29183
|
1 |
/*
|
|
2 |
* Copyright (c) 2014, Red Hat Inc. All rights reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation.
|
|
8 |
*
|
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
13 |
* accompanied this code).
|
|
14 |
*
|
|
15 |
* You should have received a copy of the GNU General Public License version
|
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
18 |
*
|
|
19 |
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
20 |
* or visit www.oracle.com if you need additional information or have any
|
|
21 |
* questions.
|
|
22 |
*
|
|
23 |
*/
|
|
24 |
|
|
25 |
#ifndef _CPU_STATE_H
|
|
26 |
#define _CPU_STATE_H
|
|
27 |
|
|
28 |
#include <sys/types.h>
|
|
29 |
|
|
30 |
/*
|
|
31 |
* symbolic names used to identify general registers which also match
|
|
32 |
* the registers indices in machine code
|
|
33 |
*
|
|
34 |
* We have 32 general registers which can be read/written as 32 bit or
|
|
35 |
* 64 bit sources/sinks and are appropriately referred to as Wn or Xn
|
|
36 |
* in the assembly code. Some instructions mix these access modes
|
|
37 |
* (e.g. ADD X0, X1, W2) so the implementation of the instruction
|
|
38 |
* needs to *know* which type of read or write access is required.
|
|
39 |
*/
|
|
40 |
enum GReg {
|
|
41 |
R0,
|
|
42 |
R1,
|
|
43 |
R2,
|
|
44 |
R3,
|
|
45 |
R4,
|
|
46 |
R5,
|
|
47 |
R6,
|
|
48 |
R7,
|
|
49 |
R8,
|
|
50 |
R9,
|
|
51 |
R10,
|
|
52 |
R11,
|
|
53 |
R12,
|
|
54 |
R13,
|
|
55 |
R14,
|
|
56 |
R15,
|
|
57 |
R16,
|
|
58 |
R17,
|
|
59 |
R18,
|
|
60 |
R19,
|
|
61 |
R20,
|
|
62 |
R21,
|
|
63 |
R22,
|
|
64 |
R23,
|
|
65 |
R24,
|
|
66 |
R25,
|
|
67 |
R26,
|
|
68 |
R27,
|
|
69 |
R28,
|
|
70 |
R29,
|
|
71 |
R30,
|
|
72 |
R31,
|
|
73 |
// and now the aliases
|
|
74 |
RSCRATCH1=R8,
|
|
75 |
RSCRATCH2=R9,
|
|
76 |
RMETHOD=R12,
|
|
77 |
RESP=R20,
|
|
78 |
RDISPATCH=R21,
|
|
79 |
RBCP=R22,
|
|
80 |
RLOCALS=R24,
|
|
81 |
RMONITORS=R25,
|
|
82 |
RCPOOL=R26,
|
|
83 |
RHEAPBASE=R27,
|
|
84 |
RTHREAD=R28,
|
|
85 |
FP = R29,
|
|
86 |
LR = R30,
|
|
87 |
SP = R31,
|
|
88 |
ZR = R31
|
|
89 |
};
|
|
90 |
|
|
91 |
/*
|
|
92 |
* symbolic names used to refer to floating point registers which also
|
|
93 |
* match the registers indices in machine code
|
|
94 |
*
|
|
95 |
* We have 32 FP registers which can be read/written as 8, 16, 32, 64
|
|
96 |
* and 128 bit sources/sinks and are appropriately referred to as Bn,
|
|
97 |
* Hn, Sn, Dn and Qn in the assembly code. Some instructions mix these
|
|
98 |
* access modes (e.g. FCVT S0, D0) so the implementation of the
|
|
99 |
* instruction needs to *know* which type of read or write access is
|
|
100 |
* required.
