author | ysr |
Tue, 14 Jul 2009 15:40:39 -0700 | |
changeset 3262 | 30d1c247fc25 |
parent 1623 | a0dd9009e992 |
child 5402 | c51fd0c1d005 |
permissions | -rw-r--r-- |
1374 | 1 |
/* |
1623 | 2 |
* Copyright 2001-2008 Sun Microsystems, Inc. All Rights Reserved. |
1374 | 3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 |
* |
|
5 |
* This code is free software; you can redistribute it and/or modify it |
|
6 |
* under the terms of the GNU General Public License version 2 only, as |
|
7 |
* published by the Free Software Foundation. |
|
8 |
* |
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT |
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that |
|
13 |
* accompanied this code). |
|
14 |
* |
|
15 |
* You should have received a copy of the GNU General Public License version |
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation, |
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 |
* |
|
19 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, |
|
20 |
* CA 95054 USA or visit www.sun.com if you need additional information or |
|
21 |
* have any questions. |
|
22 |
* |
|
23 |
*/ |
|
24 |
||
25 |
#include "incls/_precompiled.incl" |
|
26 |
#include "incls/_g1BlockOffsetTable.cpp.incl" |
|
27 |
||
28 |
////////////////////////////////////////////////////////////////////// |
|
29 |
// G1BlockOffsetSharedArray |
|
30 |
////////////////////////////////////////////////////////////////////// |
|
31 |
||
32 |
G1BlockOffsetSharedArray::G1BlockOffsetSharedArray(MemRegion reserved, |
|
33 |
size_t init_word_size) : |
|
34 |
_reserved(reserved), _end(NULL) |
|
35 |
{ |
|
36 |
size_t size = compute_size(reserved.word_size()); |
|
37 |
ReservedSpace rs(ReservedSpace::allocation_align_size_up(size)); |
|
38 |
if (!rs.is_reserved()) { |
|
39 |
vm_exit_during_initialization("Could not reserve enough space for heap offset array"); |
|
40 |
} |
|
41 |
if (!_vs.initialize(rs, 0)) { |
|
42 |
vm_exit_during_initialization("Could not reserve enough space for heap offset array"); |
|
43 |
} |
|
44 |
_offset_array = (u_char*)_vs.low_boundary(); |
|
45 |
resize(init_word_size); |
|
46 |
if (TraceBlockOffsetTable) { |
|
47 |
gclog_or_tty->print_cr("G1BlockOffsetSharedArray::G1BlockOffsetSharedArray: "); |
|
48 |
gclog_or_tty->print_cr(" " |
|
49 |
" rs.base(): " INTPTR_FORMAT |
|
50 |
" rs.size(): " INTPTR_FORMAT |
|
51 |
" rs end(): " INTPTR_FORMAT, |
|
52 |
rs.base(), rs.size(), rs.base() + rs.size()); |
|
53 |
gclog_or_tty->print_cr(" " |
|
54 |
" _vs.low_boundary(): " INTPTR_FORMAT |
|
55 |
" _vs.high_boundary(): " INTPTR_FORMAT, |
|
56 |
_vs.low_boundary(), |
|
57 |
_vs.high_boundary()); |
|
58 |
} |
|
59 |
} |
|
60 |
||
61 |
void G1BlockOffsetSharedArray::resize(size_t new_word_size) { |
|
62 |
assert(new_word_size <= _reserved.word_size(), "Resize larger than reserved"); |
|
63 |
size_t new_size = compute_size(new_word_size); |
|
64 |
size_t old_size = _vs.committed_size(); |
|
65 |
size_t delta; |
|
66 |
char* high = _vs.high(); |
|
67 |
_end = _reserved.start() + new_word_size; |
|
68 |
if (new_size > old_size) { |
|
69 |
delta = ReservedSpace::page_align_size_up(new_size - old_size); |
|
70 |
assert(delta > 0, "just checking"); |
|
71 |
if (!_vs.expand_by(delta)) { |
|
72 |
// Do better than this for Merlin |
|
73 |
vm_exit_out_of_memory(delta, "offset table expansion"); |
|
74 |
} |
|
75 |
assert(_vs.high() == high + delta, "invalid expansion"); |
|
76 |
// Initialization of the contents is left to the |
|
77 |
// G1BlockOffsetArray that uses it. |
|
78 |
} else { |
|
79 |
delta = ReservedSpace::page_align_size_down(old_size - new_size); |
|
80 |
if (delta == 0) return; |
|
81 |
_vs.shrink_by(delta); |
|
82 |
