|
964 |
||
965 |
assert(regions_accounted_for(), "Region leakage!"); |
|
966 |
} |
|
967 |
||
968 |
if (g1_policy()->in_young_gc_mode()) { |
|
969 |
_young_list->reset_sampled_info(); |
|
970 |
assert( check_young_list_empty(false, false), |
|
971 |
"young list should be empty at this point"); |
|
972 |
} |
|
973 |
} |
|
974 |
||
975 |
void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) { |
|
976 |
do_collection(true, clear_all_soft_refs, 0); |
|
977 |
} |
|
978 |
||
979 |
// This code is mostly copied from TenuredGeneration. |
|
980 |
void |
|
981 |
G1CollectedHeap:: |
|
982 |
resize_if_necessary_after_full_collection(size_t word_size) { |
|
983 |
assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check"); |
|
984 |
||
985 |
// Include the current allocation, if any, and bytes that will be |
|
986 |
// pre-allocated to support collections, as "used". |
|
987 |
const size_t used_after_gc = used(); |
|
988 |
const size_t capacity_after_gc = capacity(); |
|
989 |
const size_t free_after_gc = capacity_after_gc - used_after_gc; |
|
990 |
||
991 |
// We don't have floating point command-line arguments |
|
992 |
const double minimum_free_percentage = (double) MinHeapFreeRatio / 100; |
|
993 |
const double maximum_used_percentage = 1.0 - minimum_free_percentage; |
|
994 |
const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100; |
|
995 |
const double minimum_used_percentage = 1.0 - maximum_free_percentage; |
|
996 |
||
997 |
size_t minimum_desired_capacity = (size_t) (used_after_gc / maximum_used_percentage); |
|
998 |
size_t maximum_desired_capacity = (size_t) (used_after_gc / minimum_used_percentage); |
|
999 |
||
1000 |
// Don't shrink less than the initial size. |
|
1001 |
minimum_desired_capacity = |
|
1002 |
MAX2(minimum_desired_capacity, |
|
1003 |
collector_policy()->initial_heap_byte_size()); |
|
1004 |
maximum_desired_capacity = |
|
1005 |
MAX2(maximum_desired_capacity, |
|
1006 |
collector_policy()->initial_heap_byte_size()); |
|
1007 |
||
1008 |
// We are failing here because minimum_desired_capacity is |
|
1009 |
assert(used_after_gc <= minimum_desired_capacity, "sanity check"); |
|
1010 |
assert(minimum_desired_capacity <= maximum_desired_capacity, "sanity check"); |
|
1011 |
||
1012 |
if (PrintGC && Verbose) { |
|
1013 |
const double free_percentage = ((double)free_after_gc) / capacity(); |
|
1014 |
gclog_or_tty->print_cr("Computing new size after full GC "); |
|
1015 |
gclog_or_tty->print_cr(" " |
|
1016 |
" minimum_free_percentage: %6.2f", |
|
1017 |
minimum_free_percentage); |
|
1018 |
gclog_or_tty->print_cr(" " |
|
1019 |
" maximum_free_percentage: %6.2f", |
|
1020 |
maximum_free_percentage); |
|
1021 |
gclog_or_tty->print_cr(" " |
|
1022 |
" capacity: %6.1fK" |
|
1023 |
" minimum_desired_capacity: %6.1fK" |
|
1024 |
" maximum_desired_capacity: %6.1fK", |
|
1025 |
capacity() / (double) K, |
|
1026 |
minimum_desired_capacity / (double) K, |
|
1027 |
maximum_desired_capacity / (double) K); |
|
1028 |
gclog_or_tty->print_cr(" " |
|
1029 |
" free_after_gc : %6.1fK" |
|
1030 |
" used_after_gc : %6.1fK", |
|
1031 |
free_after_gc / (double) K, |
|
1032 |
used_after_gc / (double) K); |
|
1033 |
gclog_or_tty->print_cr(" " |
|
1034 |
" free_percentage: %6.2f", |
|
1035 |
free_percentage); |
|
1036 |
} |
|
1037 |
if (capacity() < minimum_desired_capacity) { |
|
1038 |
// Don't expand unless it's significant |
|
1039 |
size_t expand_bytes = minimum_desired_capacity - capacity_after_gc; |
|
1040 |
expand(expand_bytes); |
|
1041 |
if (PrintGC && Verbose) { |
|
1042 |
gclog_or_tty->print_cr(" expanding:" |
|
1043 |
" minimum_desired_capacity: %6.1fK" |
|
1044 |
" expand_bytes: %6.1fK", |
|
1045 |
minimum_desired_capacity / (double) K, |
|
1046 |
expand_bytes / (double) K); |
|
1047 |
} |
|
1048 |
||
1049 |
// No expansion, now see if we want to shrink |
|
1050 |
} else if (capacity() > maximum_desired_capacity) { |
|
1051 |
// Capacity too large, compute shrinking size |
|
1052 |
size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity; |
|
1053 |
shrink(shrink_bytes); |
|
1054 |
if (PrintGC && Verbose) { |
|
1055 |
gclog_or_tty->print_cr(" " |
|
1056 |
" shrinking:" |
|
1057 |
" initSize: %.1fK" |
|
1058 |
" maximum_desired_capacity: %.1fK", |
|
1059 |
collector_policy()->initial_heap_byte_size() / (double) K, |
|
1060 |
maximum_desired_capacity / (double) K); |
|
1061 |
gclog_or_tty->print_cr(" " |
|
1062 |
" shrink_bytes: %.1fK", |
|
1063 |
shrink_bytes / (double) K); |
|
1064 |
} |
|
1065 |
} |
|
1066 |
} |
|
1067 |
||
1068 |
||
1069 |
HeapWord* |
|
1070 |
G1CollectedHeap::satisfy_failed_allocation(size_t word_size) { |
|
1071 |
HeapWord* result = NULL; |
|
1072 |
||
1073 |
// In a G1 heap, we're supposed to keep allocation from failing by |
|
1074 |
// incremental pauses. Therefore, at least for now, we'll favor |
|
1075 |
// expansion over collection. (This might change in the future if we can |
|
1076 |
// do something smarter than full collection to satisfy a failed alloc.) |
|
1077 |
||
1078 |
result = expand_and_allocate(word_size); |
|
1079 |
if (result != NULL) { |
|
1080 |
assert(is_in(result), "result not in heap"); |
|
1081 |
return result; |
|
1082 |
} |
|
1083 |
||
1084 |
// OK, I guess we have to try collection. |
|
1085 |
||
1086 |
do_collection(false, false, word_size); |
|
1087 |
||
1088 |
result = attempt_allocation(word_size, /*permit_collection_pause*/false); |
|
1089 |
||
1090 |
if (result != NULL) { |
|
1091 |
assert(is_in(result), "result not in heap"); |
|
1092 |
return result; |
|
1093 |
} |
|
1094 |
||
1095 |
// Try collecting soft references. |
|
1096 |
do_collection(false, true, word_size); |
|
1097 |
result = attempt_allocation(word_size, /*permit_collection_pause*/false); |
|
1098 |
if (result != NULL) { |
|
1099 |
assert(is_in(result), "result not in heap"); |
|
1100 |
return result; |
|
1101 |
} |
|
1102 |
||
1103 |
// What else? We might try synchronous finalization later. If the total |
|
1104 |
// space available is large enough for the allocation, then a more |
|
1105 |
// complete compaction phase than we've tried so far might be |
|
1106 |
// appropriate. |
|
1107 |
return NULL; |
|
1108 |
} |
|
1109 |
||
1110 |
// Attempting to expand the heap sufficiently |
|
1111 |
// to support an allocation of the given "word_size". If |
|
1112 |
// successful, perform the allocation and return the address of the |
|
1113 |
// allocated block, or else "NULL". |
|
1114 |
||
1115 |
HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) { |
|
1116 |
size_t expand_bytes = word_size * HeapWordSize; |
|
1117 |
if (expand_bytes < MinHeapDeltaBytes) { |
|
1118 |
expand_bytes = MinHeapDeltaBytes; |
|
1119 |
} |
|
1120 |
expand(expand_bytes); |
|
1121 |
assert(regions_accounted_for(), "Region leakage!"); |
|
1122 |
HeapWord* result = attempt_allocation(word_size, false /* permit_collection_pause */); |
|
1123 |
return result; |
|
1124 |
} |
|
1125 |
||
1126 |
size_t G1CollectedHeap::free_region_if_totally_empty(HeapRegion* hr) { |
|
1127 |
size_t pre_used = 0; |
|
1128 |
size_t cleared_h_regions = 0; |
|
1129 |
size_t freed_regions = 0; |
|
1130 |
UncleanRegionList local_list; |
|
1131 |
free_region_if_totally_empty_work(hr, pre_used, cleared_h_regions, |
|
1132 |
freed_regions, &local_list); |
|
1133 |
||
1134 |
finish_free_region_work(pre_used, cleared_h_regions, freed_regions, |
|
1135 |
&local_list); |
|
1136 |
return pre_used; |
|
1137 |
} |
|
1138 |
||
1139 |
void |
|
1140 |
G1CollectedHeap::free_region_if_totally_empty_work(HeapRegion* hr, |
|
1141 |
size_t& pre_used, |
|
1142 |
size_t& cleared_h, |
|
1143 |
size_t& freed_regions, |
|
1144 |
UncleanRegionList* list, |
|
1145 |
bool par) { |
|
1146 |
assert(!hr->continuesHumongous(), "should have filtered these out"); |
|
1147 |
size_t res = 0; |
|
1148 |
if (!hr->popular() && hr->used() > 0 && hr->garbage_bytes() == hr->used()) { |
|
1149 |
if (!hr->is_young()) { |
|
1150 |
if (G1PolicyVerbose > 0) |
|
1151 |
gclog_or_tty->print_cr("Freeing empty region "PTR_FORMAT "(" SIZE_FORMAT " bytes)" |
|
1152 |
" during cleanup", hr, hr->used()); |
|
1153 |
free_region_work(hr, pre_used, cleared_h, freed_regions, list, par); |
|
1154 |
} |
|
1155 |
} |
|
1156 |
} |
|
1157 |
||
1158 |
// FIXME: both this and shrink could probably be more efficient by |
|
1159 |
// doing one "VirtualSpace::expand_by" call rather than several. |
|
1160 |
void G1CollectedHeap::expand(size_t expand_bytes) { |
|
1161 |
size_t old_mem_size = _g1_storage.committed_size(); |
|
1162 |
// We expand by a minimum of 1K. |
|
1163 |
expand_bytes = MAX2(expand_bytes, (size_t)K); |
|
1164 |
size_t aligned_expand_bytes = |
|
1165 |
ReservedSpace::page_align_size_up(expand_bytes); |
|
1166 |
aligned_expand_bytes = align_size_up(aligned_expand_bytes, |
|
1167 |
HeapRegion::GrainBytes); |
|
1168 |
expand_bytes = aligned_expand_bytes; |
|
1169 |
while (expand_bytes > 0) { |
|
1170 |
HeapWord* base = (HeapWord*)_g1_storage.high(); |
|
1171 |
// Commit more storage. |
|
1172 |
bool successful = _g1_storage.expand_by(HeapRegion::GrainBytes); |
|
1173 |
if (!successful) { |
|
1174 |
expand_bytes = 0; |
|
1175 |
} else { |
|
1176 |
expand_bytes -= HeapRegion::GrainBytes; |
|
1177 |
// Expand the committed region. |
|
1178 |
HeapWord* high = (HeapWord*) _g1_storage.high(); |
|
1179 |
_g1_committed.set_end(high); |
|
1180 |
// Create a new HeapRegion. |
|
1181 |
MemRegion mr(base, high); |
|
1182 |
bool is_zeroed = !_g1_max_committed.contains(base); |
|
1183 |
HeapRegion* hr = new HeapRegion(_bot_shared, mr, is_zeroed); |
|
1184 |
||
1185 |
// Now update max_committed if necessary. |
|
1186 |
_g1_max_committed.set_end(MAX2(_g1_max_committed.end(), high)); |
|
1187 |
||
1188 |
// Add it to the HeapRegionSeq. |
|
1189 |
_hrs->insert(hr); |
|
1190 |
// Set the zero-fill state, according to whether it's already |
|
1191 |
// zeroed. |
|
1192 |
{ |
|
1193 |
MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag); |
|
1194 |
if (is_zeroed) { |
|
1195 |
hr->set_zero_fill_complete(); |
|
1196 |
put_free_region_on_list_locked(hr); |
|
1197 |
} else { |
|
1198 |
hr->set_zero_fill_needed(); |
|
1199 |
put_region_on_unclean_list_locked(hr); |
|
1200 |
} |
|
1201 |
} |
|
1202 |
_free_regions++; |
|
1203 |
// And we used up an expansion region to create it. |
|
1204 |
_expansion_regions--; |
|
1205 |
// Tell the cardtable about it. |
|
1206 |
Universe::heap()->barrier_set()->resize_covered_region(_g1_committed); |
|
1207 |
// And the offset table as well. |
|
1208 |
_bot_shared->resize(_g1_committed.word_size()); |
|
1209 |
} |
|
1210 |
} |
|
1211 |
if (Verbose && PrintGC) { |
|
1212 |
size_t new_mem_size = _g1_storage.committed_size(); |
|
1213 |
gclog_or_tty->print_cr("Expanding garbage-first heap from %ldK by %ldK to %ldK", |
|
1214 |
old_mem_size/K, aligned_expand_bytes/K, |
|
1215 |
new_mem_size/K); |
|
1216 |
} |
|
1217 |
} |
|
1218 |
||
1219 |
void G1CollectedHeap::shrink_helper(size_t shrink_bytes) |
|
1220 |
{ |
|
1221 |
size_t old_mem_size = _g1_storage.committed_size(); |
|
1222 |
size_t aligned_shrink_bytes = |
|
1223 |
ReservedSpace::page_align_size_down(shrink_bytes); |
|
1224 |
aligned_shrink_bytes = align_size_down(aligned_shrink_bytes, |
|
1225 |
HeapRegion::GrainBytes); |
|
1226 |
size_t num_regions_deleted = 0; |
|
1227 |
MemRegion mr = _hrs->shrink_by(aligned_shrink_bytes, num_regions_deleted); |
|
1228 |
||
1229 |
assert(mr.end() == (HeapWord*)_g1_storage.high(), "Bad shrink!"); |
|
1230 |
if (mr.byte_size() > 0) |
|
1231 |
_g1_storage.shrink_by(mr.byte_size()); |
|
1232 |
assert(mr.start() == (HeapWord*)_g1_storage.high(), "Bad shrink!"); |
|
1233 |
||
1234 |
_g1_committed.set_end(mr.start()); |
|
1235 |
_free_regions -= num_regions_deleted; |
|
1236 |
_expansion_regions += num_regions_deleted; |
|
1237 |
||
1238 |
// Tell the cardtable about it. |
|
1239 |
Universe::heap()->barrier_set()->resize_covered_region(_g1_committed); |
|
1240 |
||
1241 |
// And the offset table as well. |
|
1242 |
_bot_shared->resize(_g1_committed.word_size()); |
|
1243 |
||
1244 |
HeapRegionRemSet::shrink_heap(n_regions()); |
|
1245 |
||
1246 |
if (Verbose && PrintGC) { |
|
1247 |
size_t new_mem_size = _g1_storage.committed_size(); |
|
1248 |
gclog_or_tty->print_cr("Shrinking garbage-first heap from %ldK by %ldK to %ldK", |
|
1249 |
old_mem_size/K, aligned_shrink_bytes/K, |
|
1250 |
new_mem_size/K); |
|
1251 |
} |
|
1252 |
} |
|
1253 |
||
1254 |
void G1CollectedHeap::shrink(size_t shrink_bytes) { |
|
1255 |
release_gc_alloc_regions(); |
|
1256 |
tear_down_region_lists(); // We will rebuild them in a moment. |
|
1257 |
shrink_helper(shrink_bytes); |
|
1258 |
rebuild_region_lists(); |
|
1259 |
} |
|
1260 |
||
1261 |
// Public methods. |
|
1262 |
||
1263 |
#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away |
|
1264 |
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list |
|
1265 |
#endif // _MSC_VER |
|
1266 |
||
1267 |
||
1268 |
G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) : |
|
1269 |
SharedHeap(policy_), |
|
1270 |
_g1_policy(policy_), |
|
1271 |
_ref_processor(NULL), |
|
1272 |
_process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)), |
|
1273 |
_bot_shared(NULL), |
|
1274 |
_par_alloc_during_gc_lock(Mutex::leaf, "par alloc during GC lock"), |
|
1275 |
_objs_with_preserved_marks(NULL), _preserved_marks_of_objs(NULL), |
|
1276 |
_evac_failure_scan_stack(NULL) , |
|
1277 |
_mark_in_progress(false), |
|
1278 |
_cg1r(NULL), _czft(NULL), _summary_bytes_used(0), |
|
1279 |
_cur_alloc_region(NULL), |
|
1280 |
_refine_cte_cl(NULL), |
|
1281 |
_free_region_list(NULL), _free_region_list_size(0), |
|
1282 |
_free_regions(0), |
|
1283 |
_popular_object_boundary(NULL), |
|
1284 |
_cur_pop_hr_index(0), |
|
1285 |
_popular_regions_to_be_evacuated(NULL), |
|
1286 |
_pop_obj_rc_at_copy(), |
|
1287 |
_full_collection(false), |
|
1288 |
_unclean_region_list(), |
|
1289 |
_unclean_regions_coming(false), |
|
1290 |
_young_list(new YoungList(this)), |
|
1291 |
_gc_time_stamp(0), |
|
1902 | 1292 |
_surviving_young_words(NULL), |
1293 |
_in_cset_fast_test(NULL), |
|
1294 |
_in_cset_fast_test_base(NULL) |
|
1374 | 1295 |
{ |
1296 |
_g1h = this; // To catch bugs. |
|
1297 |
if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) { |
|
1298 |
vm_exit_during_initialization("Failed necessary allocation."); |
|
1299 |
} |
|
1300 |
int n_queues = MAX2((int)ParallelGCThreads, 1); |
|
1301 |
_task_queues = new RefToScanQueueSet(n_queues); |
|
1302 |
||
1303 |
int n_rem_sets = HeapRegionRemSet::num_par_rem_sets(); |
|
1304 |
assert(n_rem_sets > 0, "Invariant."); |
|
1305 |
||
1306 |
HeapRegionRemSetIterator** iter_arr = |
|
1307 |
NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues); |
|
1308 |
for (int i = 0; i < n_queues; i++) { |
|
1309 |
iter_arr[i] = new HeapRegionRemSetIterator(); |
|
1310 |
} |
|
1311 |
_rem_set_iterator = iter_arr; |
|
1312 |
||
1313 |
for (int i = 0; i < n_queues; i++) { |
|
1314 |
RefToScanQueue* q = new RefToScanQueue(); |
|
1315 |
q->initialize(); |
|
1316 |
_task_queues->register_queue(i, q); |
|
1317 |
} |
|
1318 |
||
1319 |
for (int ap = 0; ap < GCAllocPurposeCount; ++ap) { |
|
1320 |
_gc_alloc_regions[ap] = NULL; |
|
1321 |
_gc_alloc_region_counts[ap] = 0; |
|
1322 |
} |
|
1323 |
guarantee(_task_queues != NULL, "task_queues allocation failure."); |
|
1324 |
} |
|
1325 |
||
1326 |
jint G1CollectedHeap::initialize() { |
|
1327 |
os::enable_vtime(); |
|
1328 |
||
1329 |
// Necessary to satisfy locking discipline assertions. |
|
1330 |
||
1331 |
MutexLocker x(Heap_lock); |
|
1332 |
||
1333 |
// While there are no constraints in the GC code that HeapWordSize |
|
1334 |
// be any particular value, there are multiple other areas in the |
|
1335 |
// system which believe this to be true (e.g. oop->object_size in some |
|
1336 |
// cases incorrectly returns the size in wordSize units rather than |
|
1337 |
// HeapWordSize). |
|
1338 |
guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize"); |
|
1339 |
||
1340 |
size_t init_byte_size = collector_policy()->initial_heap_byte_size(); |
|
1341 |
size_t max_byte_size = collector_policy()->max_heap_byte_size(); |
|
1342 |
||
1343 |
// Ensure that the sizes are properly aligned. |
|
1344 |
Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap"); |
|
1345 |
Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap"); |
|
1346 |
||
1347 |
// We allocate this in any case, but only do no work if the command line |
|
1348 |
// param is off. |
|
1349 |
_cg1r = new ConcurrentG1Refine(); |
|
1350 |
||
1351 |
// Reserve the maximum. |
|
1352 |
PermanentGenerationSpec* pgs = collector_policy()->permanent_generation(); |
|
1353 |
// Includes the perm-gen. |
|
1354 |
ReservedSpace heap_rs(max_byte_size + pgs->max_size(), |
|
1355 |
HeapRegion::GrainBytes, |
|
1356 |
false /*ism*/); |
|
1357 |
||
1358 |
if (!heap_rs.is_reserved()) { |
|
1359 |
vm_exit_during_initialization("Could not reserve enough space for object heap"); |
|
1360 |
return JNI_ENOMEM; |
|
1361 |
} |
|
1362 |
||
1363 |
// It is important to do this in a way such that concurrent readers can't |
|
1364 |
// temporarily think somethings in the heap. (I've actually seen this |
|
1365 |
// happen in asserts: DLD.) |
|
1366 |
_reserved.set_word_size(0); |
|
1367 |
_reserved.set_start((HeapWord*)heap_rs.base()); |
|
1368 |
_reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size())); |
|
1369 |
||
1370 |
_expansion_regions = max_byte_size/HeapRegion::GrainBytes; |
|
1371 |
||
1372 |
_num_humongous_regions = 0; |
|
1373 |
||
1374 |
// Create the gen rem set (and barrier set) for the entire reserved region. |
|
1375 |
_rem_set = collector_policy()->create_rem_set(_reserved, 2); |
|
1376 |
set_barrier_set(rem_set()->bs()); |
|
1377 |
if (barrier_set()->is_a(BarrierSet::ModRef)) { |
|
1378 |
_mr_bs = (ModRefBarrierSet*)_barrier_set; |
|
1379 |
} else { |
|
1380 |
vm_exit_during_initialization("G1 requires a mod ref bs."); |
|
1381 |
return JNI_ENOMEM; |
|
1382 |
} |
|
1383 |
||
1384 |
// Also create a G1 rem set. |
|
1385 |
if (G1UseHRIntoRS) { |
|
1386 |
if (mr_bs()->is_a(BarrierSet::CardTableModRef)) { |
|
1387 |
_g1_rem_set = new HRInto_G1RemSet(this, (CardTableModRefBS*)mr_bs()); |
|
1388 |
} else { |
|
1389 |
vm_exit_during_initialization("G1 requires a cardtable mod ref bs."); |
|
1390 |
return JNI_ENOMEM; |
|
1391 |
} |
|
1392 |
} else { |
|
1393 |
_g1_rem_set = new StupidG1RemSet(this); |
|
1394 |
} |
|
1395 |
||
1396 |
// Carve out the G1 part of the heap. |
|
1397 |
||
1398 |
ReservedSpace g1_rs = heap_rs.first_part(max_byte_size); |
|
1399 |
_g1_reserved = MemRegion((HeapWord*)g1_rs.base(), |
|
1400 |
g1_rs.size()/HeapWordSize); |
|
1401 |
ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size); |
|
1402 |
||
1403 |
_perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set()); |
|
1404 |
||
1405 |
_g1_storage.initialize(g1_rs, 0); |
|
1406 |
_g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0); |
|
1407 |
_g1_max_committed = _g1_committed; |
|
1425 | 1408 |
_hrs = new HeapRegionSeq(_expansion_regions); |
1374 | 1409 |
guarantee(_hrs != NULL, "Couldn't allocate HeapRegionSeq"); |
1410 |
guarantee(_cur_alloc_region == NULL, "from constructor"); |
|
1411 |
||
1412 |
_bot_shared = new G1BlockOffsetSharedArray(_reserved, |
|
1413 |
heap_word_size(init_byte_size)); |
|
1414 |
||
1415 |
_g1h = this; |
|
1416 |
||
1417 |
// Create the ConcurrentMark data structure and thread. |
|
1418 |
// (Must do this late, so that "max_regions" is defined.) |
|
1419 |
_cm = new ConcurrentMark(heap_rs, (int) max_regions()); |
|
1420 |
_cmThread = _cm->cmThread(); |
|
1421 |
||
1422 |
// ...and the concurrent zero-fill thread, if necessary. |
|
1423 |
if (G1ConcZeroFill) { |
|
1424 |
_czft = new ConcurrentZFThread(); |
|
1425 |
} |
|
1426 |
||
1427 |
||
1428 |
||
1429 |
// Allocate the popular regions; take them off free lists. |
|
1430 |
size_t pop_byte_size = G1NumPopularRegions * HeapRegion::GrainBytes; |
|
1431 |
expand(pop_byte_size); |
|
1432 |
_popular_object_boundary = |
|
1433 |
_g1_reserved.start() + (G1NumPopularRegions * HeapRegion::GrainWords); |
|
1434 |
for (int i = 0; i < G1NumPopularRegions; i++) { |
|
1435 |
HeapRegion* hr = newAllocRegion(HeapRegion::GrainWords); |
|
1436 |
// assert(hr != NULL && hr->bottom() < _popular_object_boundary, |
|
1437 |
// "Should be enough, and all should be below boundary."); |
|
1438 |
hr->set_popular(true); |
|
1439 |
} |
|
1440 |
assert(_cur_pop_hr_index == 0, "Start allocating at the first region."); |
|
1441 |
||
1442 |
// Initialize the from_card cache structure of HeapRegionRemSet. |
|
1443 |
HeapRegionRemSet::init_heap(max_regions()); |
|
1444 |
||
1445 |
// Now expand into the rest of the initial heap size. |
|
1446 |
expand(init_byte_size - pop_byte_size); |
|
1447 |
||
1448 |
// Perform any initialization actions delegated to the policy. |
|
1449 |
g1_policy()->init(); |
|
1450 |
||
1451 |
g1_policy()->note_start_of_mark_thread(); |
|
1452 |
||
1453 |
_refine_cte_cl = |
|
1454 |
new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(), |
|
1455 |
g1_rem_set(), |
|
1456 |
concurrent_g1_refine()); |
|
1457 |
JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl); |
|
1458 |
||
1459 |
JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon, |
|
1460 |
SATB_Q_FL_lock, |
|
1461 |
0, |
|
1462 |
Shared_SATB_Q_lock); |
|
1463 |
if (G1RSBarrierUseQueue) { |
|
1464 |
JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon, |
|
1465 |
DirtyCardQ_FL_lock, |
|
1466 |
G1DirtyCardQueueMax, |
|
1467 |
Shared_DirtyCardQ_lock); |
|
1468 |
} |
|
1469 |
// In case we're keeping closure specialization stats, initialize those |
|
1470 |
// counts and that mechanism. |
|
1471 |
SpecializationStats::clear(); |
|
1472 |
||
1473 |
_gc_alloc_region_list = NULL; |
|
1474 |
||
1475 |
// Do later initialization work for concurrent refinement. |
|
1476 |
_cg1r->init(); |
|
1477 |
||
1478 |
const char* group_names[] = { "CR", "ZF", "CM", "CL" }; |
|
1479 |
GCOverheadReporter::initGCOverheadReporter(4, group_names); |
|
1480 |
||
1481 |
return JNI_OK; |
|
1482 |
} |
|
1483 |
||
1484 |
void G1CollectedHeap::ref_processing_init() { |
|
1485 |
SharedHeap::ref_processing_init(); |
|
1486 |
MemRegion mr = reserved_region(); |
|
1487 |
_ref_processor = ReferenceProcessor::create_ref_processor( |
|
1488 |
mr, // span |
|
1489 |
false, // Reference discovery is not atomic |
|
1490 |
// (though it shouldn't matter here.) |
|
1491 |
true, // mt_discovery |
|
1492 |
NULL, // is alive closure: need to fill this in for efficiency |
|
1493 |
ParallelGCThreads, |
|
1494 |
ParallelRefProcEnabled, |
|
1495 |
true); // Setting next fields of discovered |
|
1496 |
// lists requires a barrier. |
|
1497 |
} |
|
1498 |
||
1499 |
size_t G1CollectedHeap::capacity() const { |
|
1500 |
return _g1_committed.byte_size(); |
|
1501 |
} |
|
1502 |
||
1503 |