|
|
101 |
*/
|
|
102 |
|
|
103 |
enum VReg {
|
|
104 |
V0,
|
|
105 |
V1,
|
|
106 |
V2,
|
|
107 |
V3,
|
|
108 |
V4,
|
|
109 |
V5,
|
|
110 |
V6,
|
|
111 |
V7,
|
|
112 |
V8,
|
|
113 |
V9,
|
|
114 |
V10,
|
|
115 |
V11,
|
|
116 |
V12,
|
|
117 |
V13,
|
|
118 |
V14,
|
|
119 |
V15,
|
|
120 |
V16,
|
|
121 |
V17,
|
|
122 |
V18,
|
|
123 |
V19,
|
|
124 |
V20,
|
|
125 |
V21,
|
|
126 |
V22,
|
|
127 |
V23,
|
|
128 |
V24,
|
|
129 |
V25,
|
|
130 |
V26,
|
|
131 |
V27,
|
|
132 |
V28,
|
|
133 |
V29,
|
|
134 |
V30,
|
|
135 |
V31,
|
|
136 |
};
|
|
137 |
|
|
138 |
/**
|
|
139 |
* all the different integer bit patterns for the components of a
|
|
140 |
* general register are overlaid here using a union so as to allow all
|
|
141 |
* reading and writing of the desired bits.
|
|
142 |
*
|
|
143 |
* n.b. the ARM spec says that when you write a 32 bit register you
|
|
144 |
* are supposed to write the low 32 bits and zero the high 32
|
|
145 |
* bits. But we don't actually have to care about this because Java
|
|
146 |
* will only ever consume the 32 bits value as a 64 bit quantity after
|
|
147 |
* an explicit extend.
|
|
148 |
*/
|
|
149 |
union GRegisterValue
|
|
150 |
{
|
|
151 |
int8_t s8;
|
|
152 |
int16_t s16;
|
|
153 |
int32_t s32;
|
|
154 |
int64_t s64;
|
|
155 |
u_int8_t u8;
|
|
156 |
u_int16_t u16;
|
|
157 |
u_int32_t u32;
|
|
158 |
u_int64_t u64;
|
|
159 |
};
|
|
160 |
|
|
161 |
class GRegister
|
|
162 |
{
|
|
163 |
public:
|
|
164 |
GRegisterValue value;
|
|
165 |
};
|
|
166 |
|
|
167 |
/*
|
|
168 |
* float registers provide for storage of a single, double or quad
|
|
169 |
* word format float in the same register. single floats are not
|
|
170 |
* paired within each double register as per 32 bit arm. instead each
|
|
171 |
* 128 bit register Vn embeds the bits for Sn, and Dn in the lower
|
|
172 |
* quarter and half, respectively, of the bits for Qn.
|
|
173 |
*
|
|
174 |
* The upper bits can also be accessed as single or double floats by
|
|
175 |
* the float vector operations using indexing e.g. V1.D[1], V1.S[3]
|
|
176 |
* etc and, for SIMD operations using a horrible index range notation.
|
|
177 |
*
|
|
178 |
* The spec also talks about accessing float registers as half words
|
|
179 |
* and bytes with Hn and Bn providing access to the low 16 and 8 bits
|
|
180 |
* of Vn but it is not really clear what these bits represent. We can
|
|
181 |
* probably ignore this for Java anyway. However, we do need to access
|
|
182 |
* the raw bits at 32 and 64 bit resolution to load to/from integer
|
|
183 |
* registers.