assert(_vs.high() == high - delta, "invalid expansion"); |
|
83 |
} |
|
84 |
} |
|
85 |
||
86 |
bool G1BlockOffsetSharedArray::is_card_boundary(HeapWord* p) const { |
|
87 |
assert(p >= _reserved.start(), "just checking"); |
|
88 |
size_t delta = pointer_delta(p, _reserved.start()); |
|
89 |
return (delta & right_n_bits(LogN_words)) == (size_t)NoBits; |
|
90 |
} |
|
91 |
||
92 |
||
93 |
////////////////////////////////////////////////////////////////////// |
|
94 |
// G1BlockOffsetArray |
|
95 |
////////////////////////////////////////////////////////////////////// |
|
96 |
||
97 |
G1BlockOffsetArray::G1BlockOffsetArray(G1BlockOffsetSharedArray* array, |
|
98 |
MemRegion mr, bool init_to_zero) : |
|
99 |
G1BlockOffsetTable(mr.start(), mr.end()), |
|
100 |
_unallocated_block(_bottom), |
|
101 |
_array(array), _csp(NULL), |
|
102 |
_init_to_zero(init_to_zero) { |
|
103 |
assert(_bottom <= _end, "arguments out of order"); |
|
104 |
if (!_init_to_zero) { |
|
105 |
// initialize cards to point back to mr.start() |
|
106 |
set_remainder_to_point_to_start(mr.start() + N_words, mr.end()); |
|
107 |
_array->set_offset_array(0, 0); // set first card to 0 |
|
108 |
} |
|
109 |
} |
|
110 |
||
111 |
void G1BlockOffsetArray::set_space(Space* sp) { |
|
112 |
_sp = sp; |
|
113 |
_csp = sp->toContiguousSpace(); |
|
114 |
} |
|
115 |
||
116 |
// The arguments follow the normal convention of denoting |
|
117 |
// a right-open interval: [start, end) |
|
118 |
void |
|
119 |
G1BlockOffsetArray:: set_remainder_to_point_to_start(HeapWord* start, HeapWord* end) { |
|
120 |
||
121 |
if (start >= end) { |
|
122 |
// The start address is equal to the end address (or to |
|
123 |
// the right of the end address) so there are not cards |
|
124 |
// that need to be updated.. |
|
125 |
return; |
|
126 |
} |
|
127 |
||
128 |
// Write the backskip value for each region. |
|
129 |
// |
|
130 |
// offset |
|
131 |
// card 2nd 3rd |
|
132 |
// | +- 1st | | |
|
133 |
// v v v v |
|
134 |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+- |
|
135 |
// |x|0|0|0|0|0|0|0|1|1|1|1|1|1| ... |1|1|1|1|2|2|2|2|2|2| ... |
|
136 |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+- |
|
137 |
// 11 19 75 |
|
138 |
// 12 |
|
139 |
// |
|
140 |
// offset card is the card that points to the start of an object |
|
141 |
// x - offset value of offset card |
|
142 |
// 1st - start of first logarithmic region |
|
143 |
// 0 corresponds to logarithmic value N_words + 0 and 2**(3 * 0) = 1 |
|
144 |
// 2nd - start of second logarithmic region |
|
145 |
// 1 corresponds to logarithmic value N_words + 1 and 2**(3 * 1) = 8 |
|
146 |
// 3rd - start of third logarithmic region |
|
147 |
// 2 corresponds to logarithmic value N_words + 2 and 2**(3 * 2) = 64 |
|
148 |
// |
|
149 |
// integer below the block offset entry is an example of |
|
150 |
// the index of the entry |
|
151 |
// |
|
152 |
// Given an address, |
|
153 |
// Find the index for the address |
|
154 |
// Find the block offset table entry |
|
155 |
// Convert the entry to a back slide |
|
156 |
// (e.g., with today's, offset = 0x81 => |
|
157 |
// back slip = 2**(3*(0x81 - N_words)) = 2**3) = 8 |
|
158 |
// Move back N (e.g., 8) entries and repeat with the |
|
159 |
// value of the new entry |
|
160 |
// |
|
161 |
size_t start_card = _array->index_for(start); |
|
162 |
size_t end_card = _array->index_for(end-1); |
|
163 |
assert(start ==_array->address_for_index(start_card), "Precondition"); |
|
164 |
assert(end ==_array->address_for_index(end_card)+N_words, "Precondition"); |
|
165 |
set_remainder_to_point_to_start_incl(start_card, end_card); // closed interval |
|
166 |
} |
|
167 |
||
168 |
// Unlike the normal convention in this code, the argument here denotes |