void G1CollectedHeap::iterate_dirty_card_closure(bool concurrent, |
|
1504 |
int worker_i) { |
|
1505 |
DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); |
|
1506 |
int n_completed_buffers = 0; |
|
1507 |
while (dcqs.apply_closure_to_completed_buffer(worker_i, 0, true)) { |
|
1508 |
n_completed_buffers++; |
|
1509 |
} |
|
1510 |
g1_policy()->record_update_rs_processed_buffers(worker_i, |
|
1511 |
(double) n_completed_buffers); |
|
1512 |
dcqs.clear_n_completed_buffers(); |
|
1513 |
// Finish up the queue... |
|
1514 |
if (worker_i == 0) concurrent_g1_refine()->clean_up_cache(worker_i, |
|
1515 |
g1_rem_set()); |
|
1516 |
assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!"); |
|
1517 |
} |
|
1518 |
||
1519 |
||
1520 |
// Computes the sum of the storage used by the various regions. |
|
1521 |
||
1522 |
size_t G1CollectedHeap::used() const { |
|
1523 |
assert(Heap_lock->owner() != NULL, |
|
1524 |
"Should be owned on this thread's behalf."); |
|
1525 |
size_t result = _summary_bytes_used; |
|
1526 |
if (_cur_alloc_region != NULL) |
|
1527 |
result += _cur_alloc_region->used(); |
|
1528 |
return result; |
|
1529 |
} |
|
1530 |
||
1531 |
class SumUsedClosure: public HeapRegionClosure { |
|
1532 |
size_t _used; |
|
1533 |
public: |
|
1534 |
SumUsedClosure() : _used(0) {} |
|
1535 |
bool doHeapRegion(HeapRegion* r) { |
|
1536 |
if (!r->continuesHumongous()) { |
|
1537 |
_used += r->used(); |
|
1538 |
} |
|
1539 |
return false; |
|
1540 |
} |
|
1541 |
size_t result() { return _used; } |
|
1542 |
}; |
|
1543 |
||
1544 |
size_t G1CollectedHeap::recalculate_used() const { |
|
1545 |
SumUsedClosure blk; |
|
1546 |
_hrs->iterate(&blk); |
|
1547 |
return blk.result(); |
|
1548 |
} |
|
1549 |
||
1550 |
#ifndef PRODUCT |
|
1551 |
class SumUsedRegionsClosure: public HeapRegionClosure { |
|
1552 |
size_t _num; |
|
1553 |
public: |
|
1554 |
// _num is set to 1 to account for the popular region |
|
1555 |
SumUsedRegionsClosure() : _num(G1NumPopularRegions) {} |
|
1556 |
bool doHeapRegion(HeapRegion* r) { |
|
1557 |
if (r->continuesHumongous() || r->used() > 0 || r->is_gc_alloc_region()) { |
|
1558 |
_num += 1; |
|
1559 |
} |
|
1560 |
return false; |
|
1561 |
} |
|
1562 |
size_t result() { return _num; } |
|
1563 |
}; |
|
1564 |
||
1565 |
size_t G1CollectedHeap::recalculate_used_regions() const { |
|
1566 |
SumUsedRegionsClosure blk; |
|
1567 |
_hrs->iterate(&blk); |
|
1568 |
return blk.result(); |
|
1569 |
} |
|
1570 |
#endif // PRODUCT |
|
1571 |
||
1572 |
size_t G1CollectedHeap::unsafe_max_alloc() { |
|
1573 |
if (_free_regions > 0) return HeapRegion::GrainBytes; |
|
1574 |
// otherwise, is there space in the current allocation region? |
|
1575 |
||
1576 |
// We need to store the current allocation region in a local variable |
|
1577 |
// here. The problem is that this method doesn't take any locks and |
|
1578 |
// there may be other threads which overwrite the current allocation |
|
1579 |
// region field. attempt_allocation(), for example, sets it to NULL |
|
1580 |
// and this can happen *after* the NULL check here but before the call |
|
1581 |
// to free(), resulting in a SIGSEGV. Note that this doesn't appear |
|
1582 |
// to be a problem in the optimized build, since the two loads of the |
|
1583 |
// current allocation region field are optimized away. |
|
1584 |
HeapRegion* car = _cur_alloc_region; |
|
1585 |
||
1586 |
// FIXME: should iterate over all regions? |
|
1587 |
if (car == NULL) { |
|
1588 |
return 0; |
|
1589 |
} |
|
1590 |
return car->free(); |
|
1591 |
} |
|
1592 |
||
1593 |
void G1CollectedHeap::collect(GCCause::Cause cause) { |
|
1594 |
// The caller doesn't have the Heap_lock |
|
1595 |
assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock"); |
|
1596 |
MutexLocker ml(Heap_lock); |
|
1597 |
collect_locked(cause); |
|
1598 |
} |
|
1599 |
||
1600 |
void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) { |
|
1601 |
assert(Thread::current()->is_VM_thread(), "Precondition#1"); |
|
1602 |
assert(Heap_lock->is_locked(), "Precondition#2"); |
|
1603 |
GCCauseSetter gcs(this, cause); |
|
1604 |
switch (cause) { |
|
1605 |
case GCCause::_heap_inspection: |
|
1606 |
case GCCause::_heap_dump: { |
|
1607 |
HandleMark hm; |
|
1608 |
do_full_collection(false); // don't clear all soft refs |
|
1609 |
break; |
|
1610 |
} |
|
1611 |
default: // XXX FIX ME |
|
1612 |
ShouldNotReachHere(); // Unexpected use of this function |
|
1613 |
} |
|
1614 |
} |
|
1615 |
||
1616 |
||
1617 |
void G1CollectedHeap::collect_locked(GCCause::Cause cause) { |
|
1618 |
// Don't want to do a GC until cleanup is completed. |
|
1619 |
wait_for_cleanup_complete(); |
|
1620 |
||
1621 |
// Read the GC count while holding the Heap_lock |
|
1622 |
int gc_count_before = SharedHeap::heap()->total_collections(); |
|
1623 |
{ |
|
1624 |
MutexUnlocker mu(Heap_lock); // give up heap lock, execute gets it back |
|
1625 |
VM_G1CollectFull op(gc_count_before, cause); |
|
1626 |
VMThread::execute(&op); |
|
1627 |
} |
|
1628 |
} |
|
1629 |
||
1630 |
bool G1CollectedHeap::is_in(const void* p) const { |
|
1631 |
if (_g1_committed.contains(p)) { |
|
1632 |
HeapRegion* hr = _hrs->addr_to_region(p); |
|
1633 |
return hr->is_in(p); |
|
1634 |
} else { |
|
1635 |
return _perm_gen->as_gen()->is_in(p); |
|
1636 |
} |
|
1637 |
} |
|
1638 |
||
1639 |
// Iteration functions. |
|
1640 |
||
1641 |
// Iterates an OopClosure over all ref-containing fields of objects |
|
1642 |
// within a HeapRegion. |
|
1643 |
||
1644 |
class IterateOopClosureRegionClosure: public HeapRegionClosure { |
|
1645 |
MemRegion _mr; |
|
1646 |
OopClosure* _cl; |
|
1647 |
public: |
|
1648 |
IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl) |
|
1649 |
: _mr(mr), _cl(cl) {} |
|
1650 |
bool doHeapRegion(HeapRegion* r) { |
|
1651 |
if (! r->continuesHumongous()) { |
|
1652 |
r->oop_iterate(_cl); |
|
1653 |
} |
|
1654 |
return false; |
|
1655 |
} |
|
1656 |
}; |
|
1657 |
||
1658 |
void G1CollectedHeap::oop_iterate(OopClosure* cl) { |
|
1659 |
IterateOopClosureRegionClosure blk(_g1_committed, cl); |
|
1660 |
_hrs->iterate(&blk); |
|
1661 |
} |
|
1662 |
||
1663 |
void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl) { |
|
1664 |
IterateOopClosureRegionClosure blk(mr, cl); |
|
1665 |
_hrs->iterate(&blk); |
|
1666 |
} |
|
1667 |
||
1668 |
// Iterates an ObjectClosure over all objects within a HeapRegion. |
|
1669 |
||
1670 |
class IterateObjectClosureRegionClosure: public HeapRegionClosure { |
|
1671 |
ObjectClosure* _cl; |
|
1672 |
public: |
|
1673 |
IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {} |
|
1674 |
bool doHeapRegion(HeapRegion* r) { |
|
1675 |
if (! r->continuesHumongous()) { |
|
1676 |
r->object_iterate(_cl); |
|
1677 |
} |
|
1678 |
return false; |
|
1679 |
} |
|
1680 |
}; |
|
1681 |
||
1682 |
void G1CollectedHeap::object_iterate(ObjectClosure* cl) { |
|
1683 |
IterateObjectClosureRegionClosure blk(cl); |
|
1684 |
_hrs->iterate(&blk); |
|
1685 |
} |
|
1686 |
||
1687 |
void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) { |
|
1688 |
// FIXME: is this right? |
|
1689 |
guarantee(false, "object_iterate_since_last_GC not supported by G1 heap"); |
|
1690 |
} |
|
1691 |
||
1692 |
// Calls a SpaceClosure on a HeapRegion. |
|
1693 |
||
1694 |
class SpaceClosureRegionClosure: public HeapRegionClosure { |
|
1695 |
SpaceClosure* _cl; |
|
1696 |
public: |
|
1697 |
SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {} |
|
1698 |
bool doHeapRegion(HeapRegion* r) { |
|
1699 |
_cl->do_space(r); |
|
1700 |
return false; |
|
1701 |
} |
|
1702 |
}; |
|
1703 |
||
1704 |
void G1CollectedHeap::space_iterate(SpaceClosure* cl) { |
|
1705 |
SpaceClosureRegionClosure blk(cl); |
|
1706 |
_hrs->iterate(&blk); |
|
1707 |
} |
|
1708 |
||
1709 |
void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) { |
|
1710 |
_hrs->iterate(cl); |
|
1711 |
} |
|
1712 |
||
1713 |
void G1CollectedHeap::heap_region_iterate_from(HeapRegion* r, |
|
1714 |
HeapRegionClosure* cl) { |
|
1715 |
_hrs->iterate_from(r, cl); |
|
1716 |
} |
|
1717 |
||
1718 |
void |
|
1719 |
G1CollectedHeap::heap_region_iterate_from(int idx, HeapRegionClosure* cl) { |
|
1720 |
_hrs->iterate_from(idx, cl); |
|
1721 |
} |
|
1722 |
||
1723 |
HeapRegion* G1CollectedHeap::region_at(size_t idx) { return _hrs->at(idx); } |
|
1724 |
||
1725 |
void |
|
1726 |
G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl, |
|
1727 |
int worker, |
|
1728 |
jint claim_value) { |
|
1387 | 1729 |
const size_t regions = n_regions(); |
1730 |
const size_t worker_num = (ParallelGCThreads > 0 ? ParallelGCThreads : 1); |
|
1731 |
// try to spread out the starting points of the workers |
|
1732 |
const size_t start_index = regions / worker_num * (size_t) worker; |
|
1733 |
||
1734 |
// each worker will actually look at all regions |
|
1735 |
for (size_t count = 0; count < regions; ++count) { |
|
1736 |
const size_t index = (start_index + count) % regions; |
|
1737 |
assert(0 <= index && index < regions, "sanity"); |
|
1738 |
HeapRegion* r = region_at(index); |
|
1739 |
// we'll ignore "continues humongous" regions (we'll process them |
|
1740 |
// when we come across their corresponding "start humongous" |
|
1741 |
// region) and regions already claimed |
|
1742 |
if (r->claim_value() == claim_value || r->continuesHumongous()) { |
|
1743 |
continue; |
|
1744 |
} |
|
1745 |
// OK, try to claim it |
|
1374 | 1746 |
if (r->claimHeapRegion(claim_value)) { |
1387 | 1747 |
// success! |
1748 |
assert(!r->continuesHumongous(), "sanity"); |
|
1749 |
if (r->startsHumongous()) { |
|
1750 |
// If the region is "starts humongous" we'll iterate over its |
|
1751 |
// "continues humongous" first; in fact we'll do them |
|
1752 |
// first. The order is important. In on case, calling the |
|
1753 |
// closure on the "starts humongous" region might de-allocate |
|
1754 |
// and clear all its "continues humongous" regions and, as a |
|
1755 |
// result, we might end up processing them twice. So, we'll do |
|
1756 |
// them first (notice: most closures will ignore them anyway) and |
|
1757 |
// then we'll do the "starts humongous" region. |
|
1758 |
for (size_t ch_index = index + 1; ch_index < regions; ++ch_index) { |
|
1759 |
HeapRegion* chr = region_at(ch_index); |
|
1760 |
||
1761 |
// if the region has already been claimed or it's not |
|
1762 |
// "continues humongous" we're done |
|
1763 |
if (chr->claim_value() == claim_value || |
|
1764 |
!chr->continuesHumongous()) { |
|
1765 |
break; |
|
1766 |
} |
|
1767 |
||
1768 |
// Noone should have claimed it directly. We can given |
|
1769 |
// that we claimed its "starts humongous" region. |
|
1770 |
assert(chr->claim_value() != claim_value, "sanity"); |
|
1771 |
assert(chr->humongous_start_region() == r, "sanity"); |
|
1772 |
||
1773 |
if (chr->claimHeapRegion(claim_value)) { |
|
1774 |
// we should always be able to claim it; noone else should |
|
1775 |
// be trying to claim this region |
|
1776 |
||
1777 |
bool res2 = cl->doHeapRegion(chr); |
|
1778 |
assert(!res2, "Should not abort"); |
|
1779 |
||
1780 |
// Right now, this holds (i.e., no closure that actually |
|
1781 |
// does something with "continues humongous" regions |
|
1782 |
// clears them). We might have to weaken it in the future, |
|
1783 |
// but let's leave these two asserts here for extra safety. |
|
1784 |
assert(chr->continuesHumongous(), "should still be the case"); |
|
1785 |
assert(chr->humongous_start_region() == r, "sanity"); |
|
1786 |
} else { |
|
1787 |
guarantee(false, "we should not reach here"); |
|
1788 |
} |
|
1789 |
} |
|
1790 |
} |
|
1791 |
||
1792 |
assert(!r->continuesHumongous(), "sanity"); |
|
1793 |
bool res = cl->doHeapRegion(r); |
|
1794 |
assert(!res, "Should not abort"); |
|
1795 |
} |
|
1796 |
} |
|
1797 |
} |
|
1798 |
||
1422 | 1799 |
class ResetClaimValuesClosure: public HeapRegionClosure { |
1800 |
public: |
|
1801 |
bool doHeapRegion(HeapRegion* r) { |
|
1802 |
r->set_claim_value(HeapRegion::InitialClaimValue); |
|
1803 |
return false; |
|
1804 |
} |
|
1805 |
}; |
|
1806 |
||
1807 |
void |
|
1808 |
G1CollectedHeap::reset_heap_region_claim_values() { |
|
1809 |
ResetClaimValuesClosure blk; |
|
1810 |
heap_region_iterate(&blk); |
|
1811 |
} |
|
1812 |
||
1387 | 1813 |
#ifdef ASSERT |
1814 |
// This checks whether all regions in the heap have the correct claim |
|
1815 |
// value. I also piggy-backed on this a check to ensure that the |
|
1816 |
// humongous_start_region() information on "continues humongous" |
|
1817 |
// regions is correct. |
|
1818 |
||
1819 |
class CheckClaimValuesClosure : public HeapRegionClosure { |
|
1820 |
private: |
|
1821 |
jint _claim_value; |
|
1822 |
size_t _failures; |
|
1823 |
HeapRegion* _sh_region; |
|
1824 |
public: |
|
1825 |
CheckClaimValuesClosure(jint claim_value) : |
|
1826 |
_claim_value(claim_value), _failures(0), _sh_region(NULL) { } |
|
1827 |
bool doHeapRegion(HeapRegion* r) { |
|
1828 |
if (r->claim_value() != _claim_value) { |
|
1829 |
gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), " |
|
1830 |
"claim value = %d, should be %d", |
|
1831 |
r->bottom(), r->end(), r->claim_value(), |
|
1832 |
_claim_value); |
|
1833 |
++_failures; |
|
1834 |
} |
|
1835 |
if (!r->isHumongous()) { |
|
1836 |
_sh_region = NULL; |
|
1837 |
} else if (r->startsHumongous()) { |
|
1838 |
_sh_region = r; |
|
1839 |
} else if (r->continuesHumongous()) { |
|
1840 |
if (r->humongous_start_region() != _sh_region) { |
|
1841 |
gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), " |
|
1842 |
"HS = "PTR_FORMAT", should be "PTR_FORMAT, |
|
1843 |
r->bottom(), r->end(), |
|
1844 |
r->humongous_start_region(), |
|
1845 |
_sh_region); |
|
1846 |
++_failures; |
|
1374 | 1847 |
} |
1848 |
} |
|
1387 | 1849 |
return false; |
1850 |
} |
|
1851 |
size_t failures() { |
|
1852 |
return _failures; |
|
1853 |
} |
|
1854 |
}; |
|
1855 |
||
1856 |
bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) { |
|
1857 |
CheckClaimValuesClosure cl(claim_value); |
|
1858 |
heap_region_iterate(&cl); |
|
1859 |
return cl.failures() == 0; |
|
1860 |
} |
|
1861 |
#endif // ASSERT |
|
1374 | 1862 |
|
1863 |
void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) { |
|
1864 |
HeapRegion* r = g1_policy()->collection_set(); |
|
1865 |
while (r != NULL) { |
|
1866 |
HeapRegion* next = r->next_in_collection_set(); |
|
1867 |
if (cl->doHeapRegion(r)) { |
|
1868 |
cl->incomplete(); |
|
1869 |
return; |
|
1870 |
} |
|
1871 |
r = next; |
|
1872 |
} |
|
1873 |
} |
|
1874 |
||
1875 |
void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r, |
|
1876 |
HeapRegionClosure *cl) { |
|
1877 |
assert(r->in_collection_set(), |
|
1878 |
"Start region must be a member of the collection set."); |
|
1879 |
HeapRegion* cur = r; |
|
1880 |
while (cur != NULL) { |
|
1881 |
HeapRegion* next = cur->next_in_collection_set(); |
|
1882 |
if (cl->doHeapRegion(cur) && false) { |
|
1883 |
cl->incomplete(); |
|
1884 |
return; |
|
1885 |
} |
|
1886 |
cur = next; |
|
1887 |
} |
|
1888 |
cur = g1_policy()->collection_set(); |
|
1889 |
while (cur != r) { |
|
1890 |
HeapRegion* next = cur->next_in_collection_set(); |
|
1891 |
if (cl->doHeapRegion(cur) && false) { |
|
1892 |
cl->incomplete(); |
|
1893 |
return; |
|
1894 |
} |
|
1895 |
cur = next; |
|
1896 |
} |
|
1897 |
} |
|
1898 |
||
1899 |
CompactibleSpace* G1CollectedHeap::first_compactible_space() { |
|
1900 |
return _hrs->length() > 0 ? _hrs->at(0) : NULL; |
|
1901 |
} |
|
1902 |
||
1903 |
||
1904 |
Space* G1CollectedHeap::space_containing(const void* addr) const { |
|
1905 |
Space* res = heap_region_containing(addr); |
|
1906 |
if (res == NULL) |
|
1907 |
res = perm_gen()->space_containing(addr); |
|
1908 |
return res; |
|
1909 |
} |
|
1910 |
||
1911 |
HeapWord* G1CollectedHeap::block_start(const void* addr) const { |
|
1912 |
Space* sp = space_containing(addr); |
|
1913 |
if (sp != NULL) { |
|
1914 |
return sp->block_start(addr); |
|
1915 |
} |
|
1916 |
return NULL; |
|
1917 |
} |
|
1918 |
||
1919 |
size_t G1CollectedHeap::block_size(const HeapWord* addr) const { |
|
1920 |
Space* sp = space_containing(addr); |
|
1921 |
assert(sp != NULL, "block_size of address outside of heap"); |
|
1922 |
return sp->block_size(addr); |
|
1923 |
} |
|
1924 |
||
1925 |
bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const { |
|
1926 |
Space* sp = space_containing(addr); |
|
1927 |
return sp->block_is_obj(addr); |
|
1928 |
} |
|
1929 |
||
1930 |
bool G1CollectedHeap::supports_tlab_allocation() const { |
|
1931 |
return true; |
|
1932 |
} |
|
1933 |
||
1934 |
size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const { |
|
1935 |
return HeapRegion::GrainBytes; |
|
1936 |
} |
|
1937 |
||
1938 |
size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const { |
|
1939 |
// Return the remaining space in the cur alloc region, but not less than |
|
1940 |
// the min TLAB size. |
|
1941 |
// Also, no more than half the region size, since we can't allow tlabs to |
|
1942 |
// grow big enough to accomodate humongous objects. |
|
1943 |
||
1944 |
// We need to story it locally, since it might change between when we |
|
1945 |
// test for NULL and when we use it later. |
|
1946 |
ContiguousSpace* cur_alloc_space = _cur_alloc_region; |
|
1947 |
if (cur_alloc_space == NULL) { |
|
1948 |
return HeapRegion::GrainBytes/2; |
|
1949 |
} else { |
|
1950 |
return MAX2(MIN2(cur_alloc_space->free(), |
|
1951 |
(size_t)(HeapRegion::GrainBytes/2)), |
|
1952 |
(size_t)MinTLABSize); |
|
1953 |
} |
|
1954 |
} |
|
1955 |
||
1956 |
HeapWord* G1CollectedHeap::allocate_new_tlab(size_t size) { |
|
1957 |
bool dummy; |
|
1958 |
return G1CollectedHeap::mem_allocate(size, false, true, &dummy); |
|
1959 |
} |
|
1960 |
||
1961 |
bool G1CollectedHeap::allocs_are_zero_filled() { |
|
1962 |
return false; |
|
1963 |
} |
|
1964 |
||
1965 |
size_t G1CollectedHeap::large_typearray_limit() { |
|
1966 |
// FIXME |
|
1967 |
return HeapRegion::GrainBytes/HeapWordSize; |
|
1968 |
} |
|
1969 |
||
1970 |
size_t G1CollectedHeap::max_capacity() const { |
|
1971 |
return _g1_committed.byte_size(); |
|
1972 |
} |
|
1973 |
||
1974 |
jlong G1CollectedHeap::millis_since_last_gc() { |
|
1975 |
// assert(false, "NYI"); |
|
1976 |
return 0; |
|
1977 |
} |
|
1978 |
||
1979 |
||
1980 |
void G1CollectedHeap::prepare_for_verify() { |
|
1981 |
if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) { |
|
1982 |
ensure_parsability(false); |
|
1983 |
} |
|
1984 |
g1_rem_set()->prepare_for_verify(); |
|
1985 |
} |
|
1986 |
||
1987 |
class VerifyLivenessOopClosure: public OopClosure { |
|
1988 |
G1CollectedHeap* g1h; |
|
1989 |
public: |
|
1990 |
VerifyLivenessOopClosure(G1CollectedHeap* _g1h) { |
|
1991 |
g1h = _g1h; |
|
1992 |
} |
|
1993 |
void do_oop(narrowOop *p) { |
|
1994 |
guarantee(false, "NYI"); |
|
1995 |
} |
|
1996 |
void do_oop(oop *p) { |
|
1997 |
oop obj = *p; |
|
1998 |
assert(obj == NULL || !g1h->is_obj_dead(obj), |
|
1999 |
"Dead object referenced by a not dead object"); |
|
2000 |
} |
|
2001 |
}; |
|
2002 |
||
2003 |
class VerifyObjsInRegionClosure: public ObjectClosure { |
|
2004 |
G1CollectedHeap* _g1h; |
|
2005 |
size_t _live_bytes; |
|
2006 |
HeapRegion *_hr; |
|
2007 |
public: |
|
2008 |
VerifyObjsInRegionClosure(HeapRegion *hr) : _live_bytes(0), _hr(hr) { |
|
2009 |
_g1h = G1CollectedHeap::heap(); |
|
2010 |
} |
|
2011 |
void do_object(oop o) { |
|
2012 |
VerifyLivenessOopClosure isLive(_g1h); |
|
2013 |
assert(o != NULL, "Huh?"); |
|
2014 |
if (!_g1h->is_obj_dead(o)) { |
|
2015 |
o->oop_iterate(&isLive); |
|
2016 |
if (!_hr->obj_allocated_since_prev_marking(o)) |
|
2017 |
_live_bytes += (o->size() * HeapWordSize); |
|
2018 |
} |
|
2019 |
} |
|
2020 |
size_t live_bytes() { return _live_bytes; } |
|
2021 |
}; |
|
2022 |
||
2023 |
class PrintObjsInRegionClosure : public ObjectClosure { |
|
2024 |
HeapRegion *_hr; |
|
2025 |
G1CollectedHeap *_g1; |
|
2026 |
public: |
|
2027 |
PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) { |
|
2028 |
_g1 = G1CollectedHeap::heap(); |
|
2029 |
}; |
|
2030 |
||
2031 |
void do_object(oop o) { |
|
2032 |
if (o != NULL) { |
|
2033 |
HeapWord *start = (HeapWord *) o; |
|
2034 |
size_t word_sz = o->size(); |
|
2035 |
gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT |
|
2036 |
" isMarkedPrev %d isMarkedNext %d isAllocSince %d\n", |
|
2037 |
(void*) o, word_sz, |
|
2038 |
_g1->isMarkedPrev(o), |
|
2039 |
_g1->isMarkedNext(o), |
|
2040 |
_hr->obj_allocated_since_prev_marking(o)); |
|
2041 |
HeapWord *end = start + word_sz; |
|
2042 |
HeapWord *cur; |
|
2043 |
int *val; |
|
2044 |
for (cur = start; cur < end; cur++) { |
|
2045 |
val = (int *) cur; |
|
2046 |
gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val); |
|
2047 |
} |
|
2048 |
} |
|
2049 |
} |
|
2050 |
}; |
|
2051 |
||
2052 |
class VerifyRegionClosure: public HeapRegionClosure { |
|
2053 |
public: |
|
2054 |
bool _allow_dirty; |
|
1422 | 2055 |
bool _par; |
2056 |
VerifyRegionClosure(bool allow_dirty, bool par = false) |
|
2057 |
: _allow_dirty(allow_dirty), _par(par) {} |
|
1374 | 2058 |
bool doHeapRegion(HeapRegion* r) { |
1422 | 2059 |
guarantee(_par || r->claim_value() == HeapRegion::InitialClaimValue, |
2060 |
"Should be unclaimed at verify points."); |
|
1374 | 2061 |
if (r->isHumongous()) { |
2062 |
if (r->startsHumongous()) { |
|
2063 |
// Verify the single H object. |
|
2064 |
oop(r->bottom())->verify(); |
|
2065 |
size_t word_sz = oop(r->bottom())->size(); |
|
2066 |
guarantee(r->top() == r->bottom() + word_sz, |
|
2067 |
"Only one object in a humongous region"); |
|
2068 |
} |
|
2069 |
} else { |
|
2070 |
VerifyObjsInRegionClosure not_dead_yet_cl(r); |
|
2071 |
r->verify(_allow_dirty); |
|
2072 |
r->object_iterate(¬_dead_yet_cl); |
|
2073 |
guarantee(r->max_live_bytes() >= not_dead_yet_cl.live_bytes(), |
|
2074 |
"More live objects than counted in last complete marking."); |
|
2075 |
} |
|
2076 |
return false; |
|
2077 |
} |
|
2078 |
}; |
|
2079 |
||
2080 |
class VerifyRootsClosure: public OopsInGenClosure { |
|
2081 |
private: |
|
2082 |
G1CollectedHeap* _g1h; |
|
2083 |
bool _failures; |
|
2084 |
||
2085 |
public: |
|
2086 |
VerifyRootsClosure() : |
|
2087 |
_g1h(G1CollectedHeap::heap()), _failures(false) { } |
|
2088 |
||
2089 |
bool failures() { return _failures; } |
|
2090 |
||
2091 |
void do_oop(narrowOop* p) { |
|
2092 |
guarantee(false, "NYI"); |
|
2093 |
} |
|
2094 |
||
2095 |
void do_oop(oop* p) { |
|
2096 |
oop obj = *p; |
|
2097 |
if (obj != NULL) { |
|
2098 |
if (_g1h->is_obj_dead(obj)) { |
|
2099 |
gclog_or_tty->print_cr("Root location "PTR_FORMAT" " |
|
2100 |
"points to dead obj "PTR_FORMAT, p, (void*) obj); |
|
2101 |
obj->print_on(gclog_or_tty); |
|
2102 |
_failures = true; |
|
2103 |
} |
|
2104 |
} |
|
2105 |
} |
|
2106 |
}; |
|
2107 |
||
1422 | 2108 |
// This is the task used for parallel heap verification. |
2109 |
||
2110 |
class G1ParVerifyTask: public AbstractGangTask { |
|
2111 |
private: |
|
2112 |
G1CollectedHeap* _g1h; |
|
2113 |
bool _allow_dirty; |
|
2114 |