|
|
184 |
*/
|
|
185 |
|
|
186 |
union FRegisterValue
|
|
187 |
{
|
|
188 |
float s;
|
|
189 |
double d;
|
|
190 |
long double q;
|
|
191 |
// eventually we will need to be able to access the data as a vector
|
|
192 |
// the integral array elements allow us to access the bits in s, d,
|
|
193 |
// q, vs and vd at an appropriate level of granularity
|
|
194 |
u_int8_t vb[16];
|
|
195 |
u_int16_t vh[8];
|
|
196 |
u_int32_t vw[4];
|
|
197 |
u_int64_t vx[2];
|
|
198 |
float vs[4];
|
|
199 |
double vd[2];
|
|
200 |
};
|
|
201 |
|
|
202 |
class FRegister
|
|
203 |
{
|
|
204 |
public:
|
|
205 |
FRegisterValue value;
|
|
206 |
};
|
|
207 |
|
|
208 |
/*
|
|
209 |
* CPSR register -- this does not exist as a directly accessible
|
|
210 |
* register but we need to store the flags so we can implement
|
|
211 |
* flag-seting and flag testing operations
|
|
212 |
*
|
|
213 |
* we can possibly use injected x86 asm to report the outcome of flag
|
|
214 |
* setting operations. if so we will need to grab the flags
|
|
215 |
* immediately after the operation in order to ensure we don't lose
|
|
216 |
* them because of the actions of the simulator. so we still need
|
|
217 |
* somewhere to store the condition codes.
|
|
218 |
*/
|
|
219 |
|
|
220 |
class CPSRRegister
|
|
221 |
{
|
|
222 |
public:
|
|
223 |
u_int32_t value;
|
|
224 |
|
|
225 |
/*
|
|
226 |
* condition register bit select values
|
|
227 |
*
|
|
228 |
* the order of bits here is important because some of
|
|
229 |
* the flag setting conditional instructions employ a
|
|
230 |
* bit field to populate the flags when a false condition
|
|
231 |
* bypasses execution of the operation and we want to
|
|
232 |
* be able to assign the flags register using the
|
|
233 |
* supplied value.
|
|
234 |
*/
|
|
235 |
|
|
236 |
enum CPSRIdx {
|
|
237 |
V_IDX,
|
|
238 |
C_IDX,
|
|
239 |
Z_IDX,
|
|
240 |
N_IDX
|
|
241 |
};
|
|
242 |
|
|
243 |
enum CPSRMask {
|
|
244 |
V = 1 << V_IDX,
|
|
245 |
C = 1 << C_IDX,
|
|
246 |
Z = 1 << Z_IDX,
|
|
247 |
N = 1 << N_IDX
|
|
248 |
};
|
|
249 |
|
|
250 |
static const int CPSR_ALL_FLAGS = (V | C | Z | N);
|
|
251 |
};
|
|
252 |
|
|
253 |
// auxiliary function to assemble the relevant bits from
|
|
254 |
// the x86 EFLAGS register into an ARM CPSR value
|
|
255 |
|
|
256 |
#define X86_V_IDX 11
|
|
257 |
#define X86_C_IDX 0
|
|
258 |
#define X86_Z_IDX 6
|
|
259 |
#define X86_N_IDX 7
|
|
260 |
|
|
261 |
#define X86_V (1 << X86_V_IDX)
|
|
262 |
#define X86_C (1 << X86_C_IDX)
|
|
263 |
#define X86_Z (1 << X86_Z_IDX)
|
|
264 |
#define X86_N (1 << X86_N_IDX)
|
|
265 |
|
|
266 |
inline u_int32_t convertX86Flags(u_int32_t x86flags)
|
|
267 |
{
|
|
268 |
u_int32_t flags;
|
|
269 |
// set N flag
|
|
270 |
flags = ((x86flags & X86_N) >> X86_N_IDX);
|
|
271 |
// shift then or in Z flag
|
|
272 |
flags <<= 1;
|
|
273 |
flags |= ((x86flags & X86_Z) >> X86_Z_IDX);
|
|
274 |
// shift then or in C flag
|
|
275 |
flags <<= 1;
|
|
276 |
flags |= ((x86flags & X86_C) >> X86_C_IDX);
|
|
277 |
// shift then or in V flag
|
|
278 |
flags <<= 1;
|
|
279 |
flags |= ((x86flags & X86_V) >> X86_V_IDX);
|
|
280 |
|
|
281 |
return flags;
|
|
282 |
}
|
|
283 |
|
|
284 |
inline u_int32_t convertX86FlagsFP(u_int32_t x86flags)
|
|
285 |
{
|
|
286 |
// x86 flags set by fcomi(x,y) are ZF:PF:CF
|
|
287 |
// (yes, that's PF for parity, WTF?)