|
169 |
// a closed, inclusive interval: [start_card, end_card], cf set_remainder_to_point_to_start() |
|
170 |
// above. |
|
171 |
void |
|
172 |
G1BlockOffsetArray::set_remainder_to_point_to_start_incl(size_t start_card, size_t end_card) { |
|
173 |
if (start_card > end_card) { |
|
174 |
return; |
|
175 |
} |
|
176 |
assert(start_card > _array->index_for(_bottom), "Cannot be first card"); |
|
177 |
assert(_array->offset_array(start_card-1) <= N_words, |
|
178 |
"Offset card has an unexpected value"); |
|
179 |
size_t start_card_for_region = start_card; |
|
180 |
u_char offset = max_jubyte; |
|
181 |
for (int i = 0; i < BlockOffsetArray::N_powers; i++) { |
|
182 |
// -1 so that the the card with the actual offset is counted. Another -1 |
|
183 |
// so that the reach ends in this region and not at the start |
|
184 |
// of the next. |
|
185 |
size_t reach = start_card - 1 + (BlockOffsetArray::power_to_cards_back(i+1) - 1); |
|
186 |
offset = N_words + i; |
|
187 |
if (reach >= end_card) { |
|
188 |
_array->set_offset_array(start_card_for_region, end_card, offset); |
|
189 |
start_card_for_region = reach + 1; |
|
190 |
break; |
|
191 |
} |
|
192 |
_array->set_offset_array(start_card_for_region, reach, offset); |
|
193 |
start_card_for_region = reach + 1; |
|
194 |
} |
|
195 |
assert(start_card_for_region > end_card, "Sanity check"); |
|
196 |
DEBUG_ONLY(check_all_cards(start_card, end_card);) |
|
197 |
} |
|
198 |
||
199 |
// The block [blk_start, blk_end) has been allocated; |
|
200 |
// adjust the block offset table to represent this information; |
|
201 |
// right-open interval: [blk_start, blk_end) |
|
202 |
void |
|
203 |
G1BlockOffsetArray::alloc_block(HeapWord* blk_start, HeapWord* blk_end) { |
|
204 |
mark_block(blk_start, blk_end); |
|
205 |
allocated(blk_start, blk_end); |
|
206 |
} |
|
207 |
||
208 |
// Adjust BOT to show that a previously whole block has been split |
|
209 |
// into two. |
|
210 |
void G1BlockOffsetArray::split_block(HeapWord* blk, size_t blk_size, |
|
211 |
size_t left_blk_size) { |
|
212 |
// Verify that the BOT shows [blk, blk + blk_size) to be one block. |
|
213 |
verify_single_block(blk, blk_size); |
|
214 |
// Update the BOT to indicate that [blk + left_blk_size, blk + blk_size) |
|
215 |
// is one single block. |
|
216 |
mark_block(blk + left_blk_size, blk + blk_size); |
|
217 |
} |
|
218 |
||
219 |
||
220 |
// Action_mark - update the BOT for the block [blk_start, blk_end). |
|
221 |
// Current typical use is for splitting a block. |
|
222 |
// Action_single - udpate the BOT for an allocation. |
|
223 |
// Action_verify - BOT verification. |
|
224 |
void G1BlockOffsetArray::do_block_internal(HeapWord* blk_start, |
|
225 |
HeapWord* blk_end, |
|
226 |
Action action) { |
|
227 |
assert(Universe::heap()->is_in_reserved(blk_start), |
|
228 |
"reference must be into the heap"); |
|
229 |
assert(Universe::heap()->is_in_reserved(blk_end-1), |
|
230 |
"limit must be within the heap"); |
|
231 |
// This is optimized to make the test fast, assuming we only rarely |
|
232 |
// cross boundaries. |
|
233 |
uintptr_t end_ui = (uintptr_t)(blk_end - 1); |
|
234 |
uintptr_t start_ui = (uintptr_t)blk_start; |
|
235 |
// Calculate the last card boundary preceding end of blk |
|
236 |
intptr_t boundary_before_end = (intptr_t)end_ui; |
|
237 |
clear_bits(boundary_before_end, right_n_bits(LogN)); |
|
238 |
if (start_ui <= (uintptr_t)boundary_before_end) { |
|
239 |
// blk starts at or crosses a boundary |
|
240 |
// Calculate index of card on which blk begins |
|
241 |
size_t start_index = _array->index_for(blk_start); |
|
242 |
// Index of card on which blk ends |
|
243 |
