1
|
1 |
/*
|
|
2 |
* Copyright 2004-2006 Sun Microsystems, Inc. All Rights Reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation.
|
|
8 |
*
|
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
13 |
* accompanied this code).
|
|
14 |
*
|
|
15 |
* You should have received a copy of the GNU General Public License version
|
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
18 |
*
|
|
19 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
20 |
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
21 |
* have any questions.
|
|
22 |
*
|
|
23 |
*/
|
|
24 |
#include "incls/_precompiled.incl"
|
|
25 |
#include "incls/_cmsAdaptiveSizePolicy.cpp.incl"
|
|
26 |
|
|
27 |
elapsedTimer CMSAdaptiveSizePolicy::_concurrent_timer;
|
|
28 |
elapsedTimer CMSAdaptiveSizePolicy::_STW_timer;
|
|
29 |
|
|
30 |
// Defined if the granularity of the time measurements is potentially too large.
|
|
31 |
#define CLOCK_GRANULARITY_TOO_LARGE
|
|
32 |
|
|
33 |
CMSAdaptiveSizePolicy::CMSAdaptiveSizePolicy(size_t init_eden_size,
|
|
34 |
size_t init_promo_size,
|
|
35 |
size_t init_survivor_size,
|
|
36 |
double max_gc_minor_pause_sec,
|
|
37 |
double max_gc_pause_sec,
|
|
38 |
uint gc_cost_ratio) :
|
|
39 |
AdaptiveSizePolicy(init_eden_size,
|
|
40 |
init_promo_size,
|
|
41 |
init_survivor_size,
|
|
42 |
max_gc_pause_sec,
|
|
43 |
gc_cost_ratio) {
|
|
44 |
|
|
45 |
clear_internal_time_intervals();
|
|
46 |
|
|
47 |
_processor_count = os::active_processor_count();
|
|
48 |
|
5035
|
49 |
if (CMSConcurrentMTEnabled && (ConcGCThreads > 1)) {
|
1
|
50 |
assert(_processor_count > 0, "Processor count is suspect");
|
5035
|
51 |
_concurrent_processor_count = MIN2((uint) ConcGCThreads,
|
1
|
52 |
(uint) _processor_count);
|
|
53 |
} else {
|
|
54 |
_concurrent_processor_count = 1;
|
|
55 |
}
|
|
56 |
|
|
57 |
_avg_concurrent_time = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
|
|
58 |
_avg_concurrent_interval = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
|
|
59 |
_avg_concurrent_gc_cost = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
|
|
60 |
|
|
61 |
_avg_initial_pause = new AdaptivePaddedAverage(AdaptiveTimeWeight,
|
|
62 |
PausePadding);
|
|
63 |
_avg_remark_pause = new AdaptivePaddedAverage(AdaptiveTimeWeight,
|
|
64 |
PausePadding);
|
|
65 |
|
|
66 |
_avg_cms_STW_time = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
|
|
67 |
_avg_cms_STW_gc_cost = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
|
|
68 |
|
|
69 |
_avg_cms_free = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
|
|
70 |
_avg_cms_free_at_sweep = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
|
|
71 |
_avg_cms_promo = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
|
|
72 |
|
|
73 |
// Mark-sweep-compact
|
|
74 |
_avg_msc_pause = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
|
|
75 |
_avg_msc_interval = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
|
|
76 |
_avg_msc_gc_cost = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
|
|
77 |
|
|
78 |
// Mark-sweep
|
|
79 |
_avg_ms_pause = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
|
|
80 |
_avg_ms_interval = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
|
|
81 |
_avg_ms_gc_cost = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
|
|
82 |
|
|
83 |
// Variables that estimate pause times as a function of generation
|
|
84 |
// size.
|
|
85 |
_remark_pause_old_estimator =
|
|
86 |
new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
|
|
87 |
_initial_pause_old_estimator =
|
|
88 |
new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
|
|
89 |
_remark_pause_young_estimator =
|
|
90 |
new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
|
|
91 |
_initial_pause_young_estimator =
|
|
92 |
new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
|
|
93 |
|
|
94 |
// Alignment comes from that used in ReservedSpace.