|
|
288 |
// where
|
|
289 |
// 0) 0:0:0 means x > y
|
|
290 |
// 1) 0:0:1 means x < y
|
|
291 |
// 2) 1:0:0 means x = y
|
|
292 |
// 3) 1:1:1 means x and y are unordered
|
|
293 |
// note that we don't have to check PF so
|
|
294 |
// we really have a simple 2-bit case switch
|
|
295 |
// the corresponding ARM64 flags settings
|
|
296 |
// in hi->lo bit order are
|
|
297 |
// 0) --C-
|
|
298 |
// 1) N---
|
|
299 |
// 2) -ZC-
|
|
300 |
// 3) --CV
|
|
301 |
|
|
302 |
static u_int32_t armFlags[] = {
|
|
303 |
0b0010,
|
|
304 |
0b1000,
|
|
305 |
0b0110,
|
|
306 |
0b0011
|
|
307 |
};
|
|
308 |
// pick out the ZF and CF bits
|
|
309 |
u_int32_t zc = ((x86flags & X86_Z) >> X86_Z_IDX);
|
|
310 |
zc <<= 1;
|
|
311 |
zc |= ((x86flags & X86_C) >> X86_C_IDX);
|
|
312 |
|
|
313 |
return armFlags[zc];
|
|
314 |
}
|
|
315 |
|
|
316 |
/*
|
|
317 |
* FPSR register -- floating point status register
|
|
318 |
|
|
319 |
* this register includes IDC, IXC, UFC, OFC, DZC, IOC and QC bits,
|
|
320 |
* and the floating point N, Z, C, V bits but the latter are unused in
|
|
321 |
* aarch64 mode. the sim ignores QC for now.
|
|
322 |
*
|
|
323 |
* bit positions are as per the ARMv7 FPSCR register
|
|
324 |
*
|
|
325 |
* IDC : 7 ==> Input Denormal (cumulative exception bit)
|
|
326 |
* IXC : 4 ==> Inexact
|
|
327 |
* UFC : 3 ==> Underflow
|
|
328 |
* OFC : 2 ==> Overflow
|
|
329 |
* DZC : 1 ==> Division by Zero
|
|
330 |
* IOC : 0 ==> Invalid Operation
|
|
331 |
*/
|
|
332 |
|
|
333 |
class FPSRRegister
|
|
334 |
{
|
|
335 |
public:
|
|
336 |
u_int32_t value;
|
|
337 |
// indices for bits in the FPSR register value
|
|
338 |
enum FPSRIdx {
|
|
339 |
IO_IDX = 0,
|
|
340 |
DZ_IDX = 1,
|
|
341 |
OF_IDX = 2,
|
|
342 |
UF_IDX = 3,
|
|
343 |
IX_IDX = 4,
|
|
344 |
ID_IDX = 7
|
|
345 |
};
|
|
346 |
// corresponding bits as numeric values
|
|
347 |
enum FPSRMask {
|
|
348 |
IO = (1 << IO_IDX),
|
|
349 |
DZ = (1 << DZ_IDX),
|
|
350 |
OF = (1 << OF_IDX),
|
|
351 |
UF = (1 << UF_IDX),
|
|
352 |
IX = (1 << IX_IDX),
|
|
353 |
ID = (1 << ID_IDX)
|
|
354 |
};
|
|
355 |
static const int FPSR_ALL_FPSRS = (IO | DZ | OF | UF | IX | ID);
|
|
356 |
};
|
|
357 |
|
|
358 |
// debugger support
|
|
359 |
|
|
360 |
enum PrintFormat
|
|
361 |
{
|
|
362 |
FMT_DECIMAL,
|
|
363 |
FMT_HEX,
|
|
364 |
FMT_SINGLE,
|
|
365 |