size_t end_index = _array->index_for(blk_end - 1); |
|
244 |
// Start address of card on which blk begins |
|
245 |
HeapWord* boundary = _array->address_for_index(start_index); |
|
246 |
assert(boundary <= blk_start, "blk should start at or after boundary"); |
|
247 |
if (blk_start != boundary) { |
|
248 |
// blk starts strictly after boundary |
|
249 |
// adjust card boundary and start_index forward to next card |
|
250 |
boundary += N_words; |
|
251 |
start_index++; |
|
252 |
} |
|
253 |
assert(start_index <= end_index, "monotonicity of index_for()"); |
|
254 |
assert(boundary <= (HeapWord*)boundary_before_end, "tautology"); |
|
255 |
switch (action) { |
|
256 |
case Action_mark: { |
|
257 |
if (init_to_zero()) { |
|
258 |
_array->set_offset_array(start_index, boundary, blk_start); |
|
259 |
break; |
|
260 |
} // Else fall through to the next case |
|
261 |
} |
|
262 |
case Action_single: { |
|
263 |
_array->set_offset_array(start_index, boundary, blk_start); |
|
264 |
// We have finished marking the "offset card". We need to now |
|
265 |
// mark the subsequent cards that this blk spans. |
|
266 |
if (start_index < end_index) { |
|
267 |
HeapWord* rem_st = _array->address_for_index(start_index) + N_words; |
|
268 |
HeapWord* rem_end = _array->address_for_index(end_index) + N_words; |
|
269 |
set_remainder_to_point_to_start(rem_st, rem_end); |
|
270 |
} |
|
271 |
break; |
|
272 |
} |
|
273 |
case Action_check: { |
|
274 |
_array->check_offset_array(start_index, boundary, blk_start); |
|
275 |
// We have finished checking the "offset card". We need to now |
|
276 |
// check the subsequent cards that this blk spans. |
|
277 |
check_all_cards(start_index + 1, end_index); |
|
278 |
break; |
|
279 |
} |
|
280 |
default: |
|
281 |
ShouldNotReachHere(); |
|
282 |
} |
|
283 |
} |
|
284 |
} |
|
285 |
||
286 |
// The card-interval [start_card, end_card] is a closed interval; this |
|
287 |
// is an expensive check -- use with care and only under protection of |
|
288 |
// suitable flag. |
|
289 |
void G1BlockOffsetArray::check_all_cards(size_t start_card, size_t end_card) const { |
|
290 |
||
291 |
if (end_card < start_card) { |
|
292 |
return; |
|
293 |
} |
|
294 |
guarantee(_array->offset_array(start_card) == N_words, "Wrong value in second card"); |
|
295 |
for (size_t c = start_card + 1; c <= end_card; c++ /* yeah! */) { |
|
296 |
u_char entry = _array->offset_array(c); |
|
297 |
if (c - start_card > BlockOffsetArray::power_to_cards_back(1)) { |
|
298 |
guarantee(entry > N_words, "Should be in logarithmic region"); |
|
299 |
} |
|
300 |
size_t backskip = BlockOffsetArray::entry_to_cards_back(entry); |
|
301 |
size_t landing_card = c - backskip; |
|
302 |
guarantee(landing_card >= (start_card - 1), "Inv"); |
|
303 |
if (landing_card >= start_card) { |
|
304 |
guarantee(_array->offset_array(landing_card) <= entry, "monotonicity"); |
|
305 |
} else { |
|
306 |
guarantee(landing_card == start_card - 1, "Tautology"); |
|
307 |
guarantee(_array->offset_array(landing_card) <= N_words, "Offset value"); |
|
308 |
} |
|
309 |
} |
|
310 |
} |
|
311 |
||
312 |
// The range [blk_start, blk_end) represents a single contiguous block |
|
313 |
// of storage; modify the block offset table to represent this |
|
314 |
// information; Right-open interval: [blk_start, blk_end) |
|
315 |
// NOTE: this method does _not_ adjust _unallocated_block. |
|
316 |
void |
|
317 |
G1BlockOffsetArray::single_block(HeapWord* blk_start, HeapWord* blk_end) { |
|
318 |
do_block_internal(blk_start, blk_end, Action_single); |
|
319 |
} |
|
320 |
||
321 |
// Mark the BOT such that if [blk_start, blk_end) straddles a card |
|
322 |
// boundary, the card following the first such boundary is marked |