||
2115 |
public: |
|
2116 |
G1ParVerifyTask(G1CollectedHeap* g1h, bool allow_dirty) : |
|
2117 |
AbstractGangTask("Parallel verify task"), |
|
2118 |
_g1h(g1h), _allow_dirty(allow_dirty) { } |
|
2119 |
||
2120 |
void work(int worker_i) { |
|
2121 |
VerifyRegionClosure blk(_allow_dirty, true); |
|
2122 |
_g1h->heap_region_par_iterate_chunked(&blk, worker_i, |
|
2123 |
HeapRegion::ParVerifyClaimValue); |
|
2124 |
} |
|
2125 |
}; |
|
2126 |
||
1374 | 2127 |
void G1CollectedHeap::verify(bool allow_dirty, bool silent) { |
2128 |
if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) { |
|
2129 |
if (!silent) { gclog_or_tty->print("roots "); } |
|
2130 |
VerifyRootsClosure rootsCl; |
|
2131 |
process_strong_roots(false, |
|
2132 |
SharedHeap::SO_AllClasses, |
|
2133 |
&rootsCl, |
|
2134 |
&rootsCl); |
|
2135 |
rem_set()->invalidate(perm_gen()->used_region(), false); |
|
2136 |
if (!silent) { gclog_or_tty->print("heapRegions "); } |
|
1422 | 2137 |
if (GCParallelVerificationEnabled && ParallelGCThreads > 1) { |
2138 |
assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue), |
|
2139 |
"sanity check"); |
|
2140 |
||
2141 |
G1ParVerifyTask task(this, allow_dirty); |
|
2142 |
int n_workers = workers()->total_workers(); |
|
2143 |
set_par_threads(n_workers); |
|
2144 |
workers()->run_task(&task); |
|
2145 |
set_par_threads(0); |
|
2146 |
||
2147 |
assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue), |
|
2148 |
"sanity check"); |
|
2149 |
||
2150 |
reset_heap_region_claim_values(); |
|
2151 |
||
2152 |
assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue), |
|
2153 |
"sanity check"); |
|
2154 |
} else { |
|
2155 |
VerifyRegionClosure blk(allow_dirty); |
|
2156 |
_hrs->iterate(&blk); |
|
2157 |
} |
|
1374 | 2158 |
if (!silent) gclog_or_tty->print("remset "); |
2159 |
rem_set()->verify(); |
|
2160 |
guarantee(!rootsCl.failures(), "should not have had failures"); |
|
2161 |
} else { |
|
2162 |
if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) "); |
|
2163 |
} |
|
2164 |
} |
|
2165 |
||
2166 |
class PrintRegionClosure: public HeapRegionClosure { |
|
2167 |
outputStream* _st; |
|
2168 |
public: |
|
2169 |
PrintRegionClosure(outputStream* st) : _st(st) {} |
|
2170 |
bool doHeapRegion(HeapRegion* r) { |
|
2171 |
r->print_on(_st); |
|
2172 |
return false; |
|
2173 |
} |
|
2174 |
}; |
|
2175 |
||
2176 |
void G1CollectedHeap::print() const { print_on(gclog_or_tty); } |
|
2177 |
||
2178 |
void G1CollectedHeap::print_on(outputStream* st) const { |
|
2179 |
PrintRegionClosure blk(st); |
|
2180 |
_hrs->iterate(&blk); |
|
2181 |
} |
|
2182 |
||
2183 |
void G1CollectedHeap::print_gc_threads_on(outputStream* st) const { |
|
2184 |
if (ParallelGCThreads > 0) { |
|
2185 |
workers()->print_worker_threads(); |
|
2186 |
} |
|
2187 |
st->print("\"G1 concurrent mark GC Thread\" "); |
|
2188 |
_cmThread->print(); |
|
2189 |
st->cr(); |
|
2190 |
st->print("\"G1 concurrent refinement GC Thread\" "); |
|
2191 |
_cg1r->cg1rThread()->print_on(st); |
|
2192 |
st->cr(); |
|
2193 |
st->print("\"G1 zero-fill GC Thread\" "); |
|
2194 |
_czft->print_on(st); |
|
2195 |
st->cr(); |
|
2196 |
} |
|
2197 |
||
2198 |
void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const { |
|
2199 |
if (ParallelGCThreads > 0) { |
|
2200 |
workers()->threads_do(tc); |
|
2201 |
} |
|
2202 |
tc->do_thread(_cmThread); |
|
2203 |
tc->do_thread(_cg1r->cg1rThread()); |
|
2204 |
tc->do_thread(_czft); |
|
2205 |
} |
|
2206 |
||
2207 |
void G1CollectedHeap::print_tracing_info() const { |
|
2208 |
concurrent_g1_refine()->print_final_card_counts(); |
|
2209 |
||
2210 |
// We'll overload this to mean "trace GC pause statistics." |
|
2211 |
if (TraceGen0Time || TraceGen1Time) { |
|
2212 |
// The "G1CollectorPolicy" is keeping track of these stats, so delegate |
|
2213 |
// to that. |
|
2214 |
g1_policy()->print_tracing_info(); |
|
2215 |
} |
|
2216 |
if (SummarizeG1RSStats) { |
|
2217 |
g1_rem_set()->print_summary_info(); |
|
2218 |
} |
|
2219 |
if (SummarizeG1ConcMark) { |
|
2220 |
concurrent_mark()->print_summary_info(); |
|
2221 |
} |
|
2222 |
if (SummarizeG1ZFStats) { |
|
2223 |
ConcurrentZFThread::print_summary_info(); |
|
2224 |
} |
|
2225 |
if (G1SummarizePopularity) { |
|
2226 |
print_popularity_summary_info(); |
|
2227 |
} |
|
2228 |
g1_policy()->print_yg_surv_rate_info(); |
|
2229 |
||
2230 |
GCOverheadReporter::printGCOverhead(); |
|
2231 |
||
2232 |
SpecializationStats::print(); |
|
2233 |
} |
|
2234 |
||
2235 |
||
2236 |
int G1CollectedHeap::addr_to_arena_id(void* addr) const { |
|
2237 |
HeapRegion* hr = heap_region_containing(addr); |
|
2238 |
if (hr == NULL) { |
|
2239 |
return 0; |
|
2240 |
} else { |
|
2241 |
return 1; |
|
2242 |
} |
|
2243 |
} |
|
2244 |
||
2245 |
G1CollectedHeap* G1CollectedHeap::heap() { |
|
2246 |
assert(_sh->kind() == CollectedHeap::G1CollectedHeap, |
|
2247 |
"not a garbage-first heap"); |
|
2248 |
return _g1h; |
|
2249 |
} |
|
2250 |
||
2251 |
void G1CollectedHeap::gc_prologue(bool full /* Ignored */) { |
|
2252 |
if (PrintHeapAtGC){ |
|
2253 |
gclog_or_tty->print_cr(" {Heap before GC collections=%d:", total_collections()); |
|
2254 |
Universe::print(); |
|
2255 |
} |
|
2256 |
assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer"); |
|
2257 |
// Call allocation profiler |
|
2258 |
AllocationProfiler::iterate_since_last_gc(); |
|
2259 |
// Fill TLAB's and such |
|
2260 |
ensure_parsability(true); |
|
2261 |
} |
|
2262 |
||
2263 |
void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) { |
|
2264 |
// FIXME: what is this about? |
|
2265 |
// I'm ignoring the "fill_newgen()" call if "alloc_event_enabled" |
|
2266 |
// is set. |
|
2267 |
COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(), |
|
2268 |
"derived pointer present")); |
|
2269 |
||
2270 |
if (PrintHeapAtGC){ |
|
2271 |
gclog_or_tty->print_cr(" Heap after GC collections=%d:", total_collections()); |
|
2272 |
Universe::print(); |
|
2273 |
gclog_or_tty->print("} "); |
|
2274 |
} |
|
2275 |
} |
|
2276 |
||
2277 |
void G1CollectedHeap::do_collection_pause() { |
|
2278 |
// Read the GC count while holding the Heap_lock |
|
2279 |
// we need to do this _before_ wait_for_cleanup_complete(), to |
|
2280 |
// ensure that we do not give up the heap lock and potentially |
|
2281 |
// pick up the wrong count |
|
2282 |
int gc_count_before = SharedHeap::heap()->total_collections(); |
|
2283 |
||
2284 |
// Don't want to do a GC pause while cleanup is being completed! |
|
2285 |
wait_for_cleanup_complete(); |
|
2286 |
||
2287 |
g1_policy()->record_stop_world_start(); |
|
2288 |
{ |
|
2289 |
MutexUnlocker mu(Heap_lock); // give up heap lock, execute gets it back |
|
2290 |
VM_G1IncCollectionPause op(gc_count_before); |
|
2291 |
VMThread::execute(&op); |
|
2292 |
} |
|
2293 |
} |
|
2294 |
||
2295 |
void |
|
2296 |
G1CollectedHeap::doConcurrentMark() { |
|
2297 |
if (G1ConcMark) { |
|
2298 |
MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag); |
|
2299 |
if (!_cmThread->in_progress()) { |
|
2300 |
_cmThread->set_started(); |
|
2301 |
CGC_lock->notify(); |
|
2302 |
} |
|
2303 |
} |
|
2304 |
} |
|
2305 |
||
2306 |
class VerifyMarkedObjsClosure: public ObjectClosure { |
|
2307 |
G1CollectedHeap* _g1h; |
|
2308 |
public: |
|
2309 |
VerifyMarkedObjsClosure(G1CollectedHeap* g1h) : _g1h(g1h) {} |
|
2310 |
void do_object(oop obj) { |
|
2311 |
assert(obj->mark()->is_marked() ? !_g1h->is_obj_dead(obj) : true, |
|
2312 |
"markandsweep mark should agree with concurrent deadness"); |
|
2313 |
} |
|
2314 |
}; |
|
2315 |
||
2316 |
void |
|
2317 |
G1CollectedHeap::checkConcurrentMark() { |
|
2318 |
VerifyMarkedObjsClosure verifycl(this); |
|
2319 |
doConcurrentMark(); |
|
2320 |
// MutexLockerEx x(getMarkBitMapLock(), |
|
2321 |
// Mutex::_no_safepoint_check_flag); |
|
2322 |
object_iterate(&verifycl); |
|
2323 |
} |
|
2324 |
||
2325 |
void G1CollectedHeap::do_sync_mark() { |
|
2326 |
_cm->checkpointRootsInitial(); |
|
2327 |
_cm->markFromRoots(); |
|
2328 |
_cm->checkpointRootsFinal(false); |
|
2329 |
} |
|
2330 |
||
2331 |
// <NEW PREDICTION> |
|
2332 |
||
2333 |
double G1CollectedHeap::predict_region_elapsed_time_ms(HeapRegion *hr, |
|
2334 |
bool young) { |
|
2335 |
return _g1_policy->predict_region_elapsed_time_ms(hr, young); |
|
2336 |
} |
|
2337 |
||
2338 |
void G1CollectedHeap::check_if_region_is_too_expensive(double |
|
2339 |
predicted_time_ms) { |
|
2340 |
_g1_policy->check_if_region_is_too_expensive(predicted_time_ms); |
|
2341 |
} |
|
2342 |
||
2343 |
size_t G1CollectedHeap::pending_card_num() { |
|
2344 |
size_t extra_cards = 0; |
|
2345 |
JavaThread *curr = Threads::first(); |
|
2346 |
while (curr != NULL) { |
|
2347 |
DirtyCardQueue& dcq = curr->dirty_card_queue(); |
|
2348 |
extra_cards += dcq.size(); |
|
2349 |
curr = curr->next(); |
|
2350 |
} |
|
2351 |
DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); |
|
2352 |
size_t buffer_size = dcqs.buffer_size(); |
|
2353 |
size_t buffer_num = dcqs.completed_buffers_num(); |
|
2354 |
return buffer_size * buffer_num + extra_cards; |
|
2355 |
} |
|
2356 |
||
2357 |
size_t G1CollectedHeap::max_pending_card_num() { |
|
2358 |
DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); |
|
2359 |
size_t buffer_size = dcqs.buffer_size(); |
|
2360 |
size_t buffer_num = dcqs.completed_buffers_num(); |
|
2361 |
int thread_num = Threads::number_of_threads(); |
|
2362 |
return (buffer_num + thread_num) * buffer_size; |
|
2363 |
} |
|
2364 |
||
2365 |
size_t G1CollectedHeap::cards_scanned() { |
|
2366 |
HRInto_G1RemSet* g1_rset = (HRInto_G1RemSet*) g1_rem_set(); |
|
2367 |
return g1_rset->cardsScanned(); |
|
2368 |
} |
|
2369 |
||
2370 |
void |
|
2371 |
G1CollectedHeap::setup_surviving_young_words() { |
|
2372 |
guarantee( _surviving_young_words == NULL, "pre-condition" ); |
|
2373 |
size_t array_length = g1_policy()->young_cset_length(); |
|
2374 |
_surviving_young_words = NEW_C_HEAP_ARRAY(size_t, array_length); |
|
2375 |
if (_surviving_young_words == NULL) { |
|
2376 |
vm_exit_out_of_memory(sizeof(size_t) * array_length, |
|
2377 |
"Not enough space for young surv words summary."); |
|
2378 |
} |
|
2379 |
memset(_surviving_young_words, 0, array_length * sizeof(size_t)); |
|
2380 |
for (size_t i = 0; i < array_length; ++i) { |
|
2381 |
guarantee( _surviving_young_words[i] == 0, "invariant" ); |
|
2382 |
} |
|
2383 |
} |
|
2384 |
||
2385 |
void |
|
2386 |
G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) { |
|
2387 |
MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag); |
|
2388 |
size_t array_length = g1_policy()->young_cset_length(); |
|
2389 |
for (size_t i = 0; i < array_length; ++i) |
|
2390 |
_surviving_young_words[i] += surv_young_words[i]; |
|
2391 |
} |
|
2392 |
||
2393 |
void |
|
2394 |
G1CollectedHeap::cleanup_surviving_young_words() { |
|
2395 |
guarantee( _surviving_young_words != NULL, "pre-condition" ); |
|
2396 |
FREE_C_HEAP_ARRAY(size_t, _surviving_young_words); |
|
2397 |
_surviving_young_words = NULL; |
|
2398 |
} |
|
2399 |
||
2400 |
// </NEW PREDICTION> |
|
2401 |
||
2402 |
void |
|
2403 |
G1CollectedHeap::do_collection_pause_at_safepoint(HeapRegion* popular_region) { |
|
2404 |
char verbose_str[128]; |
|
2405 |
sprintf(verbose_str, "GC pause "); |
|
2406 |
if (popular_region != NULL) |
|
2407 |
strcat(verbose_str, "(popular)"); |
|
2408 |
else if (g1_policy()->in_young_gc_mode()) { |
|
2409 |
if (g1_policy()->full_young_gcs()) |
|
2410 |
strcat(verbose_str, "(young)"); |
|
2411 |
else |
|
2412 |
strcat(verbose_str, "(partial)"); |
|
2413 |
} |
|
2414 |
bool reset_should_initiate_conc_mark = false; |
|
2415 |
if (popular_region != NULL && g1_policy()->should_initiate_conc_mark()) { |
|
2416 |
// we currently do not allow an initial mark phase to be piggy-backed |
|
2417 |
// on a popular pause |
|
2418 |
reset_should_initiate_conc_mark = true; |
|
2419 |
g1_policy()->unset_should_initiate_conc_mark(); |
|
2420 |
} |
|
2421 |
if (g1_policy()->should_initiate_conc_mark()) |
|
2422 |
strcat(verbose_str, " (initial-mark)"); |
|
2423 |
||
2424 |
GCCauseSetter x(this, (popular_region == NULL ? |
|
2425 |
GCCause::_g1_inc_collection_pause : |
|
2426 |
GCCause::_g1_pop_region_collection_pause)); |
|
2427 |
||
2428 |
// if PrintGCDetails is on, we'll print long statistics information |
|
2429 |
// in the collector policy code, so let's not print this as the output |
|
2430 |
// is messy if we do. |
|
2431 |
gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps); |
|
2432 |
TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty); |
|
2433 |
TraceTime t(verbose_str, PrintGC && !PrintGCDetails, true, gclog_or_tty); |
|
2434 |
||
2435 |
ResourceMark rm; |
|
2436 |
assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint"); |
|
2437 |
assert(Thread::current() == VMThread::vm_thread(), "should be in vm thread"); |
|
2438 |
guarantee(!is_gc_active(), "collection is not reentrant"); |
|
2439 |
assert(regions_accounted_for(), "Region leakage!"); |
|
1385
1751733b089b
6723570: G1: assertion failure: p == current_top or oop(p)->is_oop(),"p is not a block start" (revisited!)
iveresov
parents:
1384
diff
changeset
|
2440 |
|
1751733b089b
6723570: G1: assertion failure: p == current_top or oop(p)->is_oop(),"p is not a block start" (revisited!)
iveresov
parents:
1384
diff
changeset
|
2441 |
increment_gc_time_stamp(); |
1374 | 2442 |
|
2443 |
if (g1_policy()->in_young_gc_mode()) { |
|
2444 |
assert(check_young_list_well_formed(), |
|
2445 |
"young list should be well formed"); |
|
2446 |
} |
|
2447 |
||
2448 |
if (GC_locker::is_active()) { |
|
2449 |
return; // GC is disabled (e.g. JNI GetXXXCritical operation) |
|
2450 |
} |
|
2451 |
||
2452 |
bool abandoned = false; |
|
2453 |
{ // Call to jvmpi::post_class_unload_events must occur outside of active GC |
|
2454 |
IsGCActiveMark x; |
|
2455 |
||
2456 |
gc_prologue(false); |
|
2457 |
increment_total_collections(); |
|
2458 |
||
2459 |
#if G1_REM_SET_LOGGING |
|
2460 |
gclog_or_tty->print_cr("\nJust chose CS, heap:"); |
|
2461 |
print(); |
|
2462 |
#endif |
|
2463 |
||
2464 |
if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) { |
|
2465 |
HandleMark hm; // Discard invalid handles created during verification |
|
2466 |
prepare_for_verify(); |
|
2467 |
gclog_or_tty->print(" VerifyBeforeGC:"); |
|
2468 |
Universe::verify(false); |
|
2469 |
} |
|
2470 |
||
2471 |
COMPILER2_PRESENT(DerivedPointerTable::clear()); |
|
2472 |
||
1606
dcf9714addbe
6684579: SoftReference processing can be made more efficient
ysr
parents:
1425
diff
changeset
|
2473 |
// We want to turn off ref discovery, if necessary, and turn it back on |
1374 | 2474 |
// on again later if we do. |
2475 |
bool was_enabled = ref_processor()->discovery_enabled(); |
|
2476 |
if (was_enabled) ref_processor()->disable_discovery(); |
|
2477 |
||
2478 |
// Forget the current alloc region (we might even choose it to be part |
|
2479 |
// of the collection set!). |
|
2480 |
abandon_cur_alloc_region(); |
|
2481 |
||
2482 |
// The elapsed time induced by the start time below deliberately elides |
|
2483 |
// the possible verification above. |
|
2484 |
double start_time_sec = os::elapsedTime(); |
|
2485 |
GCOverheadReporter::recordSTWStart(start_time_sec); |
|
2486 |
size_t start_used_bytes = used(); |
|
2487 |
if (!G1ConcMark) { |
|
2488 |
do_sync_mark(); |
|
2489 |
} |
|
2490 |
||
2491 |
g1_policy()->record_collection_pause_start(start_time_sec, |
|
2492 |
start_used_bytes); |
|
2493 |
||
1902 | 2494 |
guarantee(_in_cset_fast_test == NULL, "invariant"); |
2495 |
guarantee(_in_cset_fast_test_base == NULL, "invariant"); |
|
2496 |
_in_cset_fast_test_length = n_regions(); |
|
2497 |
_in_cset_fast_test_base = |
|
2498 |
NEW_C_HEAP_ARRAY(bool, _in_cset_fast_test_length); |
|
2499 |
memset(_in_cset_fast_test_base, false, |
|
2500 |
_in_cset_fast_test_length * sizeof(bool)); |
|
2501 |
// We're biasing _in_cset_fast_test to avoid subtracting the |
|
2502 |
// beginning of the heap every time we want to index; basically |
|
2503 |
// it's the same with what we do with the card table. |
|
2504 |
_in_cset_fast_test = _in_cset_fast_test_base - |
|
2505 |
((size_t) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes); |
|
2506 |
||
1374 | 2507 |
#if SCAN_ONLY_VERBOSE |
2508 |
_young_list->print(); |
|
2509 |
#endif // SCAN_ONLY_VERBOSE |
|
2510 |
||
2511 |
if (g1_policy()->should_initiate_conc_mark()) { |
|
2512 |
concurrent_mark()->checkpointRootsInitialPre(); |
|
2513 |
} |
|
2514 |
save_marks(); |
|
2515 |
||
2516 |
// We must do this before any possible evacuation that should propogate |
|
2517 |
// marks, including evacuation of popular objects in a popular pause. |
|
2518 |
if (mark_in_progress()) { |
|
2519 |
double start_time_sec = os::elapsedTime(); |
|
2520 |
||
2521 |
_cm->drainAllSATBBuffers(); |
|
2522 |
double finish_mark_ms = (os::elapsedTime() - start_time_sec) * 1000.0; |
|
2523 |
g1_policy()->record_satb_drain_time(finish_mark_ms); |
|
2524 |
||
2525 |
} |
|
2526 |
// Record the number of elements currently on the mark stack, so we |
|
2527 |
// only iterate over these. (Since evacuation may add to the mark |
|
2528 |
// stack, doing more exposes race conditions.) If no mark is in |
|
2529 |
// progress, this will be zero. |
|
2530 |
_cm->set_oops_do_bound(); |
|
2531 |
||
2532 |
assert(regions_accounted_for(), "Region leakage."); |
|
2533 |
||
2534 |
bool abandoned = false; |
|
2535 |
||
2536 |
if (mark_in_progress()) |
|
2537 |
concurrent_mark()->newCSet(); |
|
2538 |
||
2539 |
// Now choose the CS. |
|
2540 |
if (popular_region == NULL) { |
|
2541 |
g1_policy()->choose_collection_set(); |
|
2542 |
} else { |
|
2543 |
// We may be evacuating a single region (for popularity). |
|
2544 |
g1_policy()->record_popular_pause_preamble_start(); |
|
2545 |
popularity_pause_preamble(popular_region); |
|
2546 |
g1_policy()->record_popular_pause_preamble_end(); |
|
2547 |
abandoned = (g1_policy()->collection_set() == NULL); |
|
2548 |
// Now we allow more regions to be added (we have to collect |
|
2549 |
// all popular regions). |
|
2550 |
if (!abandoned) { |
|
2551 |
g1_policy()->choose_collection_set(popular_region); |
|
2552 |
} |
|
2553 |
} |
|
2554 |
// We may abandon a pause if we find no region that will fit in the MMU |
|
2555 |
// pause. |
|
2556 |
abandoned = (g1_policy()->collection_set() == NULL); |
|
2557 |
||
2558 |
// Nothing to do if we were unable to choose a collection set. |
|
2559 |
if (!abandoned) { |
|
2560 |
#if G1_REM_SET_LOGGING |
|
2561 |
gclog_or_tty->print_cr("\nAfter pause, heap:"); |
|
2562 |
print(); |
|
2563 |
#endif |
|
2564 |
||
2565 |
setup_surviving_young_words(); |
|
2566 |
||
2567 |
// Set up the gc allocation regions. |
|
2568 |
get_gc_alloc_regions(); |
|
2569 |
||
2570 |
// Actually do the work... |
|
2571 |
evacuate_collection_set(); |
|
2572 |
free_collection_set(g1_policy()->collection_set()); |
|
2573 |
g1_policy()->clear_collection_set(); |
|
2574 |
||
1902 | 2575 |
FREE_C_HEAP_ARRAY(bool, _in_cset_fast_test_base); |
2576 |
// this is more for peace of mind; we're nulling them here and |
|
2577 |
// we're expecting them to be null at the beginning of the next GC |
|
2578 |
_in_cset_fast_test = NULL; |
|
2579 |
_in_cset_fast_test_base = NULL; |
|
2580 |
||
1374 | 2581 |
if (popular_region != NULL) { |
2582 |
// We have to wait until now, because we don't want the region to |
|
2583 |
// be rescheduled for pop-evac during RS update. |
|
2584 |
popular_region->set_popular_pending(false); |
|
2585 |
} |
|
2586 |
||
2587 |
release_gc_alloc_regions(); |
|
2588 |
||
2589 |
cleanup_surviving_young_words(); |
|
2590 |
||
2591 |
if (g1_policy()->in_young_gc_mode()) { |
|
2592 |
_young_list->reset_sampled_info(); |
|
2593 |
assert(check_young_list_empty(true), |
|
2594 |
"young list should be empty"); |
|
2595 |
||
2596 |
#if SCAN_ONLY_VERBOSE |
|
2597 |
_young_list->print(); |
|
2598 |
#endif // SCAN_ONLY_VERBOSE |
|
2599 |
||
2009 | 2600 |
g1_policy()->record_survivor_regions(_young_list->survivor_length(), |
2601 |
_young_list->first_survivor_region(), |
|
2602 |
_young_list->last_survivor_region()); |
|
1374 | 2603 |
_young_list->reset_auxilary_lists(); |
2604 |
} |
|
2605 |
} else { |
|
2606 |
COMPILER2_PRESENT(DerivedPointerTable::update_pointers()); |
|
2607 |
} |
|
2608 |
||
2609 |
if (evacuation_failed()) { |
|
2610 |
_summary_bytes_used = recalculate_used(); |
|
2611 |
} else { |
|
2612 |
// The "used" of the the collection set have already been subtracted |
|
2613 |
// when they were freed. Add in the bytes evacuated. |
|
2614 |
_summary_bytes_used += g1_policy()->bytes_in_to_space(); |
|
2615 |
} |
|
2616 |
||
2617 |
if (g1_policy()->in_young_gc_mode() && |
|
2618 |
g1_policy()->should_initiate_conc_mark()) { |
|
2619 |
concurrent_mark()->checkpointRootsInitialPost(); |
|
2620 |
set_marking_started(); |
|
2621 |
doConcurrentMark(); |
|
2622 |
} |
|
2623 |
||
2624 |
#if SCAN_ONLY_VERBOSE |
|
2625 |
_young_list->print(); |
|
2626 |
#endif // SCAN_ONLY_VERBOSE |
|
2627 |
||
2628 |
double end_time_sec = os::elapsedTime(); |
|
2009 | 2629 |
if (!evacuation_failed()) { |
2630 |
g1_policy()->record_pause_time((end_time_sec - start_time_sec)*1000.0); |
|
2631 |
} |
|
1374 | 2632 |
GCOverheadReporter::recordSTWEnd(end_time_sec); |
2633 |
g1_policy()->record_collection_pause_end(popular_region != NULL, |
|
2634 |
abandoned); |
|
2635 |
||
2636 |
assert(regions_accounted_for(), "Region leakage."); |
|
2637 |
||
2638 |
if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) { |
|
2639 |
HandleMark hm; // Discard invalid handles created during verification |
|
2640 |
gclog_or_tty->print(" VerifyAfterGC:"); |
|
2641 |
Universe::verify(false); |
|
2642 |
} |
|
2643 |
||
2644 |
if (was_enabled) ref_processor()->enable_discovery(); |
|
2645 |
||
2646 |
{ |
|
2647 |
size_t expand_bytes = g1_policy()->expansion_amount(); |
|
2648 |
if (expand_bytes > 0) { |
|
2649 |
size_t bytes_before = capacity(); |
|
2650 |
expand(expand_bytes); |
|
2651 |
} |
|
2652 |
} |
|
2653 |
||
2010
c13462bbad17
6690928: Use spinning in combination with yields for workstealing termination.
jmasa
parents:
2009
diff
changeset
|
2654 |
if (mark_in_progress()) { |
1374 | 2655 |
concurrent_mark()->update_g1_committed(); |
2010
c13462bbad17
6690928: Use spinning in combination with yields for workstealing termination.
jmasa
parents:
2009
diff
changeset
|
2656 |
} |
c13462bbad17
6690928: Use spinning in combination with yields for workstealing termination.
jmasa
parents:
2009
diff
changeset
|
2657 |
|
c13462bbad17
6690928: Use spinning in combination with yields for workstealing termination.
jmasa
parents:
2009
diff
changeset
|
2658 |
#ifdef TRACESPINNING |
c13462bbad17
6690928: Use spinning in combination with yields for workstealing termination.
jmasa
parents:
2009
diff
changeset
|
2659 |
ParallelTaskTerminator::print_termination_counts(); |
c13462bbad17
6690928: Use spinning in combination with yields for workstealing termination.