FMT_DOUBLE,
|
|
366 |
FMT_QUAD,
|
|
367 |
FMT_MULTI
|
|
368 |
};
|
|
369 |
|
|
370 |
/*
|
|
371 |
* model of the registers and other state associated with the cpu
|
|
372 |
*/
|
|
373 |
class CPUState
|
|
374 |
{
|
|
375 |
friend class AArch64Simulator;
|
|
376 |
private:
|
|
377 |
// this is the PC of the instruction being executed
|
|
378 |
u_int64_t pc;
|
|
379 |
// this is the PC of the instruction to be executed next
|
|
380 |
// it is defaulted to pc + 4 at instruction decode but
|
|
381 |
// execute may reset it
|
|
382 |
|
|
383 |
u_int64_t nextpc;
|
|
384 |
GRegister gr[33]; // extra register at index 32 is used
|
|
385 |
// to hold zero value
|
|
386 |
FRegister fr[32];
|
|
387 |
CPSRRegister cpsr;
|
|
388 |
FPSRRegister fpsr;
|
|
389 |
|
|
390 |
public:
|
|
391 |
|
|
392 |
CPUState() {
|
|
393 |
gr[20].value.u64 = 0; // establish initial condition for
|
|
394 |
// checkAssertions()
|
|
395 |
trace_counter = 0;
|
|
396 |
}
|
|
397 |
|
|
398 |
// General Register access macros
|
|
399 |
|
|
400 |
// only xreg or xregs can be used as an lvalue in order to update a
|
|
401 |
// register. this ensures that the top part of a register is always
|
|
402 |
// assigned when it is written by the sim.
|
|
403 |
|
|
404 |
inline u_int64_t &xreg(GReg reg, int r31_is_sp) {
|
|
405 |
if (reg == R31 && !r31_is_sp) {
|
|
406 |
return gr[32].value.u64;
|
|
407 |
} else {
|
|
408 |
return gr[reg].value.u64;
|
|
409 |
}
|
|
410 |
}
|
|
411 |
|
|
412 |
inline int64_t &xregs(GReg reg, int r31_is_sp) {
|
|
413 |
if (reg == R31 && !r31_is_sp) {
|
|
414 |
return gr[32].value.s64;
|
|
415 |
} else {
|
|
416 |
return gr[reg].value.s64;
|
|
417 |
}
|
|
418 |
}
|
|
419 |
|
|
420 |
inline u_int32_t wreg(GReg reg, int r31_is_sp) {
|
|
421 |
if (reg == R31 && !r31_is_sp) {
|
|
422 |
return gr[32].value.u32;
|
|
423 |
} else {
|
|
424 |
return gr[reg].value.u32;
|
|
425 |
}
|
|
426 |
}
|
|
427 |
|
|
428 |
inline int32_t wregs(GReg reg, int r31_is_sp) {
|
|
429 |
if (reg == R31 && !r31_is_sp) {
|
|
430 |
return gr[32].value.s32;
|
|
431 |
} else {
|
|
432 |
return gr[reg].value.s32;
|
|
433 |
}
|
|
434 |
}
|
|
435 |
|
|
436 |
inline u_int32_t hreg(GReg reg, int r31_is_sp) {
|
|
437 |
if (reg == R31 && !r31_is_sp) {
|
|
438 |
return gr[32].value.u16;
|
|
439 |
} else {
|
|
440 |
return gr[reg].value.u16;