|
323 |
// with the appropriate offset. |
|
324 |
// NOTE: this method does _not_ adjust _unallocated_block or |
|
325 |
// any cards subsequent to the first one. |
|
326 |
void |
|
327 |
G1BlockOffsetArray::mark_block(HeapWord* blk_start, HeapWord* blk_end) { |
|
328 |
do_block_internal(blk_start, blk_end, Action_mark); |
|
329 |
} |
|
330 |
||
331 |
void G1BlockOffsetArray::join_blocks(HeapWord* blk1, HeapWord* blk2) { |
|
332 |
HeapWord* blk1_start = Universe::heap()->block_start(blk1); |
|
333 |
HeapWord* blk2_start = Universe::heap()->block_start(blk2); |
|
334 |
assert(blk1 == blk1_start && blk2 == blk2_start, |
|
335 |
"Must be block starts."); |
|
336 |
assert(blk1 + _sp->block_size(blk1) == blk2, "Must be contiguous."); |
|
337 |
size_t blk1_start_index = _array->index_for(blk1); |
|
338 |
size_t blk2_start_index = _array->index_for(blk2); |
|
339 |
assert(blk1_start_index <= blk2_start_index, "sanity"); |
|
340 |
HeapWord* blk2_card_start = _array->address_for_index(blk2_start_index); |
|
341 |
if (blk2 == blk2_card_start) { |
|
342 |
// blk2 starts a card. Does blk1 start on the prevous card, or futher |
|
343 |
// back? |
|
344 |
assert(blk1_start_index < blk2_start_index, "must be lower card."); |
|
345 |
if (blk1_start_index + 1 == blk2_start_index) { |
|
346 |
// previous card; new value for blk2 card is size of blk1. |
|
347 |
_array->set_offset_array(blk2_start_index, (u_char) _sp->block_size(blk1)); |
|
348 |
} else { |
|
349 |
// Earlier card; go back a card. |
|
350 |
_array->set_offset_array(blk2_start_index, N_words); |
|
351 |
} |
|
352 |
} else { |
|
353 |
// blk2 does not start a card. Does it cross a card? If not, nothing |
|
354 |
// to do. |
|
355 |
size_t blk2_end_index = |
|
356 |
_array->index_for(blk2 + _sp->block_size(blk2) - 1); |
|
357 |
assert(blk2_end_index >= blk2_start_index, "sanity"); |
|
358 |
if (blk2_end_index > blk2_start_index) { |
|
359 |
// Yes, it crosses a card. The value for the next card must change. |
|
360 |
if (blk1_start_index + 1 == blk2_start_index) { |
|
361 |
// previous card; new value for second blk2 card is size of blk1. |
|
362 |
_array->set_offset_array(blk2_start_index + 1, |
|
363 |
(u_char) _sp->block_size(blk1)); |
|
364 |
} else { |
|
365 |
// Earlier card; go back a card. |
|
366 |
_array->set_offset_array(blk2_start_index + 1, N_words); |
|
367 |
} |
|
368 |
} |
|
369 |
} |
|
370 |
} |
|
371 |
||
372 |
HeapWord* G1BlockOffsetArray::block_start_unsafe(const void* addr) { |
|
373 |
assert(_bottom <= addr && addr < _end, |
|
374 |
"addr must be covered by this Array"); |
|
375 |
// Must read this exactly once because it can be modified by parallel |
|
376 |
// allocation. |
|
377 |
HeapWord* ub = _unallocated_block; |
|
378 |
if (BlockOffsetArrayUseUnallocatedBlock && addr >= ub) { |
|
379 |
assert(ub < _end, "tautology (see above)"); |
|
380 |
return ub; |
|
381 |
} |
|
382 |
// Otherwise, find the block start using the table. |
|
383 |
HeapWord* q = block_at_or_preceding(addr, false, 0); |
|
384 |
return forward_to_block_containing_addr(q, addr); |
|
385 |
} |
|
386 |
||
387 |
// This duplicates a little code from the above: unavoidable. |
|
388 |
HeapWord* |
|
389 |
G1BlockOffsetArray::block_start_unsafe_const(const void* addr) const { |
|
390 |
assert(_bottom <= addr && addr < _end, |
|
391 |
"addr must be covered by this Array"); |
|
392 |
// Must read this exactly once because it can be modified by parallel |
|
393 |
// allocation. |
|
394 |
HeapWord* ub = _unallocated_block; |
|
395 |
if (BlockOffsetArrayUseUnallocatedBlock && addr >= ub) { |
|
396 |
assert(ub < _end, "tautology (see above)"); |
|
397 |
return ub; |
|
398 |
} |
|