jmasa
parents:
2009
diff
changeset
|
2660 |
#endif |
1374 | 2661 |
|
2662 |
gc_epilogue(false); |
|
2663 |
} |
|
2664 |
||
2665 |
assert(verify_region_lists(), "Bad region lists."); |
|
2666 |
||
2667 |
if (reset_should_initiate_conc_mark) |
|
2668 |
g1_policy()->set_should_initiate_conc_mark(); |
|
2669 |
||
2670 |
if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) { |
|
2671 |
gclog_or_tty->print_cr("Stopping after GC #%d", ExitAfterGCNum); |
|
2672 |
print_tracing_info(); |
|
2673 |
vm_exit(-1); |
|
2674 |
} |
|
2675 |
} |
|
2676 |
||
2677 |
void G1CollectedHeap::set_gc_alloc_region(int purpose, HeapRegion* r) { |
|
2678 |
assert(purpose >= 0 && purpose < GCAllocPurposeCount, "invalid purpose"); |
|
2679 |
HeapWord* original_top = NULL; |
|
2680 |
if (r != NULL) |
|
2681 |
original_top = r->top(); |
|
2682 |
||
2683 |
// We will want to record the used space in r as being there before gc. |
|
2684 |
// One we install it as a GC alloc region it's eligible for allocation. |
|
2685 |
// So record it now and use it later. |
|
2686 |
size_t r_used = 0; |
|
2687 |
if (r != NULL) { |
|
2688 |
r_used = r->used(); |
|
2689 |
||
2690 |
if (ParallelGCThreads > 0) { |
|
2691 |
// need to take the lock to guard against two threads calling |
|
2692 |
// get_gc_alloc_region concurrently (very unlikely but...) |
|
2693 |
MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag); |
|
2694 |
r->save_marks(); |
|
2695 |
} |
|
2696 |
} |
|
2697 |
HeapRegion* old_alloc_region = _gc_alloc_regions[purpose]; |
|
2698 |
_gc_alloc_regions[purpose] = r; |
|
2699 |
if (old_alloc_region != NULL) { |
|
2700 |
// Replace aliases too. |
|
2701 |
for (int ap = 0; ap < GCAllocPurposeCount; ++ap) { |
|
2702 |
if (_gc_alloc_regions[ap] == old_alloc_region) { |
|
2703 |
_gc_alloc_regions[ap] = r; |
|
2704 |
} |
|
2705 |
} |
|
2706 |
} |
|
2707 |
if (r != NULL) { |
|
2708 |
push_gc_alloc_region(r); |
|
2709 |
if (mark_in_progress() && original_top != r->next_top_at_mark_start()) { |
|
2710 |
// We are using a region as a GC alloc region after it has been used |
|
2711 |
// as a mutator allocation region during the current marking cycle. |
|
2712 |
// The mutator-allocated objects are currently implicitly marked, but |
|
2713 |
// when we move hr->next_top_at_mark_start() forward at the the end |
|
2714 |
// of the GC pause, they won't be. We therefore mark all objects in |
|
2715 |
// the "gap". We do this object-by-object, since marking densely |
|
2716 |
// does not currently work right with marking bitmap iteration. This |
|
2717 |
// means we rely on TLAB filling at the start of pauses, and no |
|
2718 |
// "resuscitation" of filled TLAB's. If we want to do this, we need |
|
2719 |
// to fix the marking bitmap iteration. |
|
2720 |
HeapWord* curhw = r->next_top_at_mark_start(); |
|
2721 |
HeapWord* t = original_top; |
|
2722 |
||
2723 |
while (curhw < t) { |
|
2724 |
oop cur = (oop)curhw; |
|
2725 |
// We'll assume parallel for generality. This is rare code. |
|
2726 |
concurrent_mark()->markAndGrayObjectIfNecessary(cur); // can't we just mark them? |
|
2727 |
curhw = curhw + cur->size(); |
|
2728 |
} |
|
2729 |
assert(curhw == t, "Should have parsed correctly."); |
|
2730 |
} |
|
2731 |
if (G1PolicyVerbose > 1) { |
|
2732 |
gclog_or_tty->print("New alloc region ["PTR_FORMAT", "PTR_FORMAT", " PTR_FORMAT") " |
|
2733 |
"for survivors:", r->bottom(), original_top, r->end()); |
|
2734 |
r->print(); |
|
2735 |
} |
|
2736 |
g1_policy()->record_before_bytes(r_used); |
|
2737 |
} |
|
2738 |
} |
|
2739 |
||
2740 |
void G1CollectedHeap::push_gc_alloc_region(HeapRegion* hr) { |
|
2741 |
assert(Thread::current()->is_VM_thread() || |
|
2742 |
par_alloc_during_gc_lock()->owned_by_self(), "Precondition"); |
|
2743 |
assert(!hr->is_gc_alloc_region() && !hr->in_collection_set(), |
|
2744 |
"Precondition."); |
|
2745 |
hr->set_is_gc_alloc_region(true); |
|
2746 |
hr->set_next_gc_alloc_region(_gc_alloc_region_list); |
|
2747 |
_gc_alloc_region_list = hr; |
|
2748 |
} |
|
2749 |
||
2750 |
#ifdef G1_DEBUG |
|
2751 |
class FindGCAllocRegion: public HeapRegionClosure { |
|
2752 |
public: |
|
2753 |
bool doHeapRegion(HeapRegion* r) { |
|
2754 |
if (r->is_gc_alloc_region()) { |
|
2755 |
gclog_or_tty->print_cr("Region %d ["PTR_FORMAT"...] is still a gc_alloc_region.", |
|
2756 |
r->hrs_index(), r->bottom()); |
|
2757 |
} |
|
2758 |
return false; |
|
2759 |
} |
|
2760 |
}; |
|
2761 |
#endif // G1_DEBUG |
|
2762 |
||
2763 |
void G1CollectedHeap::forget_alloc_region_list() { |
|
2764 |
assert(Thread::current()->is_VM_thread(), "Precondition"); |
|
2765 |
while (_gc_alloc_region_list != NULL) { |
|
2766 |
HeapRegion* r = _gc_alloc_region_list; |
|
2767 |
assert(r->is_gc_alloc_region(), "Invariant."); |
|
2768 |
_gc_alloc_region_list = r->next_gc_alloc_region(); |
|
2769 |
r->set_next_gc_alloc_region(NULL); |
|
2770 |
r->set_is_gc_alloc_region(false); |
|
2009 | 2771 |
if (r->is_survivor()) { |
2772 |
if (r->is_empty()) { |
|
2773 |
r->set_not_young(); |
|
2774 |
} else { |
|
2775 |
_young_list->add_survivor_region(r); |
|
2776 |
} |
|
2777 |
} |
|
1374 | 2778 |
if (r->is_empty()) { |
2779 |
++_free_regions; |
|
2780 |
} |
|
2781 |
} |
|
2782 |
#ifdef G1_DEBUG |
|
2783 |
FindGCAllocRegion fa; |
|
2784 |
heap_region_iterate(&fa); |
|
2785 |
#endif // G1_DEBUG |
|
2786 |
} |
|
2787 |
||
2788 |
||
2789 |
bool G1CollectedHeap::check_gc_alloc_regions() { |
|
2790 |
// TODO: allocation regions check |
|
2791 |
return true; |
|
2792 |
} |
|
2793 |
||
2794 |
void G1CollectedHeap::get_gc_alloc_regions() { |
|
2795 |
for (int ap = 0; ap < GCAllocPurposeCount; ++ap) { |
|
2796 |
// Create new GC alloc regions. |
|
2797 |
HeapRegion* alloc_region = _gc_alloc_regions[ap]; |
|
2798 |
// Clear this alloc region, so that in case it turns out to be |
|
2799 |
// unacceptable, we end up with no allocation region, rather than a bad |
|
2800 |
// one. |
|
2801 |
_gc_alloc_regions[ap] = NULL; |
|
2802 |
if (alloc_region == NULL || alloc_region->in_collection_set()) { |
|
2803 |
// Can't re-use old one. Allocate a new one. |
|
2804 |
alloc_region = newAllocRegionWithExpansion(ap, 0); |
|
2805 |
} |
|
2806 |
if (alloc_region != NULL) { |
|
2807 |
set_gc_alloc_region(ap, alloc_region); |
|
2808 |
} |
|
2809 |
} |
|
2810 |
// Set alternative regions for allocation purposes that have reached |
|
2811 |
// thier limit. |
|
2812 |
for (int ap = 0; ap < GCAllocPurposeCount; ++ap) { |
|
2813 |
GCAllocPurpose alt_purpose = g1_policy()->alternative_purpose(ap); |
|
2814 |
if (_gc_alloc_regions[ap] == NULL && alt_purpose != ap) { |
|
2815 |
_gc_alloc_regions[ap] = _gc_alloc_regions[alt_purpose]; |
|
2816 |
} |
|
2817 |
} |
|
2818 |
assert(check_gc_alloc_regions(), "alloc regions messed up"); |
|
2819 |
} |
|
2820 |
||
2821 |
void G1CollectedHeap::release_gc_alloc_regions() { |
|
2822 |
// We keep a separate list of all regions that have been alloc regions in |
|
2823 |
// the current collection pause. Forget that now. |
|
2824 |
forget_alloc_region_list(); |
|
2825 |
||
2826 |
// The current alloc regions contain objs that have survived |
|
2827 |
// collection. Make them no longer GC alloc regions. |
|
2828 |
for (int ap = 0; ap < GCAllocPurposeCount; ++ap) { |
|
2829 |
HeapRegion* r = _gc_alloc_regions[ap]; |
|
2830 |
if (r != NULL && r->is_empty()) { |
|
2831 |
{ |
|
2832 |
MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag); |
|
2833 |
r->set_zero_fill_complete(); |
|
2834 |
put_free_region_on_list_locked(r); |
|
2835 |
} |
|
2836 |
} |
|
2837 |
// set_gc_alloc_region will also NULLify all aliases to the region |
|
2838 |
set_gc_alloc_region(ap, NULL); |
|
2839 |
_gc_alloc_region_counts[ap] = 0; |
|
2840 |
} |
|
2841 |
} |
|
2842 |
||
2843 |
void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) { |
|
2844 |
_drain_in_progress = false; |
|
2845 |
set_evac_failure_closure(cl); |
|
2846 |
_evac_failure_scan_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true); |
|
2847 |
} |
|
2848 |
||
2849 |
void G1CollectedHeap::finalize_for_evac_failure() { |
|
2850 |
assert(_evac_failure_scan_stack != NULL && |
|
2851 |
_evac_failure_scan_stack->length() == 0, |
|
2852 |
"Postcondition"); |
|
2853 |
assert(!_drain_in_progress, "Postcondition"); |
|
2854 |
// Don't have to delete, since the scan stack is a resource object. |
|
2855 |
_evac_failure_scan_stack = NULL; |
|
2856 |
} |
|
2857 |
||
2858 |
||
2859 |
||
2860 |
// *** Sequential G1 Evacuation |
|
2861 |
||
2862 |
HeapWord* G1CollectedHeap::allocate_during_gc(GCAllocPurpose purpose, size_t word_size) { |
|
2863 |
HeapRegion* alloc_region = _gc_alloc_regions[purpose]; |
|
2864 |
// let the caller handle alloc failure |
|
2865 |
if (alloc_region == NULL) return NULL; |
|
2866 |
assert(isHumongous(word_size) || !alloc_region->isHumongous(), |
|
2867 |
"Either the object is humongous or the region isn't"); |
|
2868 |
HeapWord* block = alloc_region->allocate(word_size); |
|
2869 |
if (block == NULL) { |
|
2870 |
block = allocate_during_gc_slow(purpose, alloc_region, false, word_size); |
|
2871 |
} |
|
2872 |
return block; |
|
2873 |
} |
|
2874 |
||
2875 |
class G1IsAliveClosure: public BoolObjectClosure { |
|
2876 |
G1CollectedHeap* _g1; |
|
2877 |
public: |
|
2878 |
G1IsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {} |
|
2879 |
void do_object(oop p) { assert(false, "Do not call."); } |
|
2880 |
bool do_object_b(oop p) { |
|
2881 |
// It is reachable if it is outside the collection set, or is inside |
|
2882 |
// and forwarded. |
|
2883 |
||
2884 |
#ifdef G1_DEBUG |
|
2885 |
gclog_or_tty->print_cr("is alive "PTR_FORMAT" in CS %d forwarded %d overall %d", |
|
2886 |
(void*) p, _g1->obj_in_cs(p), p->is_forwarded(), |
|
2887 |
!_g1->obj_in_cs(p) || p->is_forwarded()); |
|
2888 |
#endif // G1_DEBUG |
|
2889 |
||
2890 |
return !_g1->obj_in_cs(p) || p->is_forwarded(); |
|
2891 |
} |
|
2892 |
}; |
|
2893 |
||
2894 |
class G1KeepAliveClosure: public OopClosure { |
|
2895 |
G1CollectedHeap* _g1; |
|
2896 |
public: |
|
2897 |
G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {} |
|
2898 |
void do_oop(narrowOop* p) { |
|
2899 |
guarantee(false, "NYI"); |
|
2900 |
} |
|
2901 |
void do_oop(oop* p) { |
|
2902 |
oop obj = *p; |
|
2903 |
#ifdef G1_DEBUG |
|
2904 |
if (PrintGC && Verbose) { |
|
2905 |
gclog_or_tty->print_cr("keep alive *"PTR_FORMAT" = "PTR_FORMAT" "PTR_FORMAT, |
|
2906 |
p, (void*) obj, (void*) *p); |
|
2907 |
} |
|
2908 |
#endif // G1_DEBUG |
|
2909 |
||
2910 |
if (_g1->obj_in_cs(obj)) { |
|
2911 |
assert( obj->is_forwarded(), "invariant" ); |
|
2912 |
*p = obj->forwardee(); |
|
2913 |
||
2914 |
#ifdef G1_DEBUG |
|
2915 |
gclog_or_tty->print_cr(" in CSet: moved "PTR_FORMAT" -> "PTR_FORMAT, |
|
2916 |
(void*) obj, (void*) *p); |
|
2917 |
#endif // G1_DEBUG |
|
2918 |
} |
|
2919 |
} |
|
2920 |
}; |
|
2921 |
||
2922 |
class RecreateRSetEntriesClosure: public OopClosure { |
|
2923 |
private: |
|
2924 |
G1CollectedHeap* _g1; |
|
2925 |
G1RemSet* _g1_rem_set; |
|
2926 |
HeapRegion* _from; |
|
2927 |
public: |
|
2928 |
RecreateRSetEntriesClosure(G1CollectedHeap* g1, HeapRegion* from) : |
|
2929 |
_g1(g1), _g1_rem_set(g1->g1_rem_set()), _from(from) |
|
2930 |
{} |
|
2931 |
||
2932 |
void do_oop(narrowOop* p) { |
|
2933 |
guarantee(false, "NYI"); |
|
2934 |
} |
|
2935 |
void do_oop(oop* p) { |
|
2936 |
assert(_from->is_in_reserved(p), "paranoia"); |
|
2937 |
if (*p != NULL) { |
|
2938 |
_g1_rem_set->write_ref(_from, p); |
|
2939 |
} |
|
2940 |
} |
|
2941 |
}; |
|
2942 |
||
2943 |
class RemoveSelfPointerClosure: public ObjectClosure { |
|
2944 |
private: |
|
2945 |
G1CollectedHeap* _g1; |
|
2946 |
ConcurrentMark* _cm; |
|
2947 |
HeapRegion* _hr; |
|
2948 |
size_t _prev_marked_bytes; |
|
2949 |
size_t _next_marked_bytes; |
|
2950 |
public: |
|
2951 |
RemoveSelfPointerClosure(G1CollectedHeap* g1, HeapRegion* hr) : |
|
2952 |
_g1(g1), _cm(_g1->concurrent_mark()), _hr(hr), |
|
2953 |
_prev_marked_bytes(0), _next_marked_bytes(0) |
|
2954 |
{} |
|
2955 |
||
2956 |
size_t prev_marked_bytes() { return _prev_marked_bytes; } |
|
2957 |
size_t next_marked_bytes() { return _next_marked_bytes; } |
|
2958 |
||
1384
163a4d4fa951
6702387: G1: assertion failure: assert(p == current_top || oop(p)->is_oop(),"p is not a block start")
iveresov
parents:
1374
diff
changeset
|
2959 |
// The original idea here was to coalesce evacuated and dead objects. |
163a4d4fa951
6702387: G1: assertion failure: assert(p == current_top || oop(p)->is_oop(),"p is not a block start")
iveresov
parents:
1374
diff
changeset
|
2960 |
// However that caused complications with the block offset table (BOT). |
163a4d4fa951
6702387: G1: assertion failure: assert(p == current_top || oop(p)->is_oop(),"p is not a block start")
iveresov
parents:
1374
diff
changeset
|
2961 |
// In particular if there were two TLABs, one of them partially refined. |
163a4d4fa951
6702387: G1: assertion failure: assert(p == current_top || oop(p)->is_oop(),"p is not a block start")
iveresov
parents:
1374
diff
changeset
|
2962 |
// |----- TLAB_1--------|----TLAB_2-~~~(partially refined part)~~~| |
163a4d4fa951
6702387: G1: assertion failure: assert(p == current_top || oop(p)->is_oop(),"p is not a block start")
iveresov
parents:
1374
diff
changeset
|
2963 |
// The BOT entries of the unrefined part of TLAB_2 point to the start |
163a4d4fa951
6702387: G1: assertion failure: assert(p == current_top || oop(p)->is_oop(),"p is not a block start")
iveresov
parents:
1374
diff
changeset
|
2964 |
// of TLAB_2. If the last object of the TLAB_1 and the first object |
163a4d4fa951
6702387: G1: assertion failure: assert(p == current_top || oop(p)->is_oop(),"p is not a block start")
iveresov
parents:
1374
diff
changeset
|
2965 |
// of TLAB_2 are coalesced, then the cards of the unrefined part |
163a4d4fa951
6702387: G1: assertion failure: assert(p == current_top || oop(p)->is_oop(),"p is not a block start")
iveresov
parents:
1374
diff
changeset
|
2966 |
// would point into middle of the filler object. |
163a4d4fa951
6702387: G1: assertion failure: assert(p == current_top || oop(p)->is_oop(),"p is not a block start")
iveresov
parents:
1374
diff
changeset
|
2967 |
// |
163a4d4fa951
6702387: G1: assertion failure: assert(p == current_top || oop(p)->is_oop(),"p is not a block start")
iveresov
parents:
1374
diff
changeset
|
2968 |
// The current approach is to not coalesce and leave the BOT contents intact. |
163a4d4fa951
6702387: G1: assertion failure: assert(p == current_top || oop(p)->is_oop(),"p is not a block start")
iveresov
parents:
1374
diff
changeset
|
2969 |
void do_object(oop obj) { |
163a4d4fa951
6702387: G1: assertion failure: assert(p == current_top || oop(p)->is_oop(),"p is not a block start")
iveresov
parents:
1374
diff
changeset
|
2970 |
if (obj->is_forwarded() && obj->forwardee() == obj) { |
163a4d4fa951
6702387: G1: assertion failure: assert(p == current_top || oop(p)->is_oop(),"p is not a block start")
iveresov
parents:
1374
diff
changeset
|
2971 |
// The object failed to move. |
163a4d4fa951
6702387: G1: assertion failure: assert(p == current_top || oop(p)->is_oop(),"p is not a block start")
iveresov
parents:
1374
diff
changeset
|
2972 |
assert(!_g1->is_obj_dead(obj), "We should not be preserving dead objs."); |
163a4d4fa951
6702387: G1: assertion failure: assert(p == current_top || oop(p)->is_oop(),"p is not a block start")
iveresov
parents:
1374
diff
changeset
|
2973 |
_cm->markPrev(obj); |
163a4d4fa951
6702387: G1: assertion failure: assert(p == current_top || oop(p)->is_oop(),"p is not a block start")
iveresov
parents:
1374
diff
changeset
|
2974 |
assert(_cm->isPrevMarked(obj), "Should be marked!"); |
163a4d4fa951
6702387: G1: assertion failure: assert(p == current_top || oop(p)->is_oop(),"p is not a block start")
iveresov
parents:
1374
diff
changeset
|
2975 |
_prev_marked_bytes += (obj->size() * HeapWordSize); |
163a4d4fa951
6702387: G1: assertion failure: assert(p == current_top || oop(p)->is_oop(),"p is not a block start")
iveresov
parents:
1374
diff
changeset
|
2976 |
if (_g1->mark_in_progress() && !_g1->is_obj_ill(obj)) { |
163a4d4fa951
6702387: G1: assertion failure: assert(p == current_top || oop(p)->is_oop(),"p is not a block start")
iveresov
parents:
1374
diff
changeset
|
2977 |
_cm->markAndGrayObjectIfNecessary(obj); |
163a4d4fa951
6702387: G1: assertion failure: assert(p == current_top || oop(p)->is_oop(),"p is not a block start")
iveresov
parents:
1374
diff
changeset
|
2978 |
} |
163a4d4fa951
6702387: G1: assertion failure: assert(p == current_top || oop(p)->is_oop(),"p is not a block start")
iveresov
parents:
1374
diff
changeset
|
2979 |
obj->set_mark(markOopDesc::prototype()); |
163a4d4fa951
6702387: G1: assertion failure: assert(p == current_top || oop(p)->is_oop(),"p is not a block start")
iveresov
parents:
1374
diff
changeset
|
2980 |
// While we were processing RSet buffers during the |
163a4d4fa951
6702387: G1: assertion failure: assert(p == current_top || oop(p)->is_oop(),"p is not a block start")
iveresov
parents:
1374
diff
changeset
|
2981 |
// collection, we actually didn't scan any cards on the |
163a4d4fa951
6702387: G1: assertion failure: assert(p == current_top || oop(p)->is_oop(),"p is not a block start")
iveresov
parents:
1374
diff
changeset
|
2982 |
// collection set, since we didn't want to update remebered |
163a4d4fa951
6702387: G1: assertion failure: assert(p == current_top || oop(p)->is_oop(),"p is not a block start")
iveresov
parents:
1374
diff
changeset
|
2983 |
// sets with entries that point into the collection set, given |
163a4d4fa951
6702387: G1: assertion failure: assert(p == current_top || oop(p)->is_oop(),"p is not a block start")
iveresov
parents:
1374
diff
changeset
|
2984 |
// that live objects fromthe collection set are about to move |
163a4d4fa951
6702387: G1: assertion failure: assert(p == current_top || oop(p)->is_oop(),"p is not a block start")
iveresov
parents:
1374
diff
changeset
|
2985 |
// and such entries will be stale very soon. This change also |
163a4d4fa951
6702387: G1: assertion failure: assert(p == current_top || oop(p)->is_oop(),"p is not a block start")
iveresov
parents:
1374
diff
changeset
|
2986 |
// dealt with a reliability issue which involved scanning a |
163a4d4fa951
6702387: G1: assertion failure: assert(p == current_top || oop(p)->is_oop(),"p is not a block start")
iveresov
parents:
1374
diff
changeset
|
2987 |
// card in the collection set and coming across an array that |
163a4d4fa951
6702387: G1: assertion failure: assert(p == current_top || oop(p)->is_oop(),"p is not a block start")
iveresov
parents:
1374
diff
changeset
|
2988 |
// was being chunked and looking malformed. The problem is |
163a4d4fa951
6702387: G1: assertion failure: assert(p == current_top || oop(p)->is_oop(),"p is not a block start")
iveresov
parents:
1374
diff
changeset
|
2989 |
// that, if evacuation fails, we might have remembered set |
163a4d4fa951
6702387: G1: assertion failure: assert(p == current_top || oop(p)->is_oop(),"p is not a block start")
iveresov
parents:
1374
diff
changeset
|
2990 |
// entries missing given that we skipped cards on the |
163a4d4fa951
6702387: G1: assertion failure: assert(p == current_top || oop(p)->is_oop(),"p is not a block start")
iveresov
parents:
1374
diff
changeset
|
2991 |
// collection set. So, we'll recreate such entries now. |
163a4d4fa951
6702387: G1: assertion failure: assert(p == current_top || oop(p)->is_oop(),"p is not a block start")
iveresov
parents:
1374
diff
changeset
|
2992 |
RecreateRSetEntriesClosure cl(_g1, _hr); |
163a4d4fa951
6702387: G1: assertion failure: assert(p == current_top || oop(p)->is_oop(),"p is not a block start")
iveresov
parents:
1374
diff
changeset
|
2993 |
obj->oop_iterate(&cl); |
163a4d4fa951
6702387: G1: assertion failure: assert(p == current_top || oop(p)->is_oop(),"p is not a block start")
iveresov
parents:
1374
diff
changeset
|
2994 |
assert(_cm->isPrevMarked(obj), "Should be marked!"); |
163a4d4fa951
6702387: G1: assertion failure: assert(p == current_top || oop(p)->is_oop(),"p is not a block start")
iveresov
parents:
1374
diff
changeset
|
2995 |
} else { |
163a4d4fa951
6702387: G1: assertion failure: assert(p == current_top || oop(p)->is_oop(),"p is not a block start")
iveresov
parents:
1374
diff
changeset
|
2996 |
// The object has been either evacuated or is dead. Fill it with a |
163a4d4fa951
6702387: G1: assertion failure: assert(p == current_top || oop(p)->is_oop(),"p is not a block start")
iveresov
parents:
1374
diff
changeset
|
2997 |
// dummy object. |
163a4d4fa951
6702387: G1: assertion failure: assert(p == current_top || oop(p)->is_oop(),"p is not a block start")
iveresov
parents:
1374
diff
changeset
|
2998 |
MemRegion mr((HeapWord*)obj, obj->size()); |
1668
8ec481b8f514
6578152: fill_region_with_object has usability and safety issues
jcoomes
parents:
1610
diff
changeset
|
2999 |
CollectedHeap::fill_with_object(mr); |
1374 | 3000 |
_cm->clearRangeBothMaps(mr); |
3001 |
} |
|
3002 |
} |
|
3003 |
}; |
|
3004 |
||
3005 |
void G1CollectedHeap::remove_self_forwarding_pointers() { |
|
3006 |
HeapRegion* cur = g1_policy()->collection_set(); |
|
3007 |
||
3008 |
while (cur != NULL) { |
|
3009 |
assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!"); |
|
3010 |
||
3011 |
if (cur->evacuation_failed()) { |
|
3012 |
RemoveSelfPointerClosure rspc(_g1h, cur); |
|
3013 |
assert(cur->in_collection_set(), "bad CS"); |
|
3014 |
cur->object_iterate(&rspc); |
|
3015 |
||
3016 |
// A number of manipulations to make the TAMS be the current top, |
|
3017 |
// and the marked bytes be the ones observed in the iteration. |
|
3018 |
if (_g1h->concurrent_mark()->at_least_one_mark_complete()) { |
|
3019 |
// The comments below are the postconditions achieved by the |
|
3020 |
// calls. Note especially the last such condition, which says that |
|
3021 |
// the count of marked bytes has been properly restored. |
|
3022 |
cur->note_start_of_marking(false); |
|
3023 |
// _next_top_at_mark_start == top, _next_marked_bytes == 0 |
|
3024 |
cur->add_to_marked_bytes(rspc.prev_marked_bytes()); |
|
3025 |
// _next_marked_bytes == prev_marked_bytes. |
|
3026 |
cur->note_end_of_marking(); |
|
3027 |
// _prev_top_at_mark_start == top(), |
|
3028 |
// _prev_marked_bytes == prev_marked_bytes |
|
3029 |
} |
|
3030 |
// If there is no mark in progress, we modified the _next variables |
|
3031 |
// above needlessly, but harmlessly. |
|
3032 |
if (_g1h->mark_in_progress()) { |
|
3033 |
cur->note_start_of_marking(false); |
|
3034 |
// _next_top_at_mark_start == top, _next_marked_bytes == 0 |
|
3035 |
// _next_marked_bytes == next_marked_bytes. |
|
3036 |
} |
|
3037 |
||
3038 |
// Now make sure the region has the right index in the sorted array. |
|
3039 |
g1_policy()->note_change_in_marked_bytes(cur); |
|
3040 |
} |
|
3041 |
cur = cur->next_in_collection_set(); |
|
3042 |
} |
|
3043 |
assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!"); |
|
3044 |
||
3045 |
// Now restore saved marks, if any. |
|
3046 |
if (_objs_with_preserved_marks != NULL) { |
|
3047 |
assert(_preserved_marks_of_objs != NULL, "Both or none."); |
|
3048 |
assert(_objs_with_preserved_marks->length() == |
|
3049 |
_preserved_marks_of_objs->length(), "Both or none."); |
|
3050 |
guarantee(_objs_with_preserved_marks->length() == |
|
3051 |
_preserved_marks_of_objs->length(), "Both or none."); |
|
3052 |
for (int i = 0; i < _objs_with_preserved_marks->length(); i++) { |
|
3053 |
oop obj = _objs_with_preserved_marks->at(i); |
|
3054 |
markOop m = _preserved_marks_of_objs->at(i); |
|
3055 |
obj->set_mark(m); |
|
3056 |
} |
|
3057 |
// Delete the preserved marks growable arrays (allocated on the C heap). |
|
3058 |
delete _objs_with_preserved_marks; |
|
3059 |
delete _preserved_marks_of_objs; |
|
3060 |
_objs_with_preserved_marks = NULL; |
|
3061 |
_preserved_marks_of_objs = NULL; |
|
3062 |
} |
|
3063 |
} |
|
3064 |
||
3065 |
void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) { |
|
3066 |
_evac_failure_scan_stack->push(obj); |
|
3067 |
} |
|
3068 |
||
3069 |
void G1CollectedHeap::drain_evac_failure_scan_stack() { |
|
3070 |
assert(_evac_failure_scan_stack != NULL, "precondition"); |
|
3071 |
||
3072 |
while (_evac_failure_scan_stack->length() > 0) { |
|
3073 |
oop obj = _evac_failure_scan_stack->pop(); |
|
3074 |
_evac_failure_closure->set_region(heap_region_containing(obj)); |
|
3075 |
obj->oop_iterate_backwards(_evac_failure_closure); |
|
3076 |
} |
|
3077 |
} |
|
3078 |
||
3079 |
void G1CollectedHeap::handle_evacuation_failure(oop old) { |
|
3080 |
markOop m = old->mark(); |
|
3081 |
// forward to self |
|
3082 |
assert(!old->is_forwarded(), "precondition"); |
|
3083 |
||
3084 |
old->forward_to(old); |
|
3085 |
handle_evacuation_failure_common(old, m); |
|
3086 |
} |
|
3087 |
||
3088 |
oop |
|
3089 |
G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl, |
|
3090 |
oop old) { |
|
3091 |
markOop m = old->mark(); |
|
3092 |
oop forward_ptr = old->forward_to_atomic(old); |
|
3093 |
if (forward_ptr == NULL) { |
|
3094 |
// Forward-to-self succeeded. |
|
3095 |
if (_evac_failure_closure != cl) { |
|
3096 |
MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag); |
|
3097 |
assert(!_drain_in_progress, |
|
3098 |
"Should only be true while someone holds the lock."); |
|
3099 |
// Set the global evac-failure closure to the current thread's. |
|
3100 |
assert(_evac_failure_closure == NULL, "Or locking has failed."); |