|
|
441 |
}
|
|
442 |
}
|
|
443 |
|
|
444 |
inline int32_t hregs(GReg reg, int r31_is_sp) {
|
|
445 |
if (reg == R31 && !r31_is_sp) {
|
|
446 |
return gr[32].value.s16;
|
|
447 |
} else {
|
|
448 |
return gr[reg].value.s16;
|
|
449 |
}
|
|
450 |
}
|
|
451 |
|
|
452 |
inline u_int32_t breg(GReg reg, int r31_is_sp) {
|
|
453 |
if (reg == R31 && !r31_is_sp) {
|
|
454 |
return gr[32].value.u8;
|
|
455 |
} else {
|
|
456 |
return gr[reg].value.u8;
|
|
457 |
}
|
|
458 |
}
|
|
459 |
|
|
460 |
inline int32_t bregs(GReg reg, int r31_is_sp) {
|
|
461 |
if (reg == R31 && !r31_is_sp) {
|
|
462 |
return gr[32].value.s8;
|
|
463 |
} else {
|
|
464 |
return gr[reg].value.s8;
|
|
465 |
}
|
|
466 |
}
|
|
467 |
|
|
468 |
// FP Register access macros
|
|
469 |
|
|
470 |
// all non-vector accessors return a reference so we can both read
|
|
471 |
// and assign
|
|
472 |
|
|
473 |
inline float &sreg(VReg reg) {
|
|
474 |
return fr[reg].value.s;
|
|
475 |
}
|
|
476 |
|
|
477 |
inline double &dreg(VReg reg) {
|
|
478 |
return fr[reg].value.d;
|
|
479 |
}
|
|
480 |
|
|
481 |
inline long double &qreg(VReg reg) {
|
|
482 |
return fr[reg].value.q;
|
|
483 |
}
|
|
484 |
|
|
485 |
// all vector register accessors return a pointer
|
|
486 |
|
|
487 |
inline float *vsreg(VReg reg) {
|
|
488 |
return &fr[reg].value.vs[0];
|
|
489 |
}
|
|
490 |
|
|
491 |
inline double *vdreg(VReg reg) {
|
|
492 |
return &fr[reg].value.vd[0];
|
|
493 |
}
|
|
494 |
|
|
495 |
inline u_int8_t *vbreg(VReg reg) {
|
|
496 |
return &fr[reg].value.vb[0];
|
|
497 |
}
|
|
498 |
|
|
499 |
inline u_int16_t *vhreg(VReg reg) {
|
|
500 |
return &fr[reg].value.vh[0];
|
|
501 |
}
|
|
502 |
|
|
503 |
inline u_int32_t *vwreg(VReg reg) {
|
|
504 |
return &fr[reg].value.vw[0];
|
|
505 |
}
|
|
506 |
|
|
507 |
inline u_int64_t *vxreg(VReg reg) {
|
|
508 |
return &fr[reg].value.vx[0];
|
|
509 |
}
|
|
510 |
|
|
511 |
union GRegisterValue prev_sp, prev_fp;
|
|
512 |
|
|
513 |
static const int trace_size = 256;
|
|
514 |
u_int64_t trace_buffer[trace_size];
|
|
515 |
int trace_counter;
|
|
516 |
|
|
517 |
bool checkAssertions()
|
|
518 |
{
|
|
519 |
// Make sure that SP is 16-aligned
|
|
520 |
// Also make sure that ESP is above SP.
|
|
521 |
// We don't care about checking ESP if it is null, i.e. it hasn't
|
|
522 |
// been used yet.