399 |
// Otherwise, find the block start using the table. |
|
400 |
HeapWord* q = block_at_or_preceding(addr, false, 0); |
|
401 |
HeapWord* n = q + _sp->block_size(q); |
|
402 |
return forward_to_block_containing_addr_const(q, n, addr); |
|
403 |
} |
|
404 |
||
405 |
||
406 |
HeapWord* |
|
407 |
G1BlockOffsetArray::forward_to_block_containing_addr_slow(HeapWord* q, |
|
408 |
HeapWord* n, |
|
409 |
const void* addr) { |
|
410 |
// We're not in the normal case. We need to handle an important subcase |
|
411 |
// here: LAB allocation. An allocation previously recorded in the |
|
412 |
// offset table was actually a lab allocation, and was divided into |
|
413 |
// several objects subsequently. Fix this situation as we answer the |
|
414 |
// query, by updating entries as we cross them. |
|
1384
163a4d4fa951
6702387: G1: assertion failure: assert(p == current_top || oop(p)->is_oop(),"p is not a block start")
iveresov
parents:
1374
diff
changeset
|
415 |
|
163a4d4fa951
6702387: G1: assertion failure: assert(p == current_top || oop(p)->is_oop(),"p is not a block start")
iveresov
parents:
1374
diff
changeset
|
416 |
// If the fist object's end q is at the card boundary. Start refining |
163a4d4fa951
6702387: G1: assertion failure: assert(p == current_top || oop(p)->is_oop(),"p is not a block start")
iveresov
parents:
1374
diff
changeset
|
417 |
// with the corresponding card (the value of the entry will be basically |
163a4d4fa951
6702387: G1: assertion failure: assert(p == current_top || oop(p)->is_oop(),"p is not a block start")
iveresov
parents:
1374
diff
changeset
|
418 |
// set to 0). If the object crosses the boundary -- start from the next card. |
163a4d4fa951
6702387: G1: assertion failure: assert(p == current_top || oop(p)->is_oop(),"p is not a block start")
iveresov
parents:
1374
diff
changeset
|
419 |
size_t next_index = _array->index_for(n) + !_array->is_card_boundary(n); |
1374 | 420 |
HeapWord* next_boundary = _array->address_for_index(next_index); |
421 |
if (csp() != NULL) { |
|
422 |
if (addr >= csp()->top()) return csp()->top(); |
|
423 |
while (next_boundary < addr) { |
|
424 |
while (n <= next_boundary) { |
|
425 |
q = n; |
|
426 |
oop obj = oop(q); |
|
3262
30d1c247fc25
6700789: G1: Enable use of compressed oops with G1 heaps
ysr
parents:
1623
diff
changeset
|
427 |
if (obj->klass_or_null() == NULL) return q; |
1374 | 428 |
n += obj->size(); |
429 |
} |
|
430 |
assert(q <= next_boundary && n > next_boundary, "Consequence of loop"); |
|
431 |
// [q, n) is the block that crosses the boundary. |
|
432 |
alloc_block_work2(&next_boundary, &next_index, q, n); |
|
433 |
} |
|
434 |
} else { |
|
435 |
while (next_boundary < addr) { |
|
436 |
while (n <= next_boundary) { |
|
437 |
q = n; |
|
438 |
oop obj = oop(q); |
|
3262
30d1c247fc25
6700789: G1: Enable use of compressed oops with G1 heaps
ysr
parents:
1623
diff
changeset
|
439 |
if (obj->klass_or_null() == NULL) return q; |
1374 | 440 |
n += _sp->block_size(q); |
441 |
} |
|
442 |
assert(q <= next_boundary && n > next_boundary, "Consequence of loop"); |
|
443 |
// [q, n) is the block that crosses the boundary. |
|
444 |
alloc_block_work2(&next_boundary, &next_index, q, n); |
|
445 |
} |
|
446 |
} |
|
447 |
return forward_to_block_containing_addr_const(q, n, addr); |
|
448 |
} |
|
449 |
||
450 |
HeapWord* G1BlockOffsetArray::block_start_careful(const void* addr) const { |
|
451 |
assert(_array->offset_array(0) == 0, "objects can't cross covered areas"); |
|
452 |
||
453 |
assert(_bottom <= addr && addr < _end, |
|
454 |
"addr must be covered by this Array"); |
|
455 |
// Must read this exactly once because it can be modified by parallel |
|
456 |
// allocation. |
|
457 |