|
3101 |
set_evac_failure_closure(cl); |
|
3102 |
// Now do the common part. |
|
3103 |
handle_evacuation_failure_common(old, m); |
|
3104 |
// Reset to NULL. |
|
3105 |
set_evac_failure_closure(NULL); |
|
3106 |
} else { |
|
3107 |
// The lock is already held, and this is recursive. |
|
3108 |
assert(_drain_in_progress, "This should only be the recursive case."); |
|
3109 |
handle_evacuation_failure_common(old, m); |
|
3110 |
} |
|
3111 |
return old; |
|
3112 |
} else { |
|
3113 |
// Someone else had a place to copy it. |
|
3114 |
return forward_ptr; |
|
3115 |
} |
|
3116 |
} |
|
3117 |
||
3118 |
void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) { |
|
3119 |
set_evacuation_failed(true); |
|
3120 |
||
3121 |
preserve_mark_if_necessary(old, m); |
|
3122 |
||
3123 |
HeapRegion* r = heap_region_containing(old); |
|
3124 |
if (!r->evacuation_failed()) { |
|
3125 |
r->set_evacuation_failed(true); |
|
3126 |
if (G1TraceRegions) { |
|
3127 |
gclog_or_tty->print("evacuation failed in heap region "PTR_FORMAT" " |
|
3128 |
"["PTR_FORMAT","PTR_FORMAT")\n", |
|
3129 |
r, r->bottom(), r->end()); |
|
3130 |
} |
|
3131 |
} |
|
3132 |
||
3133 |
push_on_evac_failure_scan_stack(old); |
|
3134 |
||
3135 |
if (!_drain_in_progress) { |
|
3136 |
// prevent recursion in copy_to_survivor_space() |
|
3137 |
_drain_in_progress = true; |
|
3138 |
drain_evac_failure_scan_stack(); |
|
3139 |
_drain_in_progress = false; |
|
3140 |
} |
|
3141 |
} |
|
3142 |
||
3143 |
void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) { |
|
3144 |
if (m != markOopDesc::prototype()) { |
|
3145 |
if (_objs_with_preserved_marks == NULL) { |
|
3146 |
assert(_preserved_marks_of_objs == NULL, "Both or none."); |
|
3147 |
_objs_with_preserved_marks = |
|
3148 |
new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true); |
|
3149 |
_preserved_marks_of_objs = |
|
3150 |
new (ResourceObj::C_HEAP) GrowableArray<markOop>(40, true); |
|
3151 |
} |
|
3152 |
_objs_with_preserved_marks->push(obj); |
|
3153 |
_preserved_marks_of_objs->push(m); |
|
3154 |
} |
|
3155 |
} |
|
3156 |
||
3157 |
// *** Parallel G1 Evacuation |
|
3158 |
||
3159 |
HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose, |
|
3160 |
size_t word_size) { |
|
3161 |
HeapRegion* alloc_region = _gc_alloc_regions[purpose]; |
|
3162 |
// let the caller handle alloc failure |
|
3163 |
if (alloc_region == NULL) return NULL; |
|
3164 |
||
3165 |
HeapWord* block = alloc_region->par_allocate(word_size); |
|
3166 |
if (block == NULL) { |
|
3167 |
MutexLockerEx x(par_alloc_during_gc_lock(), |
|
3168 |
Mutex::_no_safepoint_check_flag); |
|
3169 |
block = allocate_during_gc_slow(purpose, alloc_region, true, word_size); |
|
3170 |
} |
|
3171 |
return block; |
|
3172 |
} |
|
3173 |
||
2009 | 3174 |
void G1CollectedHeap::retire_alloc_region(HeapRegion* alloc_region, |
3175 |
bool par) { |
|
3176 |
// Another thread might have obtained alloc_region for the given |
|
3177 |
// purpose, and might be attempting to allocate in it, and might |
|
3178 |
// succeed. Therefore, we can't do the "finalization" stuff on the |
|
3179 |
// region below until we're sure the last allocation has happened. |
|
3180 |
// We ensure this by allocating the remaining space with a garbage |
|
3181 |
// object. |
|
3182 |
if (par) par_allocate_remaining_space(alloc_region); |
|
3183 |
// Now we can do the post-GC stuff on the region. |
|
3184 |
alloc_region->note_end_of_copying(); |
|
3185 |
g1_policy()->record_after_bytes(alloc_region->used()); |
|
3186 |
} |
|
3187 |
||
1374 | 3188 |
HeapWord* |
3189 |
G1CollectedHeap::allocate_during_gc_slow(GCAllocPurpose purpose, |
|
3190 |
HeapRegion* alloc_region, |
|
3191 |
bool par, |
|
3192 |
size_t word_size) { |
|
3193 |
HeapWord* block = NULL; |
|
3194 |
// In the parallel case, a previous thread to obtain the lock may have |
|
3195 |
// already assigned a new gc_alloc_region. |
|
3196 |
if (alloc_region != _gc_alloc_regions[purpose]) { |
|
3197 |
assert(par, "But should only happen in parallel case."); |
|
3198 |
alloc_region = _gc_alloc_regions[purpose]; |
|
3199 |
if (alloc_region == NULL) return NULL; |
|
3200 |
block = alloc_region->par_allocate(word_size); |
|
3201 |
if (block != NULL) return block; |
|
3202 |
// Otherwise, continue; this new region is empty, too. |
|
3203 |
} |
|
3204 |
assert(alloc_region != NULL, "We better have an allocation region"); |
|
2009 | 3205 |
retire_alloc_region(alloc_region, par); |
1374 | 3206 |
|
3207 |
if (_gc_alloc_region_counts[purpose] >= g1_policy()->max_regions(purpose)) { |
|
3208 |
// Cannot allocate more regions for the given purpose. |
|
3209 |
GCAllocPurpose alt_purpose = g1_policy()->alternative_purpose(purpose); |
|
3210 |
// Is there an alternative? |
|
3211 |
if (purpose != alt_purpose) { |
|
3212 |
HeapRegion* alt_region = _gc_alloc_regions[alt_purpose]; |
|
3213 |
// Has not the alternative region been aliased? |
|
2009 | 3214 |
if (alloc_region != alt_region && alt_region != NULL) { |
1374 | 3215 |
// Try to allocate in the alternative region. |
3216 |
if (par) { |
|
3217 |
block = alt_region->par_allocate(word_size); |
|
3218 |
} else { |
|
3219 |
block = alt_region->allocate(word_size); |
|
3220 |
} |
|
3221 |
// Make an alias. |
|
3222 |
_gc_alloc_regions[purpose] = _gc_alloc_regions[alt_purpose]; |
|
2009 | 3223 |
if (block != NULL) { |
3224 |
return block; |
|
3225 |
} |
|
3226 |
retire_alloc_region(alt_region, par); |
|
1374 | 3227 |
} |
3228 |
// Both the allocation region and the alternative one are full |
|
3229 |
// and aliased, replace them with a new allocation region. |
|
3230 |
purpose = alt_purpose; |
|
3231 |
} else { |
|
3232 |
set_gc_alloc_region(purpose, NULL); |
|
3233 |
return NULL; |
|
3234 |
} |
|
3235 |
} |
|
3236 |
||
3237 |
// Now allocate a new region for allocation. |
|
3238 |
alloc_region = newAllocRegionWithExpansion(purpose, word_size, false /*zero_filled*/); |
|
3239 |
||
3240 |
// let the caller handle alloc failure |
|
3241 |
if (alloc_region != NULL) { |
|
3242 |
||
3243 |
assert(check_gc_alloc_regions(), "alloc regions messed up"); |
|
3244 |
assert(alloc_region->saved_mark_at_top(), |
|
3245 |
"Mark should have been saved already."); |
|
3246 |
// We used to assert that the region was zero-filled here, but no |
|
3247 |
// longer. |
|
3248 |
||
3249 |
// This must be done last: once it's installed, other regions may |
|
3250 |
// allocate in it (without holding the lock.) |
|
3251 |
set_gc_alloc_region(purpose, alloc_region); |
|
3252 |
||
3253 |
if (par) { |
|
3254 |
block = alloc_region->par_allocate(word_size); |
|
3255 |
} else { |
|
3256 |
block = alloc_region->allocate(word_size); |
|
3257 |
} |
|
3258 |
// Caller handles alloc failure. |
|
3259 |
} else { |
|
3260 |
// This sets other apis using the same old alloc region to NULL, also. |
|
3261 |
set_gc_alloc_region(purpose, NULL); |
|
3262 |
} |
|
3263 |
return block; // May be NULL. |
|
3264 |
} |
|
3265 |
||
3266 |
void G1CollectedHeap::par_allocate_remaining_space(HeapRegion* r) { |
|
3267 |
HeapWord* block = NULL; |
|
3268 |
size_t free_words; |
|
3269 |
do { |
|
3270 |
free_words = r->free()/HeapWordSize; |
|
3271 |
// If there's too little space, no one can allocate, so we're done. |
|
3272 |
if (free_words < (size_t)oopDesc::header_size()) return; |
|
3273 |
// Otherwise, try to claim it. |
|
3274 |
block = r->par_allocate(free_words); |
|
3275 |
} while (block == NULL); |
|
1668
8ec481b8f514
6578152: fill_region_with_object has usability and safety issues
jcoomes
parents:
1610
diff
changeset
|
3276 |
fill_with_object(block, free_words); |
1374 | 3277 |
} |
3278 |
||
3279 |
#define use_local_bitmaps 1 |
|
3280 |
#define verify_local_bitmaps 0 |
|
3281 |
||
3282 |
#ifndef PRODUCT |
|
3283 |
||
3284 |
class GCLabBitMap; |
|
3285 |
class GCLabBitMapClosure: public BitMapClosure { |
|
3286 |
private: |
|
3287 |
ConcurrentMark* _cm; |
|
3288 |
GCLabBitMap* _bitmap; |
|
3289 |
||
3290 |
public: |
|
3291 |
GCLabBitMapClosure(ConcurrentMark* cm, |
|
3292 |
GCLabBitMap* bitmap) { |
|
3293 |
_cm = cm; |
|
3294 |
_bitmap = bitmap; |
|
3295 |
} |
|
3296 |
||
3297 |
virtual bool do_bit(size_t offset); |
|
3298 |
}; |
|
3299 |
||
3300 |
#endif // PRODUCT |
|
3301 |
||
3302 |
#define oop_buffer_length 256 |
|
3303 |
||
3304 |
class GCLabBitMap: public BitMap { |
|
3305 |
private: |
|
3306 |
ConcurrentMark* _cm; |
|
3307 |
||
3308 |
int _shifter; |
|
3309 |
size_t _bitmap_word_covers_words; |
|
3310 |
||
3311 |
// beginning of the heap |
|
3312 |
HeapWord* _heap_start; |
|
3313 |
||
3314 |
// this is the actual start of the GCLab |
|
3315 |
HeapWord* _real_start_word; |
|
3316 |
||
3317 |
// this is the actual end of the GCLab |
|
3318 |
HeapWord* _real_end_word; |
|
3319 |
||
3320 |
// this is the first word, possibly located before the actual start |
|
3321 |
// of the GCLab, that corresponds to the first bit of the bitmap |
|
3322 |
HeapWord* _start_word; |
|
3323 |
||
3324 |
// size of a GCLab in words |
|
3325 |
size_t _gclab_word_size; |
|
3326 |
||
3327 |
static int shifter() { |
|
3328 |
return MinObjAlignment - 1; |
|
3329 |
} |
|
3330 |
||
3331 |
// how many heap words does a single bitmap word corresponds to? |
|
3332 |
static size_t bitmap_word_covers_words() { |
|
3333 |
return BitsPerWord << shifter(); |
|
3334 |
} |
|
3335 |
||
3336 |
static size_t gclab_word_size() { |
|
3337 |
return ParallelGCG1AllocBufferSize / HeapWordSize; |
|
3338 |
} |
|
3339 |
||
3340 |
static size_t bitmap_size_in_bits() { |
|
3341 |
size_t bits_in_bitmap = gclab_word_size() >> shifter(); |
|
3342 |
// We are going to ensure that the beginning of a word in this |
|
3343 |
// bitmap also corresponds to the beginning of a word in the |
|
3344 |
// global marking bitmap. To handle the case where a GCLab |
|
3345 |
// starts from the middle of the bitmap, we need to add enough |
|
3346 |
// space (i.e. up to a bitmap word) to ensure that we have |
|
3347 |
// enough bits in the bitmap. |
|
3348 |
return bits_in_bitmap + BitsPerWord - 1; |
|
3349 |
} |
|
3350 |
public: |
|
3351 |
GCLabBitMap(HeapWord* heap_start) |
|
3352 |
: BitMap(bitmap_size_in_bits()), |
|
3353 |
_cm(G1CollectedHeap::heap()->concurrent_mark()), |
|
3354 |
_shifter(shifter()), |
|
3355 |
_bitmap_word_covers_words(bitmap_word_covers_words()), |
|
3356 |
_heap_start(heap_start), |
|
3357 |
_gclab_word_size(gclab_word_size()), |
|
3358 |
_real_start_word(NULL), |
|
3359 |
_real_end_word(NULL), |
|
3360 |
_start_word(NULL) |
|
3361 |
{ |
|
3362 |
guarantee( size_in_words() >= bitmap_size_in_words(), |
|
3363 |
"just making sure"); |
|
3364 |
} |
|
3365 |
||
3366 |
inline unsigned heapWordToOffset(HeapWord* addr) { |
|
3367 |
unsigned offset = (unsigned) pointer_delta(addr, _start_word) >> _shifter; |
|
3368 |
assert(offset < size(), "offset should be within bounds"); |
|
3369 |
return offset; |
|
3370 |
} |
|
3371 |
||
3372 |
inline HeapWord* offsetToHeapWord(size_t offset) { |
|
3373 |
HeapWord* addr = _start_word + (offset << _shifter); |
|
3374 |
assert(_real_start_word <= addr && addr < _real_end_word, "invariant"); |
|
3375 |
return addr; |
|
3376 |
} |
|
3377 |
||
3378 |
bool fields_well_formed() { |
|
3379 |
bool ret1 = (_real_start_word == NULL) && |
|
3380 |
(_real_end_word == NULL) && |
|
3381 |
(_start_word == NULL); |
|
3382 |
if (ret1) |
|
3383 |
return true; |
|
3384 |
||
3385 |
bool ret2 = _real_start_word >= _start_word && |
|
3386 |
_start_word < _real_end_word && |
|
3387 |
(_real_start_word + _gclab_word_size) == _real_end_word && |
|
3388 |
(_start_word + _gclab_word_size + _bitmap_word_covers_words) |
|
3389 |
> _real_end_word; |
|
3390 |
return ret2; |
|
3391 |
} |
|
3392 |
||
3393 |
inline bool mark(HeapWord* addr) { |
|
3394 |
guarantee(use_local_bitmaps, "invariant"); |
|
3395 |
assert(fields_well_formed(), "invariant"); |
|
3396 |
||
3397 |
if (addr >= _real_start_word && addr < _real_end_word) { |
|
3398 |
assert(!isMarked(addr), "should not have already been marked"); |
|
3399 |
||
3400 |
// first mark it on the bitmap |
|
3401 |
at_put(heapWordToOffset(addr), true); |
|
3402 |
||
3403 |
return true; |
|
3404 |
} else { |
|
3405 |
return false; |
|
3406 |
} |
|
3407 |
} |
|
3408 |
||
3409 |
inline bool isMarked(HeapWord* addr) { |
|
3410 |
guarantee(use_local_bitmaps, "invariant"); |
|
3411 |
assert(fields_well_formed(), "invariant"); |
|
3412 |
||
3413 |
return at(heapWordToOffset(addr)); |
|
3414 |
} |
|
3415 |
||
3416 |
void set_buffer(HeapWord* start) { |
|
3417 |
guarantee(use_local_bitmaps, "invariant"); |
|
3418 |
clear(); |
|
3419 |
||
3420 |
assert(start != NULL, "invariant"); |
|
3421 |
_real_start_word = start; |
|
3422 |
_real_end_word = start + _gclab_word_size; |
|
3423 |
||
3424 |
size_t diff = |
|
3425 |
pointer_delta(start, _heap_start) % _bitmap_word_covers_words; |
|
3426 |
_start_word = start - diff; |
|
3427 |
||
3428 |
assert(fields_well_formed(), "invariant"); |
|
3429 |
} |
|
3430 |
||
3431 |
#ifndef PRODUCT |
|
3432 |
void verify() { |
|
3433 |
// verify that the marks have been propagated |
|
3434 |
GCLabBitMapClosure cl(_cm, this); |
|
3435 |
iterate(&cl); |
|
3436 |
} |
|
3437 |
#endif // PRODUCT |
|
3438 |
||
3439 |
void retire() { |
|
3440 |
guarantee(use_local_bitmaps, "invariant"); |
|
3441 |
assert(fields_well_formed(), "invariant"); |
|
3442 |
||
3443 |
if (_start_word != NULL) { |
|
3444 |
CMBitMap* mark_bitmap = _cm->nextMarkBitMap(); |
|
3445 |
||
3446 |
// this means that the bitmap was set up for the GCLab |
|
3447 |
assert(_real_start_word != NULL && _real_end_word != NULL, "invariant"); |
|
3448 |
||
3449 |
mark_bitmap->mostly_disjoint_range_union(this, |
|
3450 |
0, // always start from the start of the bitmap |
|
3451 |
_start_word, |
|
3452 |
size_in_words()); |
|
3453 |
_cm->grayRegionIfNecessary(MemRegion(_real_start_word, _real_end_word)); |
|
3454 |
||
3455 |
#ifndef PRODUCT |
|
3456 |
if (use_local_bitmaps && verify_local_bitmaps) |
|
3457 |
verify(); |
|
3458 |
#endif // PRODUCT |
|
3459 |
} else { |
|
3460 |
assert(_real_start_word == NULL && _real_end_word == NULL, "invariant"); |
|
3461 |
} |
|
3462 |
} |
|
3463 |
||
3464 |
static size_t bitmap_size_in_words() { |
|
3465 |
return (bitmap_size_in_bits() + BitsPerWord - 1) / BitsPerWord; |
|
3466 |
} |
|
3467 |
}; |
|
3468 |
||
3469 |
#ifndef PRODUCT |
|
3470 |
||
3471 |
bool GCLabBitMapClosure::do_bit(size_t offset) { |
|
3472 |
HeapWord* addr = _bitmap->offsetToHeapWord(offset); |
|
3473 |
guarantee(_cm->isMarked(oop(addr)), "it should be!"); |
|
3474 |
return true; |
|
3475 |
} |
|
3476 |
||
3477 |
#endif // PRODUCT |
|
3478 |
||
3479 |
class G1ParGCAllocBuffer: public ParGCAllocBuffer { |
|
3480 |
private: |
|
3481 |
bool _retired; |
|
3482 |
bool _during_marking; |
|
3483 |
GCLabBitMap _bitmap; |
|
3484 |
||
3485 |
public: |
|
3486 |
G1ParGCAllocBuffer() : |
|
3487 |
ParGCAllocBuffer(ParallelGCG1AllocBufferSize / HeapWordSize), |
|
3488 |
_during_marking(G1CollectedHeap::heap()->mark_in_progress()), |
|
3489 |
_bitmap(G1CollectedHeap::heap()->reserved_region().start()), |
|
3490 |
_retired(false) |
|
3491 |
{ } |
|
3492 |
||
3493 |
inline bool mark(HeapWord* addr) { |
|
3494 |
guarantee(use_local_bitmaps, "invariant"); |
|
3495 |
assert(_during_marking, "invariant"); |
|
3496 |
return _bitmap.mark(addr); |
|
3497 |
} |
|
3498 |
||
3499 |
inline void set_buf(HeapWord* buf) { |
|
3500 |
if (use_local_bitmaps && _during_marking) |
|
3501 |
_bitmap.set_buffer(buf); |
|
3502 |
ParGCAllocBuffer::set_buf(buf); |
|
3503 |
_retired = false; |
|
3504 |
} |
|
3505 |
||
3506 |
inline void retire(bool end_of_gc, bool retain) { |
|
3507 |
if (_retired) |
|
3508 |
return; |
|
3509 |
if (use_local_bitmaps && _during_marking) { |
|
3510 |
_bitmap.retire(); |
|
3511 |
} |
|
3512 |
ParGCAllocBuffer::retire(end_of_gc, retain); |
|
3513 |
_retired = true; |
|
3514 |
} |
|
3515 |
}; |
|
3516 |
||
3517 |
||
3518 |
class G1ParScanThreadState : public StackObj { |
|
3519 |
protected: |
|
3520 |
G1CollectedHeap* _g1h; |
|
3521 |
RefToScanQueue* _refs; |
|
3522 |
||
3523 |
typedef GrowableArray<oop*> OverflowQueue; |
|
3524 |
OverflowQueue* _overflowed_refs; |
|
3525 |
||
3526 |
G1ParGCAllocBuffer _alloc_buffers[GCAllocPurposeCount]; |
|
2009 | 3527 |
ageTable _age_table; |
1374 | 3528 |
|
3529 |
size_t _alloc_buffer_waste; |
|
3530 |
size_t _undo_waste; |
|
3531 |
||
3532 |
OopsInHeapRegionClosure* _evac_failure_cl; |
|
3533 |
G1ParScanHeapEvacClosure* _evac_cl; |
|
3534 |
G1ParScanPartialArrayClosure* _partial_scan_cl; |
|
3535 |
||
3536 |
int _hash_seed; |
|
3537 |
int _queue_num; |
|
3538 |
||
3539 |
int _term_attempts; |
|
3540 |
#if G1_DETAILED_STATS |
|
3541 |
int _pushes, _pops, _steals, _steal_attempts; |
|
3542 |
int _overflow_pushes; |
|
3543 |
#endif |
|
3544 |
||
3545 |
double _start; |
|
3546 |
double _start_strong_roots; |
|
3547 |
double _strong_roots_time; |
|
3548 |
double _start_term; |
|
3549 |
double _term_time; |
|
3550 |
||
3551 |
// Map from young-age-index (0 == not young, 1 is youngest) to |
|
3552 |
// surviving words. base is what we get back from the malloc call |
|
3553 |
size_t* _surviving_young_words_base; |
|
3554 |
// this points into the array, as we use the first few entries for padding |
|
3555 |
size_t* _surviving_young_words; |
|
3556 |
||
3557 |
#define PADDING_ELEM_NUM (64 / sizeof(size_t)) |
|
3558 |
||
3559 |
void add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; } |
|
3560 |
||
3561 |
void add_to_undo_waste(size_t waste) { _undo_waste += waste; } |
|
3562 |
||
3563 |
public: |
|
3564 |
G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num) |
|
3565 |
: _g1h(g1h), |
|
3566 |
_refs(g1h->task_queue(queue_num)), |
|
3567 |
_hash_seed(17), _queue_num(queue_num), |
|
3568 |
_term_attempts(0), |
|
2009 | 3569 |
_age_table(false), |
1374 | 3570 |
#if G1_DETAILED_STATS |
3571 |
_pushes(0), _pops(0), _steals(0), |
|
3572 |
_steal_attempts(0), _overflow_pushes(0), |
|
3573 |
#endif |
|
3574 |
_strong_roots_time(0), _term_time(0), |
|
3575 |
_alloc_buffer_waste(0), _undo_waste(0) |
|
3576 |
{ |
|
3577 |
// we allocate G1YoungSurvRateNumRegions plus one entries, since |
|
3578 |
// we "sacrifice" entry 0 to keep track of surviving bytes for |
|
3579 |
// non-young regions (where the age is -1) |
|
3580 |
// We also add a few elements at the beginning and at the end in |
|
3581 |
// an attempt to eliminate cache contention |
|
3582 |
size_t real_length = 1 + _g1h->g1_policy()->young_cset_length(); |
|
3583 |
size_t array_length = PADDING_ELEM_NUM + |
|
3584 |
real_length + |
|
3585 |
PADDING_ELEM_NUM; |
|
3586 |
_surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length); |
|
3587 |
if (_surviving_young_words_base == NULL) |
|
3588 |
vm_exit_out_of_memory(array_length * sizeof(size_t), |
|
3589 |
"Not enough space for young surv histo."); |
|
3590 |
_surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM; |
|
3591 |
memset(_surviving_young_words, 0, real_length * sizeof(size_t)); |
|
3592 |
||
3593 |
_overflowed_refs = new OverflowQueue(10); |
|
3594 |
||
3595 |
_start = os::elapsedTime(); |
|
3596 |
} |
|
3597 |
||
3598 |
~G1ParScanThreadState() { |
|
3599 |
FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base); |
|
3600 |
} |
|
3601 |
||
3602 |
RefToScanQueue* refs() { return _refs; } |
|
3603 |
OverflowQueue* overflowed_refs() { return _overflowed_refs; } |
|
2009 | 3604 |
ageTable* age_table() { return &_age_table; } |
3605 |
||
3606 |
G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) { |
|
1374 | 3607 |
return &_alloc_buffers[purpose]; |
3608 |
} |
|
3609 |
||
3610 |
size_t alloc_buffer_waste() { return _alloc_buffer_waste; } |
|
3611 |
size_t undo_waste() { return _undo_waste; } |
|
3612 |
||
3613 |
void push_on_queue(oop* ref) { |
|
1902 | 3614 |
assert(ref != NULL, "invariant"); |
3615 |
assert(has_partial_array_mask(ref) || _g1h->obj_in_cs(*ref), "invariant"); |
|
3616 |
||
1374 | 3617 |
if (!refs()->push(ref)) { |
3618 |
overflowed_refs()->push(ref); |
|
3619 |
IF_G1_DETAILED_STATS(note_overflow_push()); |
|
3620 |
} else { |
|
3621 |
IF_G1_DETAILED_STATS(note_push()); |
|
3622 |
} |
|
3623 |
} |
|
3624 |
||
3625 |
void pop_from_queue(oop*& ref) { |
|
3626 |
if (!refs()->pop_local(ref)) { |
|
3627 |
ref = NULL; |
|
3628 |
} else { |
|
1902 | 3629 |
assert(ref != NULL, "invariant"); |
3630 |
assert(has_partial_array_mask(ref) || _g1h->obj_in_cs(*ref), |
|
3631 |
"invariant"); |
|
3632 |
||
1374 | 3633 |
IF_G1_DETAILED_STATS(note_pop()); |
3634 |
} |
|
3635 |
} |
|
3636 |
||
3637 |
void pop_from_overflow_queue(oop*& ref) { |
|
3638 |
ref = overflowed_refs()->pop(); |
|
3639 |
} |
|
3640 |
||
3641 |
int refs_to_scan() { return refs()->size(); } |
|
3642 |
int overflowed_refs_to_scan() { return overflowed_refs()->length(); } |
|
3643 |
||
3644 |
HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) { |
|
3645 |
||
3646 |
HeapWord* obj = NULL; |
|
3647 |
if (word_sz * 100 < |
|
3648 |
(size_t)(ParallelGCG1AllocBufferSize / HeapWordSize) * |
|
3649 |
ParallelGCBufferWastePct) { |
|
3650 |
G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose); |
|
3651 |
add_to_alloc_buffer_waste(alloc_buf->words_remaining()); |
|
3652 |
alloc_buf->retire(false, false); |
|
3653 |
||
3654 |
HeapWord* buf = |
|
3655 |
_g1h->par_allocate_during_gc(purpose, ParallelGCG1AllocBufferSize / HeapWordSize); |
|
3656 |
if (buf == NULL) return NULL; // Let caller handle allocation failure. |
|
3657 |
// Otherwise. |
|
3658 |
alloc_buf->set_buf(buf); |
|
3659 |
||
3660 |
obj = alloc_buf->allocate(word_sz); |
|
3661 |
assert(obj != NULL, "buffer was definitely big enough..."); |
|
1902 | 3662 |
} else { |
1374 | 3663 |
obj = _g1h->par_allocate_during_gc(purpose, word_sz); |
3664 |
} |
|
3665 |
return obj; |
|
3666 |
} |
|
3667 |
||
3668 |
HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) { |
|
3669 |
HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz); |
|
3670 |
if (obj != NULL) return obj; |
|
3671 |
return allocate_slow(purpose, word_sz); |
|
3672 |
} |
|
3673 |
||
3674 |
void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) { |
|
3675 |
if (alloc_buffer(purpose)->contains(obj)) { |
|
3676 |
guarantee(alloc_buffer(purpose)->contains(obj + word_sz - 1), |
|
3677 |
"should contain whole object"); |
|
3678 |
alloc_buffer(purpose)->undo_allocation(obj, word_sz); |
|
1668
8ec481b8f514
6578152: fill_region_with_object has usability and safety issues
jcoomes
parents:
1610
diff
changeset
|
3679 |
} else { |
8ec481b8f514
6578152: fill_region_with_object has usability and safety issues
jcoomes
parents:
1610
diff
changeset
|
3680 |
CollectedHeap::fill_with_object(obj, word_sz); |
1374 | 3681 |
add_to_undo_waste(word_sz); |
3682 |
} |
|
3683 |
} |
|
3684 |
||
3685 |
void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) { |
|
3686 |
_evac_failure_cl = evac_failure_cl; |
|
3687 |
} |
|
3688 |
OopsInHeapRegionClosure* evac_failure_closure() { |
|
3689 |
return _evac_failure_cl; |
|
3690 |
} |
|
3691 |
||
3692 |
void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) { |
|
3693 |
_evac_cl = evac_cl; |
|
3694 |
} |
|
3695 |
||
3696 |
void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) { |
|
3697 |
_partial_scan_cl = partial_scan_cl; |
|
3698 |
} |
|
3699 |
||
3700 |
int* hash_seed() { return &_hash_seed; } |
|
3701 |
int queue_num() { return _queue_num; } |
|
3702 |
||
3703 |
int term_attempts() { return _term_attempts; } |
|
3704 |
void note_term_attempt() { _term_attempts++; } |
|
3705 |
||
3706 |
#if G1_DETAILED_STATS |
|
3707 |
int pushes() { return _pushes; } |
|
3708 |
int pops() { return _pops; } |
|
3709 |
int steals() { return _steals; } |
|
3710 |
int steal_attempts() { return _steal_attempts; } |
|
3711 |
int overflow_pushes() { return _overflow_pushes; } |
|
3712 |
||
3713 |
void note_push() { _pushes++; } |
|
3714 |
void note_pop() { _pops++; } |
|
3715 |
void note_steal() { _steals++; } |
|
3716 |
void note_steal_attempt() { _steal_attempts++; } |
|
3717 |
void note_overflow_push() { _overflow_pushes++; } |
|
3718 |
#endif |
|
3719 |
||
3720 |
void start_strong_roots() { |
|
3721 |
_start_strong_roots = os::elapsedTime(); |
|
3722 |
} |
|
3723 |
void end_strong_roots() { |
|
3724 |
_strong_roots_time += (os::elapsedTime() - _start_strong_roots); |
|
3725 |
} |
|
3726 |
double strong_roots_time() { return _strong_roots_time; } |
|
3727 |
||
3728 |
void start_term_time() { |
|
3729 |
note_term_attempt(); |
|
3730 |
_start_term = os::elapsedTime(); |
|
3731 |
} |
|
3732 |
void end_term_time() { |
|
3733 |
_term_time += (os::elapsedTime() - _start_term); |
|
3734 |
} |
|
3735 |
double term_time() { return _term_time; } |
|
3736 |
||
3737 |
double elapsed() { |
|
3738 |
return os::elapsedTime() - _start; |
|
3739 |
} |
|
3740 |
||
3741 |
size_t* surviving_young_words() { |
|
3742 |
// We add on to hide entry 0 which accumulates surviving words for |
|
3743 |
// age -1 regions (i.e. non-young ones) |
|
3744 |
return _surviving_young_words; |
|
3745 |
} |
|
3746 |
||
3747 |
void retire_alloc_buffers() { |
|
3748 |
for (int ap = 0; ap < GCAllocPurposeCount; ++ap) { |
|
3749 |
size_t waste = _alloc_buffers[ap].words_remaining(); |
|
3750 |
add_to_alloc_buffer_waste(waste); |
|
3751 |
_alloc_buffers[ap].retire(true, false); |
|
3752 |
} |
|
3753 |
} |
|
3754 |
||
1902 | 3755 |
private: |
3756 |
void deal_with_reference(oop* ref_to_scan) { |
|
3757 |
if (has_partial_array_mask(ref_to_scan)) { |