|
|
523 |
if (gr[31].value.u64 & 0x0f) {
|
|
524 |
asm volatile("nop");
|
|
525 |
return false;
|
|
526 |
}
|
|
527 |
return true;
|
|
528 |
}
|
|
529 |
|
|
530 |
// pc register accessors
|
|
531 |
|
|
532 |
// this instruction can be used to fetch the current PC
|
|
533 |
u_int64_t getPC();
|
|
534 |
// instead of setting the current PC directly you can
|
|
535 |
// first set the next PC (either absolute or PC-relative)
|
|
536 |
// and later copy the next PC into the current PC
|
|
537 |
// this supports a default increment by 4 at instruction
|
|
538 |
// fetch with an optional reset by control instructions
|
|
539 |
u_int64_t getNextPC();
|
|
540 |
void setNextPC(u_int64_t next);
|
|
541 |
void offsetNextPC(int64_t offset);
|
|
542 |
// install nextpc as current pc
|
|
543 |
void updatePC();
|
|
544 |
|
|
545 |
// this instruction can be used to save the next PC to LR
|
|
546 |
// just before installing a branch PC
|
|
547 |
inline void saveLR() { gr[LR].value.u64 = nextpc; }
|
|
548 |
|
|
549 |
// cpsr register accessors
|
|
550 |
u_int32_t getCPSRRegister();
|
|
551 |
void setCPSRRegister(u_int32_t flags);
|
|
552 |
// read a specific subset of the flags as a bit pattern
|
|
553 |
// mask should be composed using elements of enum FlagMask
|
|
554 |
u_int32_t getCPSRBits(u_int32_t mask);
|
|
555 |
// assign a specific subset of the flags as a bit pattern
|
|
556 |
// mask and value should be composed using elements of enum FlagMask
|
|
557 |
void setCPSRBits(u_int32_t mask, u_int32_t value);
|
|
558 |
// test the value of a single flag returned as 1 or 0
|
|
559 |
u_int32_t testCPSR(CPSRRegister::CPSRIdx idx);
|
|
560 |
// set a single flag
|
|
561 |
void setCPSR(CPSRRegister::CPSRIdx idx);
|
|
562 |
// clear a single flag
|
|
563 |
void clearCPSR(CPSRRegister::CPSRIdx idx);
|
|
564 |
// utility method to set ARM CSPR flags from an x86 bit mask generated by integer arithmetic
|
|
565 |
void setCPSRRegisterFromX86(u_int64_t x86Flags);
|
|
566 |
// utility method to set ARM CSPR flags from an x86 bit mask generated by floating compare
|
|
567 |
void setCPSRRegisterFromX86FP(u_int64_t x86Flags);
|
|
568 |
|
|
569 |
// fpsr register accessors
|
|
570 |
u_int32_t getFPSRRegister();
|
|
571 |
void setFPSRRegister(u_int32_t flags);
|
|
572 |
// read a specific subset of the fprs bits as a bit pattern
|
|
573 |
// mask should be composed using elements of enum FPSRRegister::FlagMask
|
|
574 |
u_int32_t getFPSRBits(u_int32_t mask);
|
|
575 |
// assign a specific subset of the flags as a bit pattern
|
|
576 |
// mask and value should be composed using elements of enum FPSRRegister::FlagMask
|
|
577 |
void setFPSRBits(u_int32_t mask, u_int32_t value);
|
|
578 |
// test the value of a single flag returned as 1 or 0
|
|
579 |
u_int32_t testFPSR(FPSRRegister::FPSRIdx idx);
|
|
580 |
// set a single flag
|
|
581 |
void setFPSR(FPSRRegister::FPSRIdx idx);
|
|
582 |
// clear a single flag
|
|
583 |
void clearFPSR(FPSRRegister::FPSRIdx idx);
|
|
584 |
|
|
585 |
// debugger support
|
|
586 |
void printPC(int pending, const char *trailing = "\n");
|
|
587 |
void printInstr(u_int32_t instr, void (*dasm)(u_int64_t), const char *trailing = "\n");
|
|
588 |
void printGReg(GReg reg, PrintFormat format = FMT_HEX, const char *trailing = "\n");
|
|
589 |
void printVReg(VReg reg, PrintFormat format = FMT_HEX, const char *trailing = "\n");
|
|
590 |
void printCPSR(const char *trailing = "\n");
|
|
591 |
void printFPSR(const char *trailing = "\n");
|
|
592 |
void dumpState();
|
|
593 |
};
|
|
594 |
|
|
595 |
#endif // ifndef _CPU_STATE_H
|