HeapWord* ub = _unallocated_block; |
|
458 |
if (BlockOffsetArrayUseUnallocatedBlock && addr >= ub) { |
|
459 |
assert(ub < _end, "tautology (see above)"); |
|
460 |
return ub; |
|
461 |
} |
|
462 |
||
463 |
// Otherwise, find the block start using the table, but taking |
|
464 |
// care (cf block_start_unsafe() above) not to parse any objects/blocks |
|
465 |
// on the cards themsleves. |
|
466 |
size_t index = _array->index_for(addr); |
|
467 |
assert(_array->address_for_index(index) == addr, |
|
468 |
"arg should be start of card"); |
|
469 |
||
470 |
HeapWord* q = (HeapWord*)addr; |
|
471 |
uint offset; |
|
472 |
do { |
|
473 |
offset = _array->offset_array(index--); |
|
474 |
q -= offset; |
|
475 |
} while (offset == N_words); |
|
476 |
assert(q <= addr, "block start should be to left of arg"); |
|
477 |
return q; |
|
478 |
} |
|
479 |
||
480 |
// Note that the committed size of the covered space may have changed, |
|
481 |
// so the table size might also wish to change. |
|
482 |
void G1BlockOffsetArray::resize(size_t new_word_size) { |
|
483 |
HeapWord* new_end = _bottom + new_word_size; |
|
484 |
if (_end < new_end && !init_to_zero()) { |
|
485 |
// verify that the old and new boundaries are also card boundaries |
|
486 |
assert(_array->is_card_boundary(_end), |
|
487 |
"_end not a card boundary"); |
|
488 |
assert(_array->is_card_boundary(new_end), |
|
489 |
"new _end would not be a card boundary"); |
|
490 |
// set all the newly added cards |
|
491 |
_array->set_offset_array(_end, new_end, N_words); |
|
492 |
} |
|
493 |
_end = new_end; // update _end |
|
494 |
} |
|
495 |
||
496 |
void G1BlockOffsetArray::set_region(MemRegion mr) { |
|
497 |
_bottom = mr.start(); |
|
498 |
_end = mr.end(); |
|
499 |
} |
|
500 |
||
501 |
// |
|
502 |
// threshold_ |
|
503 |
// | _index_ |
|
504 |
// v v |
|
505 |
// +-------+-------+-------+-------+-------+ |
|
506 |
// | i-1 | i | i+1 | i+2 | i+3 | |
|
507 |
// +-------+-------+-------+-------+-------+ |
|
508 |
// ( ^ ] |
|
509 |
// block-start |
|
510 |
// |
|
511 |
void G1BlockOffsetArray::alloc_block_work2(HeapWord** threshold_, size_t* index_, |
|
512 |
HeapWord* blk_start, HeapWord* blk_end) { |
|
513 |
// For efficiency, do copy-in/copy-out. |
|
514 |
HeapWord* threshold = *threshold_; |
|
515 |
size_t index = *index_; |
|
516 |
||
517 |
assert(blk_start != NULL && blk_end > blk_start, |
|
518 |
"phantom block"); |
|
519 |
assert(blk_end > threshold, "should be past threshold"); |
|
520 |
assert(blk_start <= threshold, "blk_start should be at or before threshold") |
|
521 |
assert(pointer_delta(threshold, blk_start) <= N_words, |
|
522 |
"offset should be <= BlockOffsetSharedArray::N"); |
|
523 |
assert(Universe::heap()->is_in_reserved(blk_start), |
|
524 |
"reference must be into the heap"); |
|
525 |
assert(Universe::heap()->is_in_reserved(blk_end-1), |
|
526 |
"limit must be within the heap"); |
|
527 |
assert(threshold == _array->_reserved.start() + index*N_words, |
|
528 |
"index must agree with threshold"); |
|
529 |
||
530 |
DEBUG_ONLY(size_t orig_index = index;) |
|
531 |
||
532 |
// Mark the card that holds the offset into the block. Note |
|
533 |
// that _next_offset_index and _next_offset_threshold are not |
|
534 |
// updated until the end of this method. |
|
535 |
_array->set_offset_array(index, threshold, blk_start); |
|
536 |
||
537 |
// We need to now mark the subsequent cards that this blk spans. |
|
538 |
||
539 |
// Index of card on which blk ends. |
|
540 |
size_t end_index = _array->index_for(blk_end - 1); |
|
541 |
||
542 |
// Are there more cards left to be updated? |
|
543 |
if (index + 1 <= end_index) { |
|
544 |
HeapWord* rem_st = _array->address_for_index(index + 1); |