|
3758 |
_partial_scan_cl->do_oop_nv(ref_to_scan); |
|
3759 |
} else { |
|
3760 |
// Note: we can use "raw" versions of "region_containing" because |
|
3761 |
// "obj_to_scan" is definitely in the heap, and is not in a |
|
3762 |
// humongous region. |
|
3763 |
HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan); |
|
3764 |
_evac_cl->set_region(r); |
|
3765 |
_evac_cl->do_oop_nv(ref_to_scan); |
|
3766 |
} |
|
3767 |
} |
|
3768 |
||
3769 |
public: |
|
1374 | 3770 |
void trim_queue() { |
1902 | 3771 |
// I've replicated the loop twice, first to drain the overflow |
3772 |
// queue, second to drain the task queue. This is better than |
|
3773 |
// having a single loop, which checks both conditions and, inside |
|
3774 |
// it, either pops the overflow queue or the task queue, as each |
|
3775 |
// loop is tighter. Also, the decision to drain the overflow queue |
|
3776 |
// first is not arbitrary, as the overflow queue is not visible |
|
3777 |
// to the other workers, whereas the task queue is. So, we want to |
|
3778 |
// drain the "invisible" entries first, while allowing the other |
|
3779 |
// workers to potentially steal the "visible" entries. |
|
3780 |
||
1374 | 3781 |
while (refs_to_scan() > 0 || overflowed_refs_to_scan() > 0) { |
1902 | 3782 |
while (overflowed_refs_to_scan() > 0) { |
3783 |
oop *ref_to_scan = NULL; |
|
1374 | 3784 |
pop_from_overflow_queue(ref_to_scan); |
1902 | 3785 |
assert(ref_to_scan != NULL, "invariant"); |
3786 |
// We shouldn't have pushed it on the queue if it was not |
|
3787 |
// pointing into the CSet. |
|
3788 |
assert(ref_to_scan != NULL, "sanity"); |
|
3789 |
assert(has_partial_array_mask(ref_to_scan) || |
|
3790 |
_g1h->obj_in_cs(*ref_to_scan), "sanity"); |
|
3791 |
||
3792 |
deal_with_reference(ref_to_scan); |
|
1374 | 3793 |
} |
1902 | 3794 |
|
3795 |
while (refs_to_scan() > 0) { |
|
3796 |
oop *ref_to_scan = NULL; |
|
3797 |
pop_from_queue(ref_to_scan); |
|
3798 |
||
3799 |
if (ref_to_scan != NULL) { |
|
3800 |
// We shouldn't have pushed it on the queue if it was not |
|
3801 |
// pointing into the CSet. |
|
3802 |
assert(has_partial_array_mask(ref_to_scan) || |
|
3803 |
_g1h->obj_in_cs(*ref_to_scan), "sanity"); |
|
3804 |
||
3805 |
deal_with_reference(ref_to_scan); |
|
1374 | 3806 |
} |
3807 |
} |
|
3808 |
} |
|
3809 |
} |
|
3810 |
}; |
|
3811 |
||
3812 |
||
3813 |
G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1, G1ParScanThreadState* par_scan_state) : |
|
3814 |
_g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()), |
|
3815 |
_par_scan_state(par_scan_state) { } |
|
3816 |
||
3817 |
// This closure is applied to the fields of the objects that have just been copied. |
|
3818 |
// Should probably be made inline and moved in g1OopClosures.inline.hpp. |
|
3819 |
void G1ParScanClosure::do_oop_nv(oop* p) { |
|
3820 |
oop obj = *p; |
|
1902 | 3821 |
|
1374 | 3822 |
if (obj != NULL) { |
1902 | 3823 |
if (_g1->in_cset_fast_test(obj)) { |
3824 |
// We're not going to even bother checking whether the object is |
|
3825 |
// already forwarded or not, as this usually causes an immediate |
|
3826 |
// stall. We'll try to prefetch the object (for write, given that |
|
3827 |
// we might need to install the forwarding reference) and we'll |
|
3828 |
// get back to it when pop it from the queue |
|
3829 |
Prefetch::write(obj->mark_addr(), 0); |
|
3830 |
Prefetch::read(obj->mark_addr(), (HeapWordSize*2)); |
|
3831 |
||
3832 |
// slightly paranoid test; I'm trying to catch potential |
|
3833 |
// problems before we go into push_on_queue to know where the |
|
3834 |
// problem is coming from |
|
3835 |
assert(obj == *p, "the value of *p should not have changed"); |
|
3836 |
_par_scan_state->push_on_queue(p); |
|
3837 |
} else { |
|
3838 |
_g1_rem->par_write_ref(_from, p, _par_scan_state->queue_num()); |
|
1374 | 3839 |
} |
3840 |
} |
|
3841 |
} |
|
3842 |
||
3843 |
void G1ParCopyHelper::mark_forwardee(oop* p) { |
|
3844 |
// This is called _after_ do_oop_work has been called, hence after |
|
3845 |
// the object has been relocated to its new location and *p points |
|
3846 |
// to its new location. |
|
3847 |
||
3848 |
oop thisOop = *p; |
|
3849 |
if (thisOop != NULL) { |
|
3850 |
assert((_g1->evacuation_failed()) || (!_g1->obj_in_cs(thisOop)), |
|
3851 |
"shouldn't still be in the CSet if evacuation didn't fail."); |
|
3852 |
HeapWord* addr = (HeapWord*)thisOop; |
|
3853 |
if (_g1->is_in_g1_reserved(addr)) |
|
3854 |
_cm->grayRoot(oop(addr)); |
|
3855 |
} |
|
3856 |
} |
|
3857 |
||
3858 |
oop G1ParCopyHelper::copy_to_survivor_space(oop old) { |
|
3859 |
size_t word_sz = old->size(); |
|
3860 |
HeapRegion* from_region = _g1->heap_region_containing_raw(old); |
|
3861 |
// +1 to make the -1 indexes valid... |
|
3862 |
int young_index = from_region->young_index_in_cset()+1; |
|
3863 |
assert( (from_region->is_young() && young_index > 0) || |
|
3864 |
(!from_region->is_young() && young_index == 0), "invariant" ); |
|
3865 |
G1CollectorPolicy* g1p = _g1->g1_policy(); |
|
3866 |
markOop m = old->mark(); |
|
2009 | 3867 |
int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age() |
3868 |
: m->age(); |
|
3869 |
GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age, |
|
1374 | 3870 |
word_sz); |
3871 |
HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz); |
|
3872 |
oop obj = oop(obj_ptr); |
|
3873 |
||
3874 |
if (obj_ptr == NULL) { |
|
3875 |
// This will either forward-to-self, or detect that someone else has |
|
3876 |
// installed a forwarding pointer. |
|
3877 |
OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure(); |
|
3878 |
return _g1->handle_evacuation_failure_par(cl, old); |
|
3879 |
} |
|
3880 |
||
1902 | 3881 |
// We're going to allocate linearly, so might as well prefetch ahead. |
3882 |
Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes); |
|
3883 |
||
1374 | 3884 |
oop forward_ptr = old->forward_to_atomic(obj); |
3885 |
if (forward_ptr == NULL) { |
|
3886 |
Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz); |
|
1902 | 3887 |
if (g1p->track_object_age(alloc_purpose)) { |
3888 |
// We could simply do obj->incr_age(). However, this causes a |
|
3889 |
// performance issue. obj->incr_age() will first check whether |
|
3890 |
// the object has a displaced mark by checking its mark word; |
|
3891 |
// getting the mark word from the new location of the object |
|
3892 |
// stalls. So, given that we already have the mark word and we |
|
3893 |
// are about to install it anyway, it's better to increase the |
|
3894 |
// age on the mark word, when the object does not have a |
|
3895 |
// displaced mark word. We're not expecting many objects to have |
|
3896 |
// a displaced marked word, so that case is not optimized |
|
3897 |
// further (it could be...) and we simply call obj->incr_age(). |
|
3898 |
||
3899 |
if (m->has_displaced_mark_helper()) { |
|
3900 |
// in this case, we have to install the mark word first, |
|
3901 |
// otherwise obj looks to be forwarded (the old mark word, |
|
3902 |
// which contains the forward pointer, was copied) |
|
3903 |
obj->set_mark(m); |
|
3904 |
obj->incr_age(); |
|
3905 |
} else { |
|
3906 |
m = m->incr_age(); |
|
2009 | 3907 |
obj->set_mark(m); |
1902 | 3908 |
} |
2009 | 3909 |
_par_scan_state->age_table()->add(obj, word_sz); |
3910 |
} else { |
|
3911 |
obj->set_mark(m); |
|
1902 | 3912 |
} |
3913 |
||
1374 | 3914 |
// preserve "next" mark bit |
3915 |
if (_g1->mark_in_progress() && !_g1->is_obj_ill(old)) { |
|
3916 |
if (!use_local_bitmaps || |
|
3917 |
!_par_scan_state->alloc_buffer(alloc_purpose)->mark(obj_ptr)) { |
|
3918 |
// if we couldn't mark it on the local bitmap (this happens when |
|
3919 |
// the object was not allocated in the GCLab), we have to bite |
|
3920 |
// the bullet and do the standard parallel mark |
|
3921 |
_cm->markAndGrayObjectIfNecessary(obj); |
|
3922 |
} |
|
3923 |
#if 1 |
|
3924 |
if (_g1->isMarkedNext(old)) { |
|
3925 |
_cm->nextMarkBitMap()->parClear((HeapWord*)old); |
|
3926 |
} |
|
3927 |
#endif |
|
3928 |
} |
|
3929 |
||
3930 |
size_t* surv_young_words = _par_scan_state->surviving_young_words(); |
|
3931 |
surv_young_words[young_index] += word_sz; |
|
3932 |
||
3933 |
if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) { |
|
3934 |
arrayOop(old)->set_length(0); |
|
1902 | 3935 |
_par_scan_state->push_on_queue(set_partial_array_mask(old)); |
1374 | 3936 |
} else { |
1902 | 3937 |
// No point in using the slower heap_region_containing() method, |
3938 |
// given that we know obj is in the heap. |
|
3939 |
_scanner->set_region(_g1->heap_region_containing_raw(obj)); |
|
1374 | 3940 |
obj->oop_iterate_backwards(_scanner); |
3941 |
} |
|
3942 |
} else { |
|
3943 |
_par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz); |
|
3944 |
obj = forward_ptr; |
|
3945 |
} |
|
3946 |
return obj; |
|
3947 |
} |
|
3948 |
||
1902 | 3949 |
template<bool do_gen_barrier, G1Barrier barrier, |
3950 |
bool do_mark_forwardee, bool skip_cset_test> |
|
3951 |
void G1ParCopyClosure<do_gen_barrier, barrier, |
|
3952 |
do_mark_forwardee, skip_cset_test>::do_oop_work(oop* p) { |
|
1374 | 3953 |
oop obj = *p; |
3954 |
assert(barrier != G1BarrierRS || obj != NULL, |
|
3955 |
"Precondition: G1BarrierRS implies obj is nonNull"); |
|
3956 |
||
1902 | 3957 |
// The only time we skip the cset test is when we're scanning |
3958 |
// references popped from the queue. And we only push on the queue |
|
3959 |
// references that we know point into the cset, so no point in |
|
3960 |
// checking again. But we'll leave an assert here for peace of mind. |
|
3961 |
assert(!skip_cset_test || _g1->obj_in_cs(obj), "invariant"); |
|
3962 |
||
3963 |
// here the null check is implicit in the cset_fast_test() test |
|
3964 |
if (skip_cset_test || _g1->in_cset_fast_test(obj)) { |
|
1374 | 3965 |
#if G1_REM_SET_LOGGING |
1902 | 3966 |
gclog_or_tty->print_cr("Loc "PTR_FORMAT" contains pointer "PTR_FORMAT" " |
3967 |
"into CS.", p, (void*) obj); |
|
1374 | 3968 |
#endif |
1902 | 3969 |
if (obj->is_forwarded()) { |
3970 |
*p = obj->forwardee(); |
|
3971 |
} else { |
|
3972 |
*p = copy_to_survivor_space(obj); |
|
1374 | 3973 |
} |
1902 | 3974 |
// When scanning the RS, we only care about objs in CS. |
3975 |
if (barrier == G1BarrierRS) { |
|
1374 | 3976 |
_g1_rem->par_write_ref(_from, p, _par_scan_state->queue_num()); |
3977 |
} |
|
1902 | 3978 |
} |
3979 |
||
3980 |
// When scanning moved objs, must look at all oops. |
|
3981 |
if (barrier == G1BarrierEvac && obj != NULL) { |
|
3982 |
_g1_rem->par_write_ref(_from, p, _par_scan_state->queue_num()); |
|
3983 |
} |
|
3984 |
||
3985 |
if (do_gen_barrier && obj != NULL) { |
|
3986 |
par_do_barrier(p); |
|
3987 |
} |
|
3988 |
} |
|
3989 |
||
3990 |
template void G1ParCopyClosure<false, G1BarrierEvac, false, true>::do_oop_work(oop* p); |
|
3991 |
||
3992 |
template<class T> void G1ParScanPartialArrayClosure::process_array_chunk( |
|
1374 | 3993 |
oop obj, int start, int end) { |
3994 |
// process our set of indices (include header in first chunk) |
|
3995 |
assert(start < end, "invariant"); |
|
3996 |
T* const base = (T*)objArrayOop(obj)->base(); |
|
1902 | 3997 |
T* const start_addr = (start == 0) ? (T*) obj : base + start; |
1374 | 3998 |
T* const end_addr = base + end; |
3999 |
MemRegion mr((HeapWord*)start_addr, (HeapWord*)end_addr); |
|
4000 |
_scanner.set_region(_g1->heap_region_containing(obj)); |
|
4001 |
obj->oop_iterate(&_scanner, mr); |
|
4002 |
} |
|
4003 |
||
4004 |
void G1ParScanPartialArrayClosure::do_oop_nv(oop* p) { |
|
4005 |
assert(!UseCompressedOops, "Needs to be fixed to work with compressed oops"); |
|
1902 | 4006 |
assert(has_partial_array_mask(p), "invariant"); |
4007 |
oop old = clear_partial_array_mask(p); |
|
1374 | 4008 |
assert(old->is_objArray(), "must be obj array"); |
4009 |
assert(old->is_forwarded(), "must be forwarded"); |
|
4010 |
assert(Universe::heap()->is_in_reserved(old), "must be in heap."); |
|
4011 |
||
4012 |
objArrayOop obj = objArrayOop(old->forwardee()); |
|
4013 |
assert((void*)old != (void*)old->forwardee(), "self forwarding here?"); |
|
4014 |
// Process ParGCArrayScanChunk elements now |
|
4015 |
// and push the remainder back onto queue |
|
4016 |
int start = arrayOop(old)->length(); |
|
4017 |
int end = obj->length(); |
|
4018 |
int remainder = end - start; |
|
4019 |
assert(start <= end, "just checking"); |
|
4020 |
if (remainder > 2 * ParGCArrayScanChunk) { |
|
4021 |
// Test above combines last partial chunk with a full chunk |
|
4022 |
end = start + ParGCArrayScanChunk; |
|
4023 |
arrayOop(old)->set_length(end); |
|
4024 |
// Push remainder. |
|
1902 | 4025 |
_par_scan_state->push_on_queue(set_partial_array_mask(old)); |
1374 | 4026 |
} else { |
4027 |
// Restore length so that the heap remains parsable in |
|
4028 |
// case of evacuation failure. |
|
4029 |
arrayOop(old)->set_length(end); |
|
4030 |
} |
|
4031 |
||
4032 |
// process our set of indices (include header in first chunk) |
|
4033 |
process_array_chunk<oop>(obj, start, end); |
|
4034 |
} |
|
4035 |
||
4036 |
int G1ScanAndBalanceClosure::_nq = 0; |
|
4037 |
||
4038 |
class G1ParEvacuateFollowersClosure : public VoidClosure { |
|
4039 |
protected: |
|
4040 |
G1CollectedHeap* _g1h; |
|
4041 |
G1ParScanThreadState* _par_scan_state; |
|
4042 |
RefToScanQueueSet* _queues; |
|
4043 |
ParallelTaskTerminator* _terminator; |
|
4044 |
||
4045 |
G1ParScanThreadState* par_scan_state() { return _par_scan_state; } |
|
4046 |
RefToScanQueueSet* queues() { return _queues; } |
|
4047 |
ParallelTaskTerminator* terminator() { return _terminator; } |
|
4048 |
||
4049 |
public: |
|
4050 |
G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h, |
|
4051 |
G1ParScanThreadState* par_scan_state, |
|
4052 |
RefToScanQueueSet* queues, |
|
4053 |
ParallelTaskTerminator* terminator) |
|
4054 |
: _g1h(g1h), _par_scan_state(par_scan_state), |
|
4055 |
_queues(queues), _terminator(terminator) {} |
|
4056 |
||
4057 |
void do_void() { |
|
4058 |
G1ParScanThreadState* pss = par_scan_state(); |
|
4059 |
while (true) { |
|
4060 |
oop* ref_to_scan; |
|
4061 |
pss->trim_queue(); |
|
4062 |
IF_G1_DETAILED_STATS(pss->note_steal_attempt()); |
|
4063 |
if (queues()->steal(pss->queue_num(), |
|
4064 |
pss->hash_seed(), |
|
4065 |
ref_to_scan)) { |
|
4066 |
IF_G1_DETAILED_STATS(pss->note_steal()); |
|
1902 | 4067 |
|
4068 |
// slightly paranoid tests; I'm trying to catch potential |
|
4069 |
// problems before we go into push_on_queue to know where the |
|
4070 |
// problem is coming from |
|
4071 |
assert(ref_to_scan != NULL, "invariant"); |
|
4072 |
assert(has_partial_array_mask(ref_to_scan) || |
|
4073 |
_g1h->obj_in_cs(*ref_to_scan), "invariant"); |
|
1374 | 4074 |
pss->push_on_queue(ref_to_scan); |
4075 |
continue; |
|
4076 |
} |
|
4077 |
pss->start_term_time(); |
|
4078 |
if (terminator()->offer_termination()) break; |
|
4079 |
pss->end_term_time(); |
|
4080 |
} |
|
4081 |
pss->end_term_time(); |
|
4082 |
pss->retire_alloc_buffers(); |
|
4083 |
} |
|
4084 |
}; |
|
4085 |
||
4086 |
class G1ParTask : public AbstractGangTask { |
|
4087 |
protected: |
|
4088 |
G1CollectedHeap* _g1h; |
|
4089 |
RefToScanQueueSet *_queues; |
|
4090 |
ParallelTaskTerminator _terminator; |
|
4091 |
||
4092 |
Mutex _stats_lock; |
|
4093 |
Mutex* stats_lock() { return &_stats_lock; } |
|
4094 |
||
4095 |
size_t getNCards() { |
|
4096 |
return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1) |
|
4097 |
/ G1BlockOffsetSharedArray::N_bytes; |
|
4098 |
} |
|
4099 |
||
4100 |
public: |
|
4101 |
G1ParTask(G1CollectedHeap* g1h, int workers, RefToScanQueueSet *task_queues) |
|
4102 |
: AbstractGangTask("G1 collection"), |
|
4103 |
_g1h(g1h), |
|
4104 |
_queues(task_queues), |
|
4105 |
_terminator(workers, _queues), |
|
4106 |
_stats_lock(Mutex::leaf, "parallel G1 stats lock", true) |
|
4107 |
{} |
|
4108 |
||
4109 |
RefToScanQueueSet* queues() { return _queues; } |
|
4110 |
||
4111 |
RefToScanQueue *work_queue(int i) { |
|
4112 |
return queues()->queue(i); |
|
4113 |
} |
|
4114 |
||
4115 |
void work(int i) { |
|
4116 |
ResourceMark rm; |
|
4117 |
HandleMark hm; |
|
4118 |
||
1902 | 4119 |
G1ParScanThreadState pss(_g1h, i); |
4120 |
G1ParScanHeapEvacClosure scan_evac_cl(_g1h, &pss); |
|
4121 |
G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss); |
|
4122 |
G1ParScanPartialArrayClosure partial_scan_cl(_g1h, &pss); |
|
1374 | 4123 |
|
4124 |
pss.set_evac_closure(&scan_evac_cl); |
|
4125 |
pss.set_evac_failure_closure(&evac_failure_cl); |
|
4126 |
pss.set_partial_scan_closure(&partial_scan_cl); |
|
4127 |
||
4128 |
G1ParScanExtRootClosure only_scan_root_cl(_g1h, &pss); |
|
4129 |
G1ParScanPermClosure only_scan_perm_cl(_g1h, &pss); |
|
4130 |
G1ParScanHeapRSClosure only_scan_heap_rs_cl(_g1h, &pss); |
|
4131 |
G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss); |
|
4132 |
G1ParScanAndMarkPermClosure scan_mark_perm_cl(_g1h, &pss); |
|
4133 |
G1ParScanAndMarkHeapRSClosure scan_mark_heap_rs_cl(_g1h, &pss); |
|
4134 |
||
4135 |
OopsInHeapRegionClosure *scan_root_cl; |
|
4136 |
OopsInHeapRegionClosure *scan_perm_cl; |
|
4137 |
OopsInHeapRegionClosure *scan_so_cl; |
|
4138 |
||
4139 |
if (_g1h->g1_policy()->should_initiate_conc_mark()) { |
|
4140 |
scan_root_cl = &scan_mark_root_cl; |
|
4141 |
scan_perm_cl = &scan_mark_perm_cl; |
|
4142 |
scan_so_cl = &scan_mark_heap_rs_cl; |
|
4143 |
} else { |
|
4144 |
scan_root_cl = &only_scan_root_cl; |
|
4145 |
scan_perm_cl = &only_scan_perm_cl; |
|
4146 |
scan_so_cl = &only_scan_heap_rs_cl; |
|
4147 |
} |
|
4148 |
||
4149 |
pss.start_strong_roots(); |
|
4150 |
_g1h->g1_process_strong_roots(/* not collecting perm */ false, |
|
4151 |
SharedHeap::SO_AllClasses, |
|
4152 |
scan_root_cl, |
|
4153 |
&only_scan_heap_rs_cl, |
|
4154 |
scan_so_cl, |
|
4155 |
scan_perm_cl, |
|
4156 |
i); |
|
4157 |
pss.end_strong_roots(); |
|
4158 |
{ |
|
4159 |
double start = os::elapsedTime(); |
|
4160 |
G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator); |
|
4161 |
evac.do_void(); |
|
4162 |
double elapsed_ms = (os::elapsedTime()-start)*1000.0; |
|
4163 |
double term_ms = pss.term_time()*1000.0; |
|
4164 |
_g1h->g1_policy()->record_obj_copy_time(i, elapsed_ms-term_ms); |
|
4165 |
_g1h->g1_policy()->record_termination_time(i, term_ms); |
|
4166 |
} |
|
2009 | 4167 |
if (G1UseSurvivorSpace) { |
4168 |
_g1h->g1_policy()->record_thread_age_table(pss.age_table()); |
|
4169 |
} |
|
1374 | 4170 |
_g1h->update_surviving_young_words(pss.surviving_young_words()+1); |
4171 |
||
4172 |
// Clean up any par-expanded rem sets. |
|
4173 |
HeapRegionRemSet::par_cleanup(); |
|
4174 |
||
4175 |
MutexLocker x(stats_lock()); |
|
4176 |
if (ParallelGCVerbose) { |
|
4177 |
gclog_or_tty->print("Thread %d complete:\n", i); |
|
4178 |
#if G1_DETAILED_STATS |
|
4179 |
gclog_or_tty->print(" Pushes: %7d Pops: %7d Overflows: %7d Steals %7d (in %d attempts)\n", |
|
4180 |
pss.pushes(), |
|
4181 |
pss.pops(), |
|
4182 |
pss.overflow_pushes(), |
|
4183 |
pss.steals(), |
|
4184 |
pss.steal_attempts()); |
|
4185 |
#endif |
|
4186 |
double elapsed = pss.elapsed(); |
|
4187 |
double strong_roots = pss.strong_roots_time(); |
|
4188 |
double term = pss.term_time(); |
|
4189 |
gclog_or_tty->print(" Elapsed: %7.2f ms.\n" |
|
4190 |
" Strong roots: %7.2f ms (%6.2f%%)\n" |
|
4191 |
" Termination: %7.2f ms (%6.2f%%) (in %d entries)\n", |
|
4192 |
elapsed * 1000.0, |
|
4193 |
strong_roots * 1000.0, (strong_roots*100.0/elapsed), |
|
4194 |
term * 1000.0, (term*100.0/elapsed), |
|
4195 |
pss.term_attempts()); |
|
4196 |
size_t total_waste = pss.alloc_buffer_waste() + pss.undo_waste(); |
|
4197 |
gclog_or_tty->print(" Waste: %8dK\n" |
|
4198 |
" Alloc Buffer: %8dK\n" |
|
4199 |
" Undo: %8dK\n", |
|
4200 |
(total_waste * HeapWordSize) / K, |
|
4201 |
(pss.alloc_buffer_waste() * HeapWordSize) / K, |
|
4202 |
(pss.undo_waste() * HeapWordSize) / K); |
|
4203 |
} |
|
4204 |
||
4205 |
assert(pss.refs_to_scan() == 0, "Task queue should be empty"); |
|
4206 |
assert(pss.overflowed_refs_to_scan() == 0, "Overflow queue should be empty"); |
|
4207 |
} |
|
4208 |
}; |
|
4209 |
||
4210 |
// *** Common G1 Evacuation Stuff |
|
4211 |
||
4212 |
class G1CountClosure: public OopsInHeapRegionClosure { |
|
4213 |
public: |
|
4214 |
int n; |
|
4215 |
G1CountClosure() : n(0) {} |
|
4216 |
void do_oop(narrowOop* p) { |
|
4217 |
guarantee(false, "NYI"); |
|
4218 |
} |
|
4219 |
void do_oop(oop* p) { |
|
4220 |
oop obj = *p; |
|
4221 |
assert(obj != NULL && G1CollectedHeap::heap()->obj_in_cs(obj), |
|
4222 |
"Rem set closure called on non-rem-set pointer."); |
|
4223 |
n++; |
|
4224 |
} |
|
4225 |
}; |
|
4226 |
||
4227 |
static G1CountClosure count_closure; |
|
4228 |
||
4229 |
void |
|
4230 |
G1CollectedHeap:: |
|
4231 |
g1_process_strong_roots(bool collecting_perm_gen, |
|
4232 |
SharedHeap::ScanningOption so, |
|
4233 |
OopClosure* scan_non_heap_roots, |
|
4234 |
OopsInHeapRegionClosure* scan_rs, |
|
4235 |
OopsInHeapRegionClosure* scan_so, |
|
4236 |
OopsInGenClosure* scan_perm, |
|
4237 |
int worker_i) { |
|
4238 |
// First scan the strong roots, including the perm gen. |
|
4239 |
double ext_roots_start = os::elapsedTime(); |
|
4240 |
double closure_app_time_sec = 0.0; |
|
4241 |
||
4242 |
BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots); |
|
4243 |
BufferingOopsInGenClosure buf_scan_perm(scan_perm); |
|
4244 |
buf_scan_perm.set_generation(perm_gen()); |
|
4245 |
||
4246 |
process_strong_roots(collecting_perm_gen, so, |
|
4247 |
&buf_scan_non_heap_roots, |
|
4248 |
&buf_scan_perm); |
|
4249 |
// Finish up any enqueued closure apps. |
|
4250 |
buf_scan_non_heap_roots.done(); |
|
4251 |
buf_scan_perm.done(); |
|
4252 |
double ext_roots_end = os::elapsedTime(); |
|
4253 |
g1_policy()->reset_obj_copy_time(worker_i); |
|
4254 |
double obj_copy_time_sec = |
|
4255 |
buf_scan_non_heap_roots.closure_app_seconds() + |
|
4256 |
buf_scan_perm.closure_app_seconds(); |
|
4257 |
g1_policy()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0); |
|
4258 |
double ext_root_time_ms = |
|
4259 |
((ext_roots_end - ext_roots_start) - obj_copy_time_sec) * 1000.0; |
|
4260 |
g1_policy()->record_ext_root_scan_time(worker_i, ext_root_time_ms); |
|
4261 |
||
4262 |
// Scan strong roots in mark stack. |
|
4263 |
if (!_process_strong_tasks->is_task_claimed(G1H_PS_mark_stack_oops_do)) { |
|
4264 |
concurrent_mark()->oops_do(scan_non_heap_roots); |
|
4265 |
} |
|
4266 |
double mark_stack_scan_ms = (os::elapsedTime() - ext_roots_end) * 1000.0; |
|
4267 |
g1_policy()->record_mark_stack_scan_time(worker_i, mark_stack_scan_ms); |
|
4268 |
||
4269 |
// XXX What should this be doing in the parallel case? |
|
4270 |
g1_policy()->record_collection_pause_end_CH_strong_roots(); |
|
4271 |
if (G1VerifyRemSet) { |
|
4272 |
// :::: FIXME :::: |
|
4273 |
// The stupid remembered set doesn't know how to filter out dead |
|
4274 |
// objects, which the smart one does, and so when it is created |
|
4275 |
// and then compared the number of entries in each differs and |
|
4276 |
// the verification code fails. |
|
4277 |
guarantee(false, "verification code is broken, see note"); |
|
4278 |
||
4279 |
// Let's make sure that the current rem set agrees with the stupidest |
|
4280 |
// one possible! |
|
4281 |
bool refs_enabled = ref_processor()->discovery_enabled(); |
|
4282 |
if (refs_enabled) ref_processor()->disable_discovery(); |
|
4283 |
StupidG1RemSet stupid(this); |
|
4284 |
count_closure.n = 0; |
|
4285 |
stupid.oops_into_collection_set_do(&count_closure, worker_i); |
|
4286 |
int stupid_n = count_closure.n; |
|
4287 |
count_closure.n = 0; |
|
4288 |
g1_rem_set()->oops_into_collection_set_do(&count_closure, worker_i); |
|
4289 |
guarantee(count_closure.n == stupid_n, "Old and new rem sets differ."); |
|
4290 |
gclog_or_tty->print_cr("\nFound %d pointers in heap RS.", count_closure.n); |
|
4291 |
if (refs_enabled) ref_processor()->enable_discovery(); |
|
4292 |
} |
|
4293 |
if (scan_so != NULL) { |
|
4294 |
scan_scan_only_set(scan_so, worker_i); |
|
4295 |
} |
|
4296 |
// Now scan the complement of the collection set. |
|
4297 |
if (scan_rs != NULL) { |
|
4298 |
g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i); |
|
4299 |
} |
|
4300 |
// Finish with the ref_processor roots. |
|
4301 |
if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) { |
|
4302 |
ref_processor()->oops_do(scan_non_heap_roots); |
|
4303 |
} |
|
4304 |
g1_policy()->record_collection_pause_end_G1_strong_roots(); |
|
4305 |
_process_strong_tasks->all_tasks_completed(); |
|
4306 |
} |
|
4307 |
||
4308 |
void |
|
4309 |
G1CollectedHeap::scan_scan_only_region(HeapRegion* r, |
|
4310 |
OopsInHeapRegionClosure* oc, |
|
4311 |
int worker_i) { |
|
4312 |
HeapWord* startAddr = r->bottom(); |
|
4313 |
HeapWord* endAddr = r->used_region().end(); |
|
4314 |
||
4315 |
oc->set_region(r); |
|
4316 |
||
4317 |
HeapWord* p = r->bottom(); |
|
4318 |
HeapWord* t = r->top(); |
|
4319 |
guarantee( p == r->next_top_at_mark_start(), "invariant" ); |
|
4320 |
while (p < t) { |
|
4321 |
oop obj = oop(p); |
|
4322 |
p += obj->oop_iterate(oc); |
|
4323 |
} |
|
4324 |
} |
|
4325 |
||
4326 |
void |
|
4327 |
G1CollectedHeap::scan_scan_only_set(OopsInHeapRegionClosure* oc, |
|
4328 |
int worker_i) { |
|
4329 |
double start = os::elapsedTime(); |
|
4330 |
||
4331 |
BufferingOopsInHeapRegionClosure boc(oc); |
|
4332 |
||
4333 |
FilterInHeapRegionAndIntoCSClosure scan_only(this, &boc); |
|
4334 |
FilterAndMarkInHeapRegionAndIntoCSClosure scan_and_mark(this, &boc, concurrent_mark()); |
|
4335 |
||
4336 |
OopsInHeapRegionClosure *foc; |
|
4337 |
if (g1_policy()->should_initiate_conc_mark()) |
|
4338 |
foc = &scan_and_mark; |
|
4339 |
else |
|
4340 |
foc = &scan_only; |
|
4341 |
||
4342 |
HeapRegion* hr; |
|
4343 |
int n = 0; |
|
4344 |
while ((hr = _young_list->par_get_next_scan_only_region()) != NULL) { |
|
4345 |
scan_scan_only_region(hr, foc, worker_i); |
|
4346 |
++n; |
|
4347 |
} |
|
4348 |
boc.done(); |
|
4349 |
||
4350 |
double closure_app_s = boc.closure_app_seconds(); |
|
4351 |
g1_policy()->record_obj_copy_time(worker_i, closure_app_s * 1000.0); |
|
4352 |
double ms = (os::elapsedTime() - start - closure_app_s)*1000.0; |
|
4353 |
g1_policy()->record_scan_only_time(worker_i, ms, n); |
|
4354 |
} |
|
4355 |
||
4356 |
void |
|
4357 |
G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure, |
|
4358 |
OopClosure* non_root_closure) { |
|
4359 |
SharedHeap::process_weak_roots(root_closure, non_root_closure); |
|
4360 |
} |
|
4361 |
||
4362 |
||
4363 |
class SaveMarksClosure: public HeapRegionClosure { |
|
4364 |
public: |
|
4365 |
bool doHeapRegion(HeapRegion* r) { |
|
4366 |
r->save_marks(); |
|
4367 |
return false; |
|
4368 |
} |
|
4369 |
}; |
|
4370 |
||
4371 |
void G1CollectedHeap::save_marks() { |
|
4372 |
if (ParallelGCThreads == 0) { |
|
4373 |
SaveMarksClosure sm; |
|
4374 |
heap_region_iterate(&sm); |
|
4375 |
} |
|
4376 |
// We do this even in the parallel case |
|
4377 |
perm_gen()->save_marks(); |
|
4378 |
} |
|
4379 |
||
4380 |
void G1CollectedHeap::evacuate_collection_set() { |
|
4381 |
set_evacuation_failed(false); |
|
4382 |
||
4383 |
g1_rem_set()->prepare_for_oops_into_collection_set_do(); |
|
4384 |
concurrent_g1_refine()->set_use_cache(false); |
|
4385 |
int n_workers = (ParallelGCThreads > 0 ? workers()->total_workers() : 1); |
|
4386 |
||
4387 |
set_par_threads(n_workers); |
|
4388 |
G1ParTask g1_par_task(this, n_workers, _task_queues); |
|
4389 |
||
4390 |
init_for_evac_failure(NULL); |
|
4391 |
||
4392 |
change_strong_roots_parity(); // In preparation for parallel strong roots. |
|
4393 |
rem_set()->prepare_for_younger_refs_iterate(true); |
|
4394 |
double start_par = os::elapsedTime(); |
|
4395 |
||
4396 |
if (ParallelGCThreads > 0) { |
|
4397 |
// The individual threads will set their evac-failure closures. |
|
4398 |
workers()->run_task(&g1_par_task); |
|
4399 |
} else { |
|
4400 |
g1_par_task.work(0); |
|
4401 |
} |
|
4402 |
||
4403 |
double par_time = (os::elapsedTime() - start_par) * 1000.0; |
|
4404 |
g1_policy()->record_par_time(par_time); |
|
4405 |
set_par_threads(0); |
|
4406 |
// Is this the right thing to do here? We don't save marks |
|
4407 |
// on individual heap regions when we allocate from |
|
4408 |
// them in parallel, so this seems like the correct place for this. |
|
2009 | 4409 |
retire_all_alloc_regions(); |
1374 | 4410 |
{ |
4411 |
G1IsAliveClosure is_alive(this); |
|
4412 |
G1KeepAliveClosure keep_alive(this); |
|
4413 |
JNIHandles::weak_oops_do(&is_alive, &keep_alive); |
|
4414 |
} |
|
4415 |
||
4416 |
g1_rem_set()->cleanup_after_oops_into_collection_set_do(); |
|
4417 |
concurrent_g1_refine()->set_use_cache(true); |
|
4418 |
||
4419 |
finalize_for_evac_failure(); |
|
4420 |
||
4421 |
// Must do this before removing self-forwarding pointers, which clears |
|
4422 |
// the per-region evac-failure flags. |
|
4423 |
concurrent_mark()->complete_marking_in_collection_set(); |
|
4424 |
||
4425 |
if (evacuation_failed()) { |
|
4426 |
remove_self_forwarding_pointers(); |
|
4427 |
||
4428 |
if (PrintGCDetails) { |
|
4429 |
gclog_or_tty->print(" (evacuation failed)"); |
|
4430 |
} else if (PrintGC) { |
|
4431 |
gclog_or_tty->print("--"); |
|
4432 |
} |
|
4433 |
} |
|
4434 |
||
4435 |
COMPILER2_PRESENT(DerivedPointerTable::update_pointers()); |
|
4436 |
} |
|
4437 |
||
4438 |
void G1CollectedHeap::free_region(HeapRegion* hr) { |
|
4439 |
size_t pre_used = 0; |
|
4440 |
size_t cleared_h_regions = 0; |
|
4441 |
size_t freed_regions = 0; |
|
4442 |
UncleanRegionList local_list; |
|
4443 |
||
4444 |
HeapWord* start = hr->bottom(); |
|
4445 |
HeapWord* end = hr->prev_top_at_mark_start(); |
|
4446 |
size_t used_bytes = hr->used(); |
|
4447 |
size_t live_bytes = hr->max_live_bytes(); |
|
4448 |
if (used_bytes > 0) { |
|
4449 |
guarantee( live_bytes <= used_bytes, "invariant" ); |
|
4450 |
} else { |
|
4451 |
guarantee( live_bytes == 0, "invariant" ); |
|
4452 |
} |
|
4453 |
||
4454 |
size_t garbage_bytes = used_bytes - live_bytes; |
|
4455 |
if (garbage_bytes > 0) |
|
4456 |
g1_policy()->decrease_known_garbage_bytes(garbage_bytes); |
|
4457 |
||
4458 |
free_region_work(hr, pre_used, cleared_h_regions, freed_regions, |
|
4459 |
&local_list); |
|
4460 |
finish_free_region_work(pre_used, cleared_h_regions, freed_regions, |
|
4461 |
&local_list); |
|
4462 |
} |
|
4463 |
||
4464 |
void |
|
4465 |
G1CollectedHeap::free_region_work(HeapRegion* hr, |
|
4466 |
size_t& pre_used, |
|
4467 |
size_t& cleared_h_regions, |
|
4468 |
size_t& freed_regions, |
|
4469 |
UncleanRegionList* list, |
|
4470 |
bool par) { |
|
4471 |
assert(!hr->popular(), "should not free popular regions"); |
|
4472 |
pre_used += hr->used(); |
|
4473 |
if (hr->isHumongous()) { |
|
4474 |
assert(hr->startsHumongous(), |
|
4475 |
"Only the start of a humongous region should be freed."); |
|
4476 |
int ind = _hrs->find(hr); |
|
4477 |
assert(ind != -1, "Should have an index."); |
|
4478 |
// Clear the start region. |
|
4479 |
hr->hr_clear(par, true /*clear_space*/); |
|
4480 |
list->insert_before_head(hr); |
|
4481 |
cleared_h_regions++; |
|
4482 |
freed_regions++; |
|
4483 |
// Clear any continued regions. |
|
4484 |
ind++; |
|
4485 |
while ((size_t)ind < n_regions()) { |
|
4486 |
HeapRegion* hrc = _hrs->at(ind); |
|
4487 |
if (!hrc->continuesHumongous()) break; |
|
4488 |
// Otherwise, does continue the H region. |
|
4489 |
assert(hrc->humongous_start_region() == hr, "Huh?"); |
|
4490 |
hrc->hr_clear(par, true /*clear_space*/); |
|
4491 |
cleared_h_regions++; |
|
4492 |
freed_regions++; |
|
4493 |
list->insert_before_head(hrc); |
|
4494 |
ind++; |
|
4495 |
} |
|
4496 |
} else { |
|
4497 |
hr->hr_clear(par, true /*clear_space*/); |
|
4498 |
list->insert_before_head(hr); |
|
4499 |
freed_regions++; |
|
4500 |
// If we're using clear2, this should not be enabled. |
|
4501 |
// assert(!hr->in_cohort(), "Can't be both free and in a cohort."); |
|
4502 |
} |
|
4503 |
} |
|
4504 |
||
4505 |
void G1CollectedHeap::finish_free_region_work(size_t pre_used, |
|
4506 |
size_t cleared_h_regions, |
|
4507 |
size_t freed_regions, |
|
4508 |
UncleanRegionList* list) { |
|
4509 |
if (list != NULL && list->sz() > 0) { |
|
4510 |
prepend_region_list_on_unclean_list(list); |
|
4511 |
} |
|
4512 |
// Acquire a lock, if we're parallel, to update possibly-shared |
|
4513 |
// variables. |
|
4514 |
Mutex* lock = (n_par_threads() > 0) ? ParGCRareEvent_lock : NULL; |
|
4515 |
{ |
|
4516 |
MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag); |
|
4517 |
_summary_bytes_used -= pre_used; |
|
4518 |
_num_humongous_regions -= (int) cleared_h_regions; |
|
4519 |
_free_regions += freed_regions; |
|
4520 |
} |
|
4521 |
} |
|
4522 |
||
4523 |
||
4524 |
void G1CollectedHeap::dirtyCardsForYoungRegions(CardTableModRefBS* ct_bs, HeapRegion* list) { |
|
4525 |
while (list != NULL) { |
|
4526 |
guarantee( list->is_young(), "invariant" ); |
|
4527 |
||
4528 |
HeapWord* bottom = list->bottom(); |
|
4529 |
HeapWord* end = list->end(); |
|
4530 |
MemRegion mr(bottom, end); |
|
4531 |
ct_bs->dirty(mr); |
|
4532 |
||
4533 |
list = list->get_next_young_region(); |
|
4534 |
} |
|
4535 |
} |
|
4536 |
||
4537 |
void G1CollectedHeap::cleanUpCardTable() { |
|
4538 |
CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set()); |
|
4539 |
double start = os::elapsedTime(); |
|
4540 |
||
4541 |
ct_bs->clear(_g1_committed); |
|
4542 |
||
4543 |
// now, redirty the cards of the scan-only and survivor regions |
|
4544 |
// (it seemed faster to do it this way, instead of iterating over |
|
4545 |
// all regions and then clearing / dirtying as approprite) |
|
4546 |
dirtyCardsForYoungRegions(ct_bs, _young_list->first_scan_only_region()); |
|
4547 |
dirtyCardsForYoungRegions(ct_bs, _young_list->first_survivor_region()); |
|
4548 |
||
4549 |
double elapsed = os::elapsedTime() - start; |
|
4550 |
g1_policy()->record_clear_ct_time( elapsed * 1000.0); |
|
4551 |
} |
|
4552 |
||
4553 |
||
4554 |
void G1CollectedHeap::do_collection_pause_if_appropriate(size_t word_size) { |
|
4555 |
// First do any popular regions. |
|
4556 |
HeapRegion* hr; |
|
4557 |
while ((hr = popular_region_to_evac()) != NULL) { |
|
4558 |
evac_popular_region(hr); |
|
4559 |
} |
|
4560 |
// Now do heuristic pauses. |
|
4561 |
if (g1_policy()->should_do_collection_pause(word_size)) { |
|
4562 |
do_collection_pause(); |
|
4563 |
} |
|
4564 |
} |
|
4565 |
||
4566 |
void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) { |
|
4567 |
double young_time_ms = 0.0; |
|
4568 |
double non_young_time_ms = 0.0; |
|
4569 |
||
4570 |
G1CollectorPolicy* policy = g1_policy(); |
|
4571 |
||
4572 |
double start_sec = os::elapsedTime(); |
|
4573 |
bool non_young = true; |
|
4574 |
||
4575 |
HeapRegion* cur = cs_head; |
|
4576 |
int age_bound = -1; |
|
4577 |
size_t rs_lengths = 0; |
|
4578 |
||
4579 |
while (cur != NULL) { |
|
4580 |
if (non_young) { |
|
4581 |
if (cur->is_young()) { |
|
4582 |
double end_sec = os::elapsedTime(); |
|
4583 |
double elapsed_ms = (end_sec - start_sec) * 1000.0; |
|
4584 |
non_young_time_ms += elapsed_ms; |
|
4585 |
||
4586 |
start_sec = os::elapsedTime(); |
|
4587 |
non_young = false; |
|
4588 |
} |
|
4589 |
} else { |
|
4590 |
if (!cur->is_on_free_list()) { |
|
4591 |
double end_sec = os::elapsedTime(); |
|
4592 |
double elapsed_ms = (end_sec - start_sec) * 1000.0; |
|
4593 |
young_time_ms += elapsed_ms; |
|
4594 |
||
4595 |
start_sec = os::elapsedTime(); |
|
4596 |
non_young = true; |
|
4597 |
} |
|
4598 |
} |
|
4599 |
||
4600 |
rs_lengths += cur->rem_set()->occupied(); |
|
4601 |
||
4602 |
HeapRegion* next = cur->next_in_collection_set(); |
|
4603 |
assert(cur->in_collection_set(), "bad CS"); |
|
4604 |
cur->set_next_in_collection_set(NULL); |
|
4605 |
cur->set_in_collection_set(false); |
|
4606 |
||
4607 |
if (cur->is_young()) { |
|
4608 |
int index = cur->young_index_in_cset(); |
|
4609 |
guarantee( index != -1, "invariant" ); |
|
4610 |
guarantee( (size_t)index < policy->young_cset_length(), "invariant" ); |
|
4611 |
size_t words_survived = _surviving_young_words[index]; |
|
4612 |
cur->record_surv_words_in_group(words_survived); |
|
4613 |
} else { |
|
4614 |
int index = cur->young_index_in_cset(); |
|
4615 |
guarantee( index == -1, "invariant" ); |
|
4616 |
} |
|
4617 |
||
4618 |
assert( (cur->is_young() && cur->young_index_in_cset() > -1) || |
|
4619 |
(!cur->is_young() && cur->young_index_in_cset() == -1), |
|
4620 |
"invariant" ); |
|
4621 |
||
4622 |
if (!cur->evacuation_failed()) { |
|
4623 |
// And the region is empty. |
|
4624 |
assert(!cur->is_empty(), |
|
4625 |
"Should not have empty regions in a CS."); |
|
4626 |
free_region(cur); |
|
4627 |
} else { |
|
4628 |
guarantee( !cur->is_scan_only(), "should not be scan only" ); |
|
4629 |
cur->uninstall_surv_rate_group(); |
|
4630 |
if (cur->is_young()) |
|
4631 |
cur->set_young_index_in_cset(-1); |
|
4632 |
cur->set_not_young(); |
|
4633 |
cur->set_evacuation_failed(false); |
|
4634 |
} |
|
4635 |
cur = next; |
|
4636 |
} |
|
4637 |
||
4638 |
policy->record_max_rs_lengths(rs_lengths); |
|
4639 |
policy->cset_regions_freed(); |
|
4640 |
||
4641 |
double end_sec = os::elapsedTime(); |
|
4642 |
double elapsed_ms = (end_sec - start_sec) * 1000.0; |
|
4643 |
if (non_young) |
|
4644 |
non_young_time_ms += elapsed_ms; |
|
4645 |
else |
|
4646 |
young_time_ms += elapsed_ms; |
|
4647 |
||
4648 |
policy->record_young_free_cset_time_ms(young_time_ms); |
|
4649 |
policy->record_non_young_free_cset_time_ms(non_young_time_ms); |
|
4650 |
} |
|
4651 |
||
4652 |
HeapRegion* |
|
4653 |
G1CollectedHeap::alloc_region_from_unclean_list_locked(bool zero_filled) { |
|
4654 |
assert(ZF_mon->owned_by_self(), "Precondition"); |
|
4655 |
HeapRegion* res = pop_unclean_region_list_locked(); |
|
4656 |
if (res != NULL) { |
|
4657 |
assert(!res->continuesHumongous() && |
|
4658 |
res->zero_fill_state() != HeapRegion::Allocated, |
|
4659 |
"Only free regions on unclean list."); |
|
4660 |
if (zero_filled) { |
|
4661 |
res->ensure_zero_filled_locked(); |
|
4662 |
res->set_zero_fill_allocated(); |
|
4663 |
} |
|
4664 |
} |
|
4665 |
return res; |
|
4666 |
} |
|
4667 |
||
4668 |
HeapRegion* G1CollectedHeap::alloc_region_from_unclean_list(bool zero_filled) { |
|
4669 |
MutexLockerEx zx(ZF_mon, Mutex::_no_safepoint_check_flag); |
|
4670 |
return alloc_region_from_unclean_list_locked(zero_filled); |
|
4671 |
} |
|
4672 |
||
4673 |
void G1CollectedHeap::put_region_on_unclean_list(HeapRegion* r) { |
|
4674 |
MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag); |
|
4675 |
put_region_on_unclean_list_locked(r); |
|
4676 |
if (should_zf()) ZF_mon->notify_all(); // Wake up ZF thread. |
|
4677 |
} |
|
4678 |
||
4679 |
void G1CollectedHeap::set_unclean_regions_coming(bool b) { |
|
4680 |
MutexLockerEx x(Cleanup_mon); |
|
4681 |
set_unclean_regions_coming_locked(b); |
|
4682 |
} |
|
4683 |
||
4684 |
void G1CollectedHeap::set_unclean_regions_coming_locked(bool b) { |
|
4685 |
assert(Cleanup_mon->owned_by_self(), "Precondition"); |
|
4686 |
_unclean_regions_coming = b; |
|
4687 |
// Wake up mutator threads that might be waiting for completeCleanup to |
|
4688 |
// finish. |
|
4689 |
if (!b) Cleanup_mon->notify_all(); |
|
4690 |
} |
|
4691 |
||
4692 |
void G1CollectedHeap::wait_for_cleanup_complete() { |
|
4693 |
MutexLockerEx x(Cleanup_mon); |
|
4694 |
wait_for_cleanup_complete_locked(); |
|
4695 |
} |
|
4696 |
||
4697 |
void G1CollectedHeap::wait_for_cleanup_complete_locked() { |
|
4698 |
assert(Cleanup_mon->owned_by_self(), "precondition"); |
|
4699 |
while (_unclean_regions_coming) { |
|
4700 |
Cleanup_mon->wait(); |
|
4701 |
} |
|
4702 |
} |
|
4703 |
||
4704 |
void |
|
4705 |
G1CollectedHeap::put_region_on_unclean_list_locked(HeapRegion* r) { |
|
4706 |
assert(ZF_mon->owned_by_self(), "precondition."); |
|
4707 |
_unclean_region_list.insert_before_head(r); |
|
4708 |
} |
|
4709 |
||
4710 |
void |
|
4711 |
G1CollectedHeap::prepend_region_list_on_unclean_list(UncleanRegionList* list) { |
|
4712 |
MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag); |
|
4713 |
prepend_region_list_on_unclean_list_locked(list); |
|
4714 |
if (should_zf()) ZF_mon->notify_all(); // Wake up ZF thread. |
|
4715 |
} |
|
4716 |
||
4717 |
void |
|
4718 |
G1CollectedHeap:: |
|
4719 |
prepend_region_list_on_unclean_list_locked(UncleanRegionList* list) { |
|
4720 |
assert(ZF_mon->owned_by_self(), "precondition."); |
|
4721 |
_unclean_region_list.prepend_list(list); |
|
4722 |
} |
|
4723 |
||
4724 |
HeapRegion* G1CollectedHeap::pop_unclean_region_list_locked() { |
|
4725 |
assert(ZF_mon->owned_by_self(), "precondition."); |
|
4726 |
HeapRegion* res = _unclean_region_list.pop(); |
|
4727 |
if (res != NULL) { |
|
4728 |
// Inform ZF thread that there's a new unclean head. |
|
4729 |
if (_unclean_region_list.hd() != NULL && should_zf()) |
|
4730 |
ZF_mon->notify_all(); |
|
4731 |
} |
|
4732 |
return res; |
|
4733 |
} |
|
4734 |
||
4735 |
HeapRegion* G1CollectedHeap::peek_unclean_region_list_locked() { |
|
4736 |
assert(ZF_mon->owned_by_self(), "precondition."); |
|
4737 |
return _unclean_region_list.hd(); |
|
4738 |
} |
|
4739 |
||
4740 |
||
4741 |
bool G1CollectedHeap::move_cleaned_region_to_free_list_locked() { |
|
4742 |
assert(ZF_mon->owned_by_self(), "Precondition"); |
|
4743 |
HeapRegion* r = peek_unclean_region_list_locked(); |
|
4744 |
if (r != NULL && r->zero_fill_state() == HeapRegion::ZeroFilled) { |
|
4745 |
// Result of below must be equal to "r", since we hold the lock. |
|
4746 |
(void)pop_unclean_region_list_locked(); |
|
4747 |
put_free_region_on_list_locked(r); |
|
4748 |
return true; |
|
4749 |
} else { |
|
4750 |
return false; |
|
4751 |
} |
|
4752 |
} |
|
4753 |
||
4754 |
bool G1CollectedHeap::move_cleaned_region_to_free_list() { |
|
4755 |
MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag); |
|
4756 |
return move_cleaned_region_to_free_list_locked(); |
|
4757 |
} |
|
4758 |
||
4759 |
||
4760 |
void G1CollectedHeap::put_free_region_on_list_locked(HeapRegion* r) { |
|
4761 |
assert(ZF_mon->owned_by_self(), "precondition."); |
|
4762 |
assert(_free_region_list_size == free_region_list_length(), "Inv"); |
|
4763 |
assert(r->zero_fill_state() == HeapRegion::ZeroFilled, |
|
4764 |
"Regions on free list must be zero filled"); |
|
4765 |
assert(!r->isHumongous(), "Must not be humongous."); |
|
4766 |
assert(r->is_empty(), "Better be empty"); |
|
4767 |
assert(!r->is_on_free_list(), |
|
4768 |
"Better not already be on free list"); |
|
4769 |
assert(!r->is_on_unclean_list(), |
|
4770 |
"Better not already be on unclean list"); |
|
4771 |
r->set_on_free_list(true); |
|
4772 |
r->set_next_on_free_list(_free_region_list); |
|
4773 |
_free_region_list = r; |
|
4774 |
_free_region_list_size++; |
|
4775 |
assert(_free_region_list_size == free_region_list_length(), "Inv"); |
|
4776 |
} |
|
4777 |
||
4778 |
void G1CollectedHeap::put_free_region_on_list(HeapRegion* r) { |
|
4779 |
MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag); |
|
4780 |
put_free_region_on_list_locked(r); |
|
4781 |
} |
|
4782 |
||
4783 |
HeapRegion* G1CollectedHeap::pop_free_region_list_locked() { |
|
4784 |
assert(ZF_mon->owned_by_self(), "precondition."); |
|
4785 |
assert(_free_region_list_size == free_region_list_length(), "Inv"); |
|
4786 |
HeapRegion* res = _free_region_list; |
|
4787 |
if (res != NULL) { |
|
4788 |
_free_region_list = res->next_from_free_list(); |
|
4789 |
_free_region_list_size--; |
|
4790 |
res->set_on_free_list(false); |
|
4791 |
res->set_next_on_free_list(NULL); |
|
4792 |
assert(_free_region_list_size == free_region_list_length(), "Inv"); |
|
4793 |
} |
|
4794 |
return res; |
|
4795 |
} |
|
4796 |
||
4797 |
||
4798 |
HeapRegion* G1CollectedHeap::alloc_free_region_from_lists(bool zero_filled) { |
|
4799 |
// By self, or on behalf of self. |
|
4800 |
assert(Heap_lock->is_locked(), "Precondition"); |
|
4801 |
HeapRegion* res = NULL; |
|
4802 |
bool first = true; |
|
4803 |
while (res == NULL) { |
|
4804 |
if (zero_filled || !first) { |
|
4805 |
MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag); |
|
4806 |
res = pop_free_region_list_locked(); |
|
4807 |
if (res != NULL) { |
|
4808 |
assert(!res->zero_fill_is_allocated(), |
|
4809 |
"No allocated regions on free list."); |
|
4810 |
res->set_zero_fill_allocated(); |
|
4811 |
} else if (!first) { |
|
4812 |
break; // We tried both, time to return NULL. |
|
4813 |
} |
|
4814 |
} |
|
4815 |
||
4816 |
if (res == NULL) { |
|
4817 |
res = alloc_region_from_unclean_list(zero_filled); |
|
4818 |
} |
|
4819 |
assert(res == NULL || |
|
4820 |
!zero_filled || |
|
4821 |
res->zero_fill_is_allocated(), |
|
4822 |
"We must have allocated the region we're returning"); |
|
4823 |
first = false; |
|
4824 |
} |
|
4825 |
return res; |
|
4826 |
} |
|
4827 |
||
4828 |
void G1CollectedHeap::remove_allocated_regions_from_lists() { |
|
4829 |
MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag); |
|
4830 |
{ |
|
4831 |
HeapRegion* prev = NULL; |
|
4832 |
HeapRegion* cur = _unclean_region_list.hd(); |
|
4833 |
while (cur != NULL) { |
|
4834 |
HeapRegion* next = cur->next_from_unclean_list(); |
|
4835 |
if (cur->zero_fill_is_allocated()) { |
|
4836 |
// Remove from the list. |
|
4837 |
if (prev == NULL) { |
|
4838 |
(void)_unclean_region_list.pop(); |
|
4839 |
} else { |
|
4840 |
_unclean_region_list.delete_after(prev); |
|
4841 |
} |
|
4842 |
cur->set_on_unclean_list(false); |
|
4843 |
cur->set_next_on_unclean_list(NULL); |
|
4844 |
} else { |
|
4845 |
prev = cur; |
|
4846 |
} |
|
4847 |
cur = next; |
|
4848 |
} |
|
4849 |
assert(_unclean_region_list.sz() == unclean_region_list_length(), |
|
4850 |
"Inv"); |
|
4851 |
} |
|
4852 |
||
4853 |
{ |
|
4854 |
HeapRegion* prev = NULL; |
|
4855 |
HeapRegion* cur = _free_region_list; |
|
4856 |
while (cur != NULL) { |
|
4857 |
HeapRegion* next = cur->next_from_free_list(); |
|
4858 |
if (cur->zero_fill_is_allocated()) { |
|
4859 |
// Remove from the list. |
|
4860 |
if (prev == NULL) { |
|
4861 |
_free_region_list = cur->next_from_free_list(); |
|
4862 |
} else { |
|
4863 |
prev->set_next_on_free_list(cur->next_from_free_list()); |
|
4864 |
} |
|
4865 |
cur->set_on_free_list(false); |
|
4866 |
cur->set_next_on_free_list(NULL); |
|
4867 |
_free_region_list_size--; |
|
4868 |
} else { |
|
4869 |
prev = cur; |
|
4870 |
} |
|
4871 |
cur = next; |
|
4872 |
} |
|
4873 |
assert(_free_region_list_size == free_region_list_length(), "Inv"); |
|
4874 |
} |
|
4875 |
} |
|
4876 |
||
4877 |
bool G1CollectedHeap::verify_region_lists() { |
|
4878 |
MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag); |
|
4879 |
return verify_region_lists_locked(); |
|
4880 |
} |
|
4881 |
||
4882 |
bool G1CollectedHeap::verify_region_lists_locked() { |
|
4883 |
HeapRegion* unclean = _unclean_region_list.hd(); |
|
4884 |
while (unclean != NULL) { |
|
4885 |
guarantee(unclean->is_on_unclean_list(), "Well, it is!"); |
|
4886 |
guarantee(!unclean->is_on_free_list(), "Well, it shouldn't be!"); |
|
4887 |
guarantee(unclean->zero_fill_state() != HeapRegion::Allocated, |
|
4888 |
"Everything else is possible."); |
|
4889 |
unclean = unclean->next_from_unclean_list(); |
|
4890 |
} |
|
4891 |
guarantee(_unclean_region_list.sz() == unclean_region_list_length(), "Inv"); |
|
4892 |
||
4893 |
HeapRegion* free_r = _free_region_list; |
|
4894 |
while (free_r != NULL) { |
|
4895 |
assert(free_r->is_on_free_list(), "Well, it is!"); |
|
4896 |
assert(!free_r->is_on_unclean_list(), "Well, it shouldn't be!"); |
|
4897 |
switch (free_r->zero_fill_state()) { |
|
4898 |
case HeapRegion::NotZeroFilled: |
|
4899 |
case HeapRegion::ZeroFilling: |
|
4900 |
guarantee(false, "Should not be on free list."); |
|
4901 |
break; |
|
4902 |
default: |
|
4903 |
// Everything else is possible. |
|
4904 |
break; |
|
4905 |
} |
|
4906 |
free_r = free_r->next_from_free_list(); |
|
4907 |
} |
|
4908 |
guarantee(_free_region_list_size == free_region_list_length(), "Inv"); |
|
4909 |
// If we didn't do an assertion... |
|
4910 |
return true; |
|
4911 |
} |
|
4912 |
||
4913 |
size_t G1CollectedHeap::free_region_list_length() { |
|
4914 |
assert(ZF_mon->owned_by_self(), "precondition."); |
|
4915 |
size_t len = 0; |
|
4916 |
HeapRegion* cur = _free_region_list; |
|
4917 |
while (cur != NULL) { |
|
4918 |
len++; |
|
4919 |
cur = cur->next_from_free_list(); |
|
4920 |
} |
|
4921 |
return len; |
|
4922 |
} |
|
4923 |
||
4924 |
size_t G1CollectedHeap::unclean_region_list_length() { |
|
4925 |
assert(ZF_mon->owned_by_self(), "precondition."); |
|
4926 |
return _unclean_region_list.length(); |
|
4927 |
} |
|
4928 |
||
4929 |
size_t G1CollectedHeap::n_regions() { |
|
4930 |
return _hrs->length(); |
|
4931 |
} |
|
4932 |
||
4933 |
size_t G1CollectedHeap::max_regions() { |
|
4934 |
return |
|
4935 |
(size_t)align_size_up(g1_reserved_obj_bytes(), HeapRegion::GrainBytes) / |
|
4936 |
HeapRegion::GrainBytes; |
|
4937 |
} |
|
4938 |
||
4939 |
size_t G1CollectedHeap::free_regions() { |
|
4940 |
/* Possibly-expensive assert. |
|
4941 |
assert(_free_regions == count_free_regions(), |
|
4942 |
"_free_regions is off."); |
|
4943 |
*/ |
|
4944 |
return _free_regions; |
|
4945 |
} |
|
4946 |
||
4947 |
bool G1CollectedHeap::should_zf() { |
|
4948 |
return _free_region_list_size < (size_t) G1ConcZFMaxRegions; |
|
4949 |
} |
|
4950 |
||
4951 |
class RegionCounter: public HeapRegionClosure { |
|
4952 |
size_t _n; |
|
4953 |
public: |
|
4954 |
RegionCounter() : _n(0) {} |
|
4955 |
bool doHeapRegion(HeapRegion* r) { |
|
4956 |
if (r->is_empty() && !r->popular()) { |
|
4957 |
assert(!r->isHumongous(), "H regions should not be empty."); |
|
4958 |
_n++; |
|
4959 |
} |
|
4960 |
return false; |
|
4961 |
} |
|
4962 |
int res() { return (int) _n; } |
|
4963 |
}; |
|
4964 |
||
4965 |
size_t G1CollectedHeap::count_free_regions() { |
|
4966 |
RegionCounter rc; |
|
4967 |
heap_region_iterate(&rc); |
|
4968 |
size_t n = rc.res(); |
|
4969 |
if (_cur_alloc_region != NULL && _cur_alloc_region->is_empty()) |
|
4970 |
n--; |
|
4971 |
return n; |
|
4972 |
} |
|
4973 |
||
4974 |
size_t G1CollectedHeap::count_free_regions_list() { |
|
4975 |
size_t n = 0; |
|
4976 |
size_t o = 0; |
|
4977 |
ZF_mon->lock_without_safepoint_check(); |
|
4978 |
HeapRegion* cur = _free_region_list; |
|
4979 |
while (cur != NULL) { |
|
4980 |
cur = cur->next_from_free_list(); |
|
4981 |
n++; |
|
4982 |
} |
|
4983 |
size_t m = unclean_region_list_length(); |
|
4984 |
ZF_mon->unlock(); |
|
4985 |
return n + m; |
|
4986 |
} |
|
4987 |
||
4988 |
bool G1CollectedHeap::should_set_young_locked() { |
|
4989 |
assert(heap_lock_held_for_gc(), |
|
4990 |
"the heap lock should already be held by or for this thread"); |
|
4991 |
return (g1_policy()->in_young_gc_mode() && |
|
4992 |
g1_policy()->should_add_next_region_to_young_list()); |
|
4993 |
} |
|
4994 |
||
4995 |
void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) { |