|
545 |
// Calculate rem_end this way because end_index |
|
546 |
// may be the last valid index in the covered region. |
|
547 |
HeapWord* rem_end = _array->address_for_index(end_index) + N_words; |
|
548 |
set_remainder_to_point_to_start(rem_st, rem_end); |
|
549 |
} |
|
550 |
||
551 |
index = end_index + 1; |
|
552 |
// Calculate threshold_ this way because end_index |
|
553 |
// may be the last valid index in the covered region. |
|
554 |
threshold = _array->address_for_index(end_index) + N_words; |
|
555 |
assert(threshold >= blk_end, "Incorrect offset threshold"); |
|
556 |
||
557 |
// index_ and threshold_ updated here. |
|
558 |
*threshold_ = threshold; |
|
559 |
*index_ = index; |
|
560 |
||
561 |
#ifdef ASSERT |
|
562 |
// The offset can be 0 if the block starts on a boundary. That |
|
563 |
// is checked by an assertion above. |
|
564 |
size_t start_index = _array->index_for(blk_start); |
|
565 |
HeapWord* boundary = _array->address_for_index(start_index); |
|
566 |
assert((_array->offset_array(orig_index) == 0 && |
|
567 |
blk_start == boundary) || |
|
568 |
(_array->offset_array(orig_index) > 0 && |
|
569 |
_array->offset_array(orig_index) <= N_words), |
|
570 |
"offset array should have been set"); |
|
571 |
for (size_t j = orig_index + 1; j <= end_index; j++) { |
|
572 |
assert(_array->offset_array(j) > 0 && |
|
573 |
_array->offset_array(j) <= |
|
574 |
(u_char) (N_words+BlockOffsetArray::N_powers-1), |
|
575 |
"offset array should have been set"); |
|
576 |
} |
|
577 |
#endif |
|
578 |
} |
|
579 |
||
580 |
////////////////////////////////////////////////////////////////////// |
|
581 |
// G1BlockOffsetArrayContigSpace |
|
582 |
////////////////////////////////////////////////////////////////////// |
|
583 |
||
584 |
HeapWord* |
|
585 |
G1BlockOffsetArrayContigSpace::block_start_unsafe(const void* addr) { |
|
586 |
assert(_bottom <= addr && addr < _end, |
|
587 |
"addr must be covered by this Array"); |
|
588 |
HeapWord* q = block_at_or_preceding(addr, true, _next_offset_index-1); |
|
589 |
return forward_to_block_containing_addr(q, addr); |
|
590 |
} |
|
591 |
||
592 |
HeapWord* |
|
593 |
G1BlockOffsetArrayContigSpace:: |
|
594 |
block_start_unsafe_const(const void* addr) const { |
|
595 |
assert(_bottom <= addr && addr < _end, |
|
596 |
"addr must be covered by this Array"); |
|
597 |
HeapWord* q = block_at_or_preceding(addr, true, _next_offset_index-1); |
|
598 |
HeapWord* n = q + _sp->block_size(q); |
|
599 |
return forward_to_block_containing_addr_const(q, n, addr); |
|
600 |
} |
|
601 |
||
602 |
G1BlockOffsetArrayContigSpace:: |
|
603 |
G1BlockOffsetArrayContigSpace(G1BlockOffsetSharedArray* array, |
|
604 |
MemRegion mr) : |
|
605 |
G1BlockOffsetArray(array, mr, true) |
|
606 |
{ |
|
607 |
_next_offset_threshold = NULL; |
|
608 |
_next_offset_index = 0; |
|
609 |
} |
|
610 |
||
611 |
HeapWord* G1BlockOffsetArrayContigSpace::initialize_threshold() { |
|
612 |
assert(!Universe::heap()->is_in_reserved(_array->_offset_array), |
|
613 |
"just checking"); |
|
614 |
_next_offset_index = _array->index_for(_bottom); |
|
615 |
_next_offset_index++; |
|
616 |
_next_offset_threshold = |
|
617 |
_array->address_for_index(_next_offset_index); |
|
618 |
return _next_offset_threshold; |
|
619 |
} |
|
620 |
||
621 |
void G1BlockOffsetArrayContigSpace::zero_bottom_entry() { |
|
622 |
assert(!Universe::heap()->is_in_reserved(_array->_offset_array), |
|
623 |
"just checking"); |
|
624 |
size_t bottom_index = _array->index_for(_bottom); |
|
625 |
assert(_array->address_for_index(bottom_index) == _bottom, |
|
626 |
"Precondition of call"); |
|
627 |
_array->set_offset_array(bottom_index, 0); |
|
628 |
} |