|
4996 |
assert(heap_lock_held_for_gc(), |
|
4997 |
"the heap lock should already be held by or for this thread"); |
|
4998 |
_young_list->push_region(hr); |
|
4999 |
g1_policy()->set_region_short_lived(hr); |
|
5000 |
} |
|
5001 |
||
5002 |
class NoYoungRegionsClosure: public HeapRegionClosure { |
|
5003 |
private: |
|
5004 |
bool _success; |
|
5005 |
public: |
|
5006 |
NoYoungRegionsClosure() : _success(true) { } |
|
5007 |
bool doHeapRegion(HeapRegion* r) { |
|
5008 |
if (r->is_young()) { |
|
5009 |
gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young", |
|
5010 |
r->bottom(), r->end()); |
|
5011 |
_success = false; |
|
5012 |
} |
|
5013 |
return false; |
|
5014 |
} |
|
5015 |
bool success() { return _success; } |
|
5016 |
}; |
|
5017 |
||
5018 |
bool G1CollectedHeap::check_young_list_empty(bool ignore_scan_only_list, |
|
5019 |
bool check_sample) { |
|
5020 |
bool ret = true; |
|
5021 |
||
5022 |
ret = _young_list->check_list_empty(ignore_scan_only_list, check_sample); |
|
5023 |
if (!ignore_scan_only_list) { |
|
5024 |
NoYoungRegionsClosure closure; |
|
5025 |
heap_region_iterate(&closure); |
|
5026 |
ret = ret && closure.success(); |
|
5027 |
} |
|
5028 |
||
5029 |
return ret; |
|
5030 |
} |
|
5031 |
||
5032 |
void G1CollectedHeap::empty_young_list() { |
|
5033 |
assert(heap_lock_held_for_gc(), |
|
5034 |
"the heap lock should already be held by or for this thread"); |
|
5035 |
assert(g1_policy()->in_young_gc_mode(), "should be in young GC mode"); |
|
5036 |
||
5037 |
_young_list->empty_list(); |
|
5038 |
} |
|
5039 |
||
5040 |
bool G1CollectedHeap::all_alloc_regions_no_allocs_since_save_marks() { |
|
5041 |
bool no_allocs = true; |
|
5042 |
for (int ap = 0; ap < GCAllocPurposeCount && no_allocs; ++ap) { |
|
5043 |
HeapRegion* r = _gc_alloc_regions[ap]; |
|
5044 |
no_allocs = r == NULL || r->saved_mark_at_top(); |
|
5045 |
} |
|
5046 |
return no_allocs; |
|
5047 |
} |
|
5048 |
||
2009 | 5049 |
void G1CollectedHeap::retire_all_alloc_regions() { |
1374 | 5050 |
for (int ap = 0; ap < GCAllocPurposeCount; ++ap) { |
5051 |
HeapRegion* r = _gc_alloc_regions[ap]; |
|
5052 |
if (r != NULL) { |
|
5053 |
// Check for aliases. |
|
5054 |
bool has_processed_alias = false; |
|
5055 |
for (int i = 0; i < ap; ++i) { |
|
5056 |
if (_gc_alloc_regions[i] == r) { |
|
5057 |
has_processed_alias = true; |
|
5058 |
break; |
|
5059 |
} |
|
5060 |
} |
|
5061 |
if (!has_processed_alias) { |
|
2009 | 5062 |
retire_alloc_region(r, false /* par */); |
1374 | 5063 |
} |
5064 |
} |
|
5065 |
} |
|
5066 |
} |
|
5067 |
||
5068 |
||
5069 |
// Done at the start of full GC. |
|
5070 |
void G1CollectedHeap::tear_down_region_lists() { |
|
5071 |
MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag); |
|
5072 |
while (pop_unclean_region_list_locked() != NULL) ; |
|
5073 |
assert(_unclean_region_list.hd() == NULL && _unclean_region_list.sz() == 0, |
|
5074 |
"Postconditions of loop.") |
|
5075 |
while (pop_free_region_list_locked() != NULL) ; |
|
5076 |
assert(_free_region_list == NULL, "Postcondition of loop."); |
|
5077 |
if (_free_region_list_size != 0) { |
|
5078 |
gclog_or_tty->print_cr("Size is %d.", _free_region_list_size); |
|
5079 |
print(); |
|
5080 |
} |
|
5081 |
assert(_free_region_list_size == 0, "Postconditions of loop."); |
|
5082 |
} |
|
5083 |
||
5084 |
||
5085 |
class RegionResetter: public HeapRegionClosure { |
|
5086 |
G1CollectedHeap* _g1; |
|
5087 |
int _n; |
|
5088 |
public: |
|
5089 |
RegionResetter() : _g1(G1CollectedHeap::heap()), _n(0) {} |
|
5090 |
bool doHeapRegion(HeapRegion* r) { |
|
5091 |
if (r->continuesHumongous()) return false; |
|
5092 |
if (r->top() > r->bottom()) { |
|
5093 |
if (r->top() < r->end()) { |
|
5094 |
Copy::fill_to_words(r->top(), |
|
5095 |
pointer_delta(r->end(), r->top())); |
|
5096 |
} |
|
5097 |
r->set_zero_fill_allocated(); |
|
5098 |
} else { |
|
5099 |
assert(r->is_empty(), "tautology"); |
|
5100 |
if (r->popular()) { |
|
5101 |
if (r->zero_fill_state() != HeapRegion::Allocated) { |
|
5102 |
r->ensure_zero_filled_locked(); |
|
5103 |
r->set_zero_fill_allocated(); |
|
5104 |
} |
|
5105 |
} else { |
|
5106 |
_n++; |
|
5107 |
switch (r->zero_fill_state()) { |
|
5108 |
case HeapRegion::NotZeroFilled: |
|
5109 |
case HeapRegion::ZeroFilling: |
|
5110 |
_g1->put_region_on_unclean_list_locked(r); |
|
5111 |
break; |
|
5112 |
case HeapRegion::Allocated: |
|
5113 |
r->set_zero_fill_complete(); |
|
5114 |
// no break; go on to put on free list. |
|
5115 |
case HeapRegion::ZeroFilled: |
|
5116 |
_g1->put_free_region_on_list_locked(r); |
|
5117 |
break; |
|
5118 |
} |
|
5119 |
} |
|
5120 |
} |
|
5121 |
return false; |
|
5122 |
} |
|
5123 |
||
5124 |
int getFreeRegionCount() {return _n;} |
|
5125 |
}; |
|
5126 |
||
5127 |
// Done at the end of full GC. |
|
5128 |
void G1CollectedHeap::rebuild_region_lists() { |
|
5129 |
MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag); |
|
5130 |
// This needs to go at the end of the full GC. |
|
5131 |
RegionResetter rs; |
|
5132 |
heap_region_iterate(&rs); |
|
5133 |
_free_regions = rs.getFreeRegionCount(); |
|
5134 |
// Tell the ZF thread it may have work to do. |
|
5135 |
if (should_zf()) ZF_mon->notify_all(); |
|
5136 |
} |
|
5137 |
||
5138 |
class UsedRegionsNeedZeroFillSetter: public HeapRegionClosure { |
|
5139 |
G1CollectedHeap* _g1; |
|
5140 |
int _n; |
|
5141 |
public: |
|
5142 |
UsedRegionsNeedZeroFillSetter() : _g1(G1CollectedHeap::heap()), _n(0) {} |
|
5143 |
bool doHeapRegion(HeapRegion* r) { |
|
5144 |
if (r->continuesHumongous()) return false; |
|
5145 |
if (r->top() > r->bottom()) { |
|
5146 |
// There are assertions in "set_zero_fill_needed()" below that |
|
5147 |
// require top() == bottom(), so this is technically illegal. |
|
5148 |
// We'll skirt the law here, by making that true temporarily. |
|
5149 |
DEBUG_ONLY(HeapWord* save_top = r->top(); |
|
5150 |
r->set_top(r->bottom())); |
|
5151 |
r->set_zero_fill_needed(); |
|
5152 |
DEBUG_ONLY(r->set_top(save_top)); |
|
5153 |
} |
|
5154 |
return false; |
|
5155 |
} |
|
5156 |
}; |
|
5157 |
||
5158 |
// Done at the start of full GC. |
|
5159 |
void G1CollectedHeap::set_used_regions_to_need_zero_fill() { |
|
5160 |
MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag); |
|
5161 |
// This needs to go at the end of the full GC. |
|
5162 |
UsedRegionsNeedZeroFillSetter rs; |
|
5163 |
heap_region_iterate(&rs); |
|
5164 |
} |
|
5165 |
||
5166 |
class CountObjClosure: public ObjectClosure { |
|
5167 |
size_t _n; |
|
5168 |
public: |
|
5169 |
CountObjClosure() : _n(0) {} |
|
5170 |
void do_object(oop obj) { _n++; } |
|
5171 |
size_t n() { return _n; } |
|
5172 |
}; |
|
5173 |
||
5174 |
size_t G1CollectedHeap::pop_object_used_objs() { |
|
5175 |
size_t sum_objs = 0; |
|
5176 |
for (int i = 0; i < G1NumPopularRegions; i++) { |
|
5177 |
CountObjClosure cl; |
|
5178 |
_hrs->at(i)->object_iterate(&cl); |
|
5179 |
sum_objs += cl.n(); |
|
5180 |
} |
|
5181 |
return sum_objs; |
|
5182 |
} |
|
5183 |
||
5184 |
size_t G1CollectedHeap::pop_object_used_bytes() { |
|
5185 |
size_t sum_bytes = 0; |
|
5186 |
for (int i = 0; i < G1NumPopularRegions; i++) { |
|
5187 |
sum_bytes += _hrs->at(i)->used(); |
|
5188 |
} |
|
5189 |
return sum_bytes; |
|
5190 |
} |
|
5191 |
||
5192 |
||
5193 |
static int nq = 0; |
|
5194 |
||
5195 |
HeapWord* G1CollectedHeap::allocate_popular_object(size_t word_size) { |
|
5196 |
while (_cur_pop_hr_index < G1NumPopularRegions) { |
|
5197 |
HeapRegion* cur_pop_region = _hrs->at(_cur_pop_hr_index); |
|
5198 |
HeapWord* res = cur_pop_region->allocate(word_size); |
|
5199 |
if (res != NULL) { |
|
5200 |
// We account for popular objs directly in the used summary: |
|
5201 |
_summary_bytes_used += (word_size * HeapWordSize); |
|
5202 |
return res; |
|
5203 |
} |
|
5204 |
// Otherwise, try the next region (first making sure that we remember |
|
5205 |
// the last "top" value as the "next_top_at_mark_start", so that |
|
5206 |
// objects made popular during markings aren't automatically considered |
|
5207 |
// live). |
|
5208 |
cur_pop_region->note_end_of_copying(); |
|
5209 |
// Otherwise, try the next region. |
|
5210 |
_cur_pop_hr_index++; |
|
5211 |
} |
|
5212 |
// XXX: For now !!! |
|
5213 |
vm_exit_out_of_memory(word_size, |
|
5214 |
"Not enough pop obj space (To Be Fixed)"); |
|
5215 |
return NULL; |
|
5216 |
} |
|
5217 |
||
5218 |
class HeapRegionList: public CHeapObj { |
|
5219 |
public: |
|
5220 |
HeapRegion* hr; |
|
5221 |
HeapRegionList* next; |
|
5222 |
}; |
|
5223 |
||
5224 |
void G1CollectedHeap::schedule_popular_region_evac(HeapRegion* r) { |
|
5225 |
// This might happen during parallel GC, so protect by this lock. |
|
5226 |
MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag); |
|
5227 |
// We don't schedule regions whose evacuations are already pending, or |
|
5228 |
// are already being evacuated. |
|
5229 |
if (!r->popular_pending() && !r->in_collection_set()) { |
|
5230 |
r->set_popular_pending(true); |
|
5231 |
if (G1TracePopularity) { |
|
5232 |
gclog_or_tty->print_cr("Scheduling region "PTR_FORMAT" " |
|
5233 |
"["PTR_FORMAT", "PTR_FORMAT") for pop-object evacuation.", |
|
5234 |
r, r->bottom(), r->end()); |
|
5235 |
} |
|
5236 |
HeapRegionList* hrl = new HeapRegionList; |
|
5237 |
hrl->hr = r; |
|
5238 |
hrl->next = _popular_regions_to_be_evacuated; |
|
5239 |
_popular_regions_to_be_evacuated = hrl; |
|
5240 |
} |
|
5241 |
} |
|
5242 |
||
5243 |
HeapRegion* G1CollectedHeap::popular_region_to_evac() { |
|
5244 |
MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag); |
|
5245 |
HeapRegion* res = NULL; |
|
5246 |
while (_popular_regions_to_be_evacuated != NULL && res == NULL) { |
|
5247 |
HeapRegionList* hrl = _popular_regions_to_be_evacuated; |
|
5248 |
_popular_regions_to_be_evacuated = hrl->next; |
|
5249 |
res = hrl->hr; |
|
5250 |
// The G1RSPopLimit may have increased, so recheck here... |
|
5251 |
if (res->rem_set()->occupied() < (size_t) G1RSPopLimit) { |
|
5252 |
// Hah: don't need to schedule. |
|
5253 |
if (G1TracePopularity) { |
|
5254 |
gclog_or_tty->print_cr("Unscheduling region "PTR_FORMAT" " |
|
5255 |
"["PTR_FORMAT", "PTR_FORMAT") " |
|
5256 |
"for pop-object evacuation (size %d < limit %d)", |
|
5257 |
res, res->bottom(), res->end(), |
|
5258 |
res->rem_set()->occupied(), G1RSPopLimit); |
|
5259 |
} |
|
5260 |
res->set_popular_pending(false); |
|
5261 |
res = NULL; |
|
5262 |
} |
|
5263 |
// We do not reset res->popular() here; if we did so, it would allow |
|
5264 |
// the region to be "rescheduled" for popularity evacuation. Instead, |
|
5265 |
// this is done in the collection pause, with the world stopped. |
|
5266 |
// So the invariant is that the regions in the list have the popularity |
|
5267 |
// boolean set, but having the boolean set does not imply membership |
|
5268 |
// on the list (though there can at most one such pop-pending region |
|
5269 |
// not on the list at any time). |
|
5270 |
delete hrl; |
|
5271 |
} |
|
5272 |
return res; |
|
5273 |
} |
|
5274 |
||
5275 |
void G1CollectedHeap::evac_popular_region(HeapRegion* hr) { |
|
5276 |
while (true) { |
|
5277 |
// Don't want to do a GC pause while cleanup is being completed! |
|
5278 |
wait_for_cleanup_complete(); |
|
5279 |
||
5280 |
// Read the GC count while holding the Heap_lock |
|
5281 |
int gc_count_before = SharedHeap::heap()->total_collections(); |
|
5282 |
g1_policy()->record_stop_world_start(); |
|
5283 |
||
5284 |
{ |
|
5285 |
MutexUnlocker mu(Heap_lock); // give up heap lock, execute gets it back |
|
5286 |
VM_G1PopRegionCollectionPause op(gc_count_before, hr); |
|
5287 |
VMThread::execute(&op); |
|
5288 |
||
5289 |
// If the prolog succeeded, we didn't do a GC for this. |
|
5290 |
if (op.prologue_succeeded()) break; |
|
5291 |
} |
|
5292 |
// Otherwise we didn't. We should recheck the size, though, since |
|
5293 |
// the limit may have increased... |
|
5294 |
if (hr->rem_set()->occupied() < (size_t) G1RSPopLimit) { |
|
5295 |
hr->set_popular_pending(false); |
|
5296 |
break; |
|
5297 |
} |
|
5298 |
} |
|
5299 |
} |
|
5300 |
||
5301 |
void G1CollectedHeap::atomic_inc_obj_rc(oop obj) { |
|
5302 |
Atomic::inc(obj_rc_addr(obj)); |
|
5303 |
} |
|
5304 |
||
5305 |
class CountRCClosure: public OopsInHeapRegionClosure { |
|
5306 |
G1CollectedHeap* _g1h; |
|
5307 |
bool _parallel; |
|
5308 |
public: |
|
5309 |
CountRCClosure(G1CollectedHeap* g1h) : |
|
5310 |
_g1h(g1h), _parallel(ParallelGCThreads > 0) |
|
5311 |
{} |
|
5312 |
void do_oop(narrowOop* p) { |
|
5313 |
guarantee(false, "NYI"); |
|
5314 |
} |
|
5315 |
void do_oop(oop* p) { |
|
5316 |
oop obj = *p; |
|
5317 |
assert(obj != NULL, "Precondition."); |
|
5318 |
if (_parallel) { |
|
5319 |
// We go sticky at the limit to avoid excess contention. |
|
5320 |
// If we want to track the actual RC's further, we'll need to keep a |
|
5321 |
// per-thread hash table or something for the popular objects. |
|
5322 |
if (_g1h->obj_rc(obj) < G1ObjPopLimit) { |
|
5323 |
_g1h->atomic_inc_obj_rc(obj); |
|
5324 |
} |
|
5325 |
} else { |
|
5326 |
_g1h->inc_obj_rc(obj); |
|
5327 |
} |
|
5328 |
} |
|
5329 |
}; |
|
5330 |
||
5331 |
class EvacPopObjClosure: public ObjectClosure { |
|
5332 |
G1CollectedHeap* _g1h; |
|
5333 |
size_t _pop_objs; |
|
5334 |
size_t _max_rc; |
|
5335 |
public: |
|
5336 |
EvacPopObjClosure(G1CollectedHeap* g1h) : |
|
5337 |
_g1h(g1h), _pop_objs(0), _max_rc(0) {} |
|
5338 |
||
5339 |
void do_object(oop obj) { |
|
5340 |
size_t rc = _g1h->obj_rc(obj); |
|
5341 |
_max_rc = MAX2(rc, _max_rc); |
|
5342 |
if (rc >= (size_t) G1ObjPopLimit) { |
|
5343 |
_g1h->_pop_obj_rc_at_copy.add((double)rc); |
|
5344 |
size_t word_sz = obj->size(); |
|
5345 |
HeapWord* new_pop_loc = _g1h->allocate_popular_object(word_sz); |
|
5346 |
oop new_pop_obj = (oop)new_pop_loc; |
|
5347 |
Copy::aligned_disjoint_words((HeapWord*)obj, new_pop_loc, word_sz); |
|
5348 |
obj->forward_to(new_pop_obj); |
|
5349 |
G1ScanAndBalanceClosure scan_and_balance(_g1h); |
|
5350 |
new_pop_obj->oop_iterate_backwards(&scan_and_balance); |
|
5351 |
// preserve "next" mark bit if marking is in progress. |
|
5352 |
if (_g1h->mark_in_progress() && !_g1h->is_obj_ill(obj)) { |
|
5353 |
_g1h->concurrent_mark()->markAndGrayObjectIfNecessary(new_pop_obj); |
|
5354 |
} |
|
5355 |
||
5356 |
if (G1TracePopularity) { |
|
5357 |
gclog_or_tty->print_cr("Found obj " PTR_FORMAT " of word size " SIZE_FORMAT |
|
5358 |
" pop (%d), move to " PTR_FORMAT, |
|
5359 |
(void*) obj, word_sz, |
|
5360 |
_g1h->obj_rc(obj), (void*) new_pop_obj); |
|
5361 |
} |
|
5362 |
_pop_objs++; |
|
5363 |
} |
|
5364 |
} |
|
5365 |
size_t pop_objs() { return _pop_objs; } |
|
5366 |
size_t max_rc() { return _max_rc; } |
|
5367 |
}; |
|
5368 |
||
5369 |
class G1ParCountRCTask : public AbstractGangTask { |
|
5370 |
G1CollectedHeap* _g1h; |
|
5371 |
BitMap _bm; |
|
5372 |
||
5373 |
size_t getNCards() { |
|
5374 |
return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1) |
|
5375 |
/ G1BlockOffsetSharedArray::N_bytes; |
|
5376 |
} |
|
5377 |
CountRCClosure _count_rc_closure; |
|
5378 |
public: |
|
5379 |
G1ParCountRCTask(G1CollectedHeap* g1h) : |
|
5380 |
AbstractGangTask("G1 Par RC Count task"), |
|
5381 |
_g1h(g1h), _bm(getNCards()), _count_rc_closure(g1h) |
|
5382 |
{} |
|
5383 |
||
5384 |
void work(int i) { |
|
5385 |
ResourceMark rm; |
|
5386 |
HandleMark hm; |
|
5387 |
_g1h->g1_rem_set()->oops_into_collection_set_do(&_count_rc_closure, i); |
|
5388 |
} |
|
5389 |
}; |
|
5390 |
||
5391 |
void G1CollectedHeap::popularity_pause_preamble(HeapRegion* popular_region) { |
|
5392 |
// We're evacuating a single region (for popularity). |
|
5393 |
if (G1TracePopularity) { |
|
5394 |
gclog_or_tty->print_cr("Doing pop region pause for ["PTR_FORMAT", "PTR_FORMAT")", |
|
5395 |
popular_region->bottom(), popular_region->end()); |
|
5396 |
} |
|
5397 |
g1_policy()->set_single_region_collection_set(popular_region); |
|
5398 |
size_t max_rc; |
|
5399 |
if (!compute_reference_counts_and_evac_popular(popular_region, |
|
5400 |
&max_rc)) { |
|
5401 |
// We didn't evacuate any popular objects. |
|
5402 |
// We increase the RS popularity limit, to prevent this from |
|
5403 |
// happening in the future. |
|
5404 |
if (G1RSPopLimit < (1 << 30)) { |
|
5405 |
G1RSPopLimit *= 2; |
|
5406 |
} |
|
5407 |
// For now, interesting enough for a message: |
|
5408 |
#if 1 |
|
5409 |
gclog_or_tty->print_cr("In pop region pause for ["PTR_FORMAT", "PTR_FORMAT"), " |
|
5410 |
"failed to find a pop object (max = %d).", |
|
5411 |
popular_region->bottom(), popular_region->end(), |
|
5412 |
max_rc); |
|
5413 |
gclog_or_tty->print_cr("Increased G1RSPopLimit to %d.", G1RSPopLimit); |
|
5414 |
#endif // 0 |
|
5415 |
// Also, we reset the collection set to NULL, to make the rest of |
|
5416 |
// the collection do nothing. |
|
5417 |
assert(popular_region->next_in_collection_set() == NULL, |
|
5418 |
"should be single-region."); |
|
5419 |
popular_region->set_in_collection_set(false); |
|
5420 |
popular_region->set_popular_pending(false); |
|
5421 |
g1_policy()->clear_collection_set(); |
|
5422 |
} |
|
5423 |
} |
|
5424 |
||
5425 |
bool G1CollectedHeap:: |
|
5426 |
compute_reference_counts_and_evac_popular(HeapRegion* popular_region, |
|
5427 |
size_t* max_rc) { |
|
5428 |
HeapWord* rc_region_bot; |
|
5429 |
HeapWord* rc_region_end; |
|
5430 |
||
5431 |
// Set up the reference count region. |
|
5432 |
HeapRegion* rc_region = newAllocRegion(HeapRegion::GrainWords); |
|
5433 |
if (rc_region != NULL) { |
|
5434 |
rc_region_bot = rc_region->bottom(); |
|
5435 |
rc_region_end = rc_region->end(); |
|
5436 |
} else { |
|
5437 |
rc_region_bot = NEW_C_HEAP_ARRAY(HeapWord, HeapRegion::GrainWords); |
|
5438 |
if (rc_region_bot == NULL) { |
|
5439 |
vm_exit_out_of_memory(HeapRegion::GrainWords, |
|
5440 |
"No space for RC region."); |
|
5441 |
} |
|
5442 |
rc_region_end = rc_region_bot + HeapRegion::GrainWords; |
|
5443 |
} |
|
5444 |
||
5445 |
if (G1TracePopularity) |
|
5446 |
gclog_or_tty->print_cr("RC region is ["PTR_FORMAT", "PTR_FORMAT")", |
|
5447 |
rc_region_bot, rc_region_end); |
|
5448 |
if (rc_region_bot > popular_region->bottom()) { |
|
5449 |
_rc_region_above = true; |
|
5450 |
_rc_region_diff = |
|
5451 |
pointer_delta(rc_region_bot, popular_region->bottom(), 1); |
|
5452 |
} else { |
|
5453 |
assert(rc_region_bot < popular_region->bottom(), "Can't be equal."); |
|
5454 |
_rc_region_above = false; |
|
5455 |
_rc_region_diff = |
|
5456 |
pointer_delta(popular_region->bottom(), rc_region_bot, 1); |
|
5457 |
} |
|
5458 |
g1_policy()->record_pop_compute_rc_start(); |
|
5459 |
// Count external references. |
|
5460 |
g1_rem_set()->prepare_for_oops_into_collection_set_do(); |
|
5461 |
if (ParallelGCThreads > 0) { |
|
5462 |
||
5463 |
set_par_threads(workers()->total_workers()); |
|
5464 |
G1ParCountRCTask par_count_rc_task(this); |
|
5465 |
workers()->run_task(&par_count_rc_task); |
|
5466 |
set_par_threads(0); |
|
5467 |
||
5468 |
} else { |
|
5469 |
CountRCClosure count_rc_closure(this); |
|
5470 |
g1_rem_set()->oops_into_collection_set_do(&count_rc_closure, 0); |
|
5471 |
} |
|
5472 |
g1_rem_set()->cleanup_after_oops_into_collection_set_do(); |
|
5473 |
g1_policy()->record_pop_compute_rc_end(); |
|
5474 |
||
5475 |
// Now evacuate popular objects. |
|
5476 |
g1_policy()->record_pop_evac_start(); |
|
5477 |
EvacPopObjClosure evac_pop_obj_cl(this); |
|
5478 |
popular_region->object_iterate(&evac_pop_obj_cl); |
|
5479 |
*max_rc = evac_pop_obj_cl.max_rc(); |
|
5480 |
||
5481 |
// Make sure the last "top" value of the current popular region is copied |
|
5482 |
// as the "next_top_at_mark_start", so that objects made popular during |
|
5483 |
// markings aren't automatically considered live. |
|
5484 |
HeapRegion* cur_pop_region = _hrs->at(_cur_pop_hr_index); |
|
5485 |
cur_pop_region->note_end_of_copying(); |
|
5486 |
||
5487 |
if (rc_region != NULL) { |
|
5488 |
free_region(rc_region); |
|
5489 |
} else { |
|
5490 |
FREE_C_HEAP_ARRAY(HeapWord, rc_region_bot); |
|
5491 |
} |
|
5492 |
g1_policy()->record_pop_evac_end(); |
|
5493 |
||
5494 |
return evac_pop_obj_cl.pop_objs() > 0; |
|
5495 |
} |
|
5496 |
||
5497 |
class CountPopObjInfoClosure: public HeapRegionClosure { |
|
5498 |
size_t _objs; |
|
5499 |
size_t _bytes; |
|
5500 |
||
5501 |
class CountObjClosure: public ObjectClosure { |
|
5502 |
int _n; |
|
5503 |
public: |
|
5504 |
CountObjClosure() : _n(0) {} |
|
5505 |
void do_object(oop obj) { _n++; } |
|
5506 |
size_t n() { return _n; } |
|
5507 |
}; |
|
5508 |
||
5509 |
public: |
|
5510 |
CountPopObjInfoClosure() : _objs(0), _bytes(0) {} |
|
5511 |
bool doHeapRegion(HeapRegion* r) { |
|
5512 |
_bytes += r->used(); |
|
5513 |
CountObjClosure blk; |
|
5514 |
r->object_iterate(&blk); |
|
5515 |
_objs += blk.n(); |
|
5516 |
return false; |
|
5517 |
} |
|
5518 |
size_t objs() { return _objs; } |
|
5519 |
size_t bytes() { return _bytes; } |
|
5520 |
}; |
|
5521 |
||
5522 |
||
5523 |
void G1CollectedHeap::print_popularity_summary_info() const { |
|
5524 |
CountPopObjInfoClosure blk; |
|
5525 |
for (int i = 0; i <= _cur_pop_hr_index; i++) { |
|
5526 |
blk.doHeapRegion(_hrs->at(i)); |
|
5527 |
} |
|
5528 |
gclog_or_tty->print_cr("\nPopular objects: %d objs, %d bytes.", |
|
5529 |
blk.objs(), blk.bytes()); |
|
5530 |
gclog_or_tty->print_cr(" RC at copy = [avg = %5.2f, max = %5.2f, sd = %5.2f].", |
|
5531 |
_pop_obj_rc_at_copy.avg(), |
|
5532 |
_pop_obj_rc_at_copy.maximum(), |
|
5533 |
_pop_obj_rc_at_copy.sd()); |
|
5534 |
} |
|
5535 |
||
5536 |
void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) { |
|
5537 |
_refine_cte_cl->set_concurrent(concurrent); |
|
5538 |
} |
|
5539 |
||
5540 |
#ifndef PRODUCT |
|
5541 |
||
5542 |
class PrintHeapRegionClosure: public HeapRegionClosure { |
|
5543 |
public: |
|
5544 |
bool doHeapRegion(HeapRegion *r) { |
|
5545 |
gclog_or_tty->print("Region: "PTR_FORMAT":", r); |
|
5546 |
if (r != NULL) { |
|
5547 |
if (r->is_on_free_list()) |
|
5548 |
gclog_or_tty->print("Free "); |
|
5549 |
if (r->is_young()) |
|
5550 |
gclog_or_tty->print("Young "); |
|
5551 |
if (r->isHumongous()) |
|
5552 |
gclog_or_tty->print("Is Humongous "); |
|
5553 |
r->print(); |
|
5554 |
} |
|
5555 |
return false; |
|
5556 |
} |
|
5557 |
}; |
|
5558 |
||
5559 |
class SortHeapRegionClosure : public HeapRegionClosure { |
|
5560 |
size_t young_regions,free_regions, unclean_regions; |
|
5561 |
size_t hum_regions, count; |
|
5562 |
size_t unaccounted, cur_unclean, cur_alloc; |
|
5563 |
size_t total_free; |
|
5564 |
HeapRegion* cur; |
|
5565 |
public: |
|
5566 |
SortHeapRegionClosure(HeapRegion *_cur) : cur(_cur), young_regions(0), |
|
5567 |
free_regions(0), unclean_regions(0), |
|
5568 |
hum_regions(0), |
|
5569 |
count(0), unaccounted(0), |
|
5570 |
cur_alloc(0), total_free(0) |
|
5571 |
{} |
|
5572 |
bool doHeapRegion(HeapRegion *r) { |
|
5573 |
count++; |
|
5574 |
if (r->is_on_free_list()) free_regions++; |
|
5575 |
else if (r->is_on_unclean_list()) unclean_regions++; |
|
5576 |
else if (r->isHumongous()) hum_regions++; |
|
5577 |
else if (r->is_young()) young_regions++; |
|
5578 |
else if (r == cur) cur_alloc++; |
|
5579 |
else unaccounted++; |
|
5580 |
return false; |
|
5581 |
} |
|
5582 |
void print() { |
|
5583 |
total_free = free_regions + unclean_regions; |
|
5584 |
gclog_or_tty->print("%d regions\n", count); |
|
5585 |
gclog_or_tty->print("%d free: free_list = %d unclean = %d\n", |
|
5586 |
total_free, free_regions, unclean_regions); |
|
5587 |
gclog_or_tty->print("%d humongous %d young\n", |
|
5588 |
hum_regions, young_regions); |
|
5589 |
gclog_or_tty->print("%d cur_alloc\n", cur_alloc); |
|
5590 |
gclog_or_tty->print("UHOH unaccounted = %d\n", unaccounted); |
|
5591 |
} |
|
5592 |
}; |
|
5593 |
||
5594 |
void G1CollectedHeap::print_region_counts() { |
|
5595 |
SortHeapRegionClosure sc(_cur_alloc_region); |
|
5596 |
PrintHeapRegionClosure cl; |
|
5597 |
heap_region_iterate(&cl); |
|
5598 |
heap_region_iterate(&sc); |
|
5599 |
sc.print(); |
|
5600 |
print_region_accounting_info(); |
|
5601 |
}; |
|
5602 |
||
5603 |
bool G1CollectedHeap::regions_accounted_for() { |
|
5604 |
// TODO: regions accounting for young/survivor/tenured |
|
5605 |
return true; |
|
5606 |
} |
|
5607 |
||
5608 |
bool G1CollectedHeap::print_region_accounting_info() { |
|
5609 |
gclog_or_tty->print_cr("P regions: %d.", G1NumPopularRegions); |
|
5610 |
gclog_or_tty->print_cr("Free regions: %d (count: %d count list %d) (clean: %d unclean: %d).", |
|
5611 |
free_regions(), |
|
5612 |
count_free_regions(), count_free_regions_list(), |
|
5613 |
_free_region_list_size, _unclean_region_list.sz()); |
|
5614 |
gclog_or_tty->print_cr("cur_alloc: %d.", |
|
5615 |
(_cur_alloc_region == NULL ? 0 : 1)); |
|
5616 |
gclog_or_tty->print_cr("H regions: %d.", _num_humongous_regions); |
|
5617 |
||
5618 |
// TODO: check regions accounting for young/survivor/tenured |
|
5619 |
return true; |
|
5620 |
} |
|
5621 |
||
5622 |
bool G1CollectedHeap::is_in_closed_subset(const void* p) const { |
|
5623 |
HeapRegion* hr = heap_region_containing(p); |
|
5624 |
if (hr == NULL) { |
|
5625 |
return is_in_permanent(p); |
|
5626 |
} else { |
|
5627 |
return hr->is_in(p); |
|
5628 |
} |
|
5629 |
} |
|
5630 |
#endif // PRODUCT |
|
5631 |
||
5632 |
void G1CollectedHeap::g1_unimplemented() { |
|
5633 |
// Unimplemented(); |
|
5634 |
} |
|
5635 |
||
5636 |
||
5637 |
// Local Variables: *** |
|
5638 |
// c-indentation-style: gnu *** |
|
5639 |
// End: *** |