|
|
95 |
_generation_alignment = os::vm_allocation_granularity();
|
|
96 |
|
|
97 |
// Start the concurrent timer here so that the first
|
|
98 |
// concurrent_phases_begin() measures a finite mutator
|
|
99 |
// time. A finite mutator time is used to determine
|
|
100 |
// if a concurrent collection has been started. If this
|
|
101 |
// proves to be a problem, use some explicit flag to
|
|
102 |
// signal that a concurrent collection has been started.
|
|
103 |
_concurrent_timer.start();
|
|
104 |
_STW_timer.start();
|
|
105 |
}
|
|
106 |
|
|
107 |
double CMSAdaptiveSizePolicy::concurrent_processor_fraction() {
|
|
108 |
// For now assume no other daemon threads are taking alway
|
|
109 |
// cpu's from the application.
|
|
110 |
return ((double) _concurrent_processor_count / (double) _processor_count);
|
|
111 |
}
|
|
112 |
|
|
113 |
double CMSAdaptiveSizePolicy::concurrent_collection_cost(
|
|
114 |
double interval_in_seconds) {
|
|
115 |
// When the precleaning and sweeping phases use multiple
|
|
116 |
// threads, change one_processor_fraction to
|
|
117 |
// concurrent_processor_fraction().
|
|
118 |
double one_processor_fraction = 1.0 / ((double) processor_count());
|
|
119 |
double concurrent_cost =
|
|
120 |
collection_cost(_latest_cms_concurrent_marking_time_secs,
|
|
121 |
interval_in_seconds) * concurrent_processor_fraction() +
|
|
122 |
collection_cost(_latest_cms_concurrent_precleaning_time_secs,
|
|
123 |
interval_in_seconds) * one_processor_fraction +
|
|
124 |
collection_cost(_latest_cms_concurrent_sweeping_time_secs,
|
|
125 |
interval_in_seconds) * one_processor_fraction;
|
|
126 |
if (PrintAdaptiveSizePolicy && Verbose) {
|
|
127 |
gclog_or_tty->print_cr(
|
|
128 |
"\nCMSAdaptiveSizePolicy::scaled_concurrent_collection_cost(%f) "
|
|
129 |
"_latest_cms_concurrent_marking_cost %f "
|
|
130 |
"_latest_cms_concurrent_precleaning_cost %f "
|
|
131 |
"_latest_cms_concurrent_sweeping_cost %f "
|
|
132 |
"concurrent_processor_fraction %f "
|
|
133 |
"concurrent_cost %f ",
|
|
134 |
interval_in_seconds,
|
|
135 |
collection_cost(_latest_cms_concurrent_marking_time_secs,
|
|
136 |
interval_in_seconds),
|
|
137 |
collection_cost(_latest_cms_concurrent_precleaning_time_secs,
|
|
138 |
interval_in_seconds),
|
|
139 |
collection_cost(_latest_cms_concurrent_sweeping_time_secs,
|
|
140 |
interval_in_seconds),
|
|
141 |
concurrent_processor_fraction(),
|
|
142 |
concurrent_cost);
|
|
143 |
}
|
|
144 |
return concurrent_cost;
|
|
145 |
}
|
|
146 |
|
|
147 |
double CMSAdaptiveSizePolicy::concurrent_collection_time() {
|
|
148 |
double latest_cms_sum_concurrent_phases_time_secs =
|
|
149 |
_latest_cms_concurrent_marking_time_secs +
|
|
150 |
_latest_cms_concurrent_precleaning_time_secs +
|
|
151 |
_latest_cms_concurrent_sweeping_time_secs;
|
|
152 |
return latest_cms_sum_concurrent_phases_time_secs;
|
|
153 |
}
|
|
154 |
|
|
155 |
double CMSAdaptiveSizePolicy::scaled_concurrent_collection_time() {
|
|
156 |
// When the precleaning and sweeping phases use multiple
|
|
157 |
// threads, change one_processor_fraction to
|
|
158 |
// concurrent_processor_fraction().
|
|
159 |
double one_processor_fraction = 1.0 / ((double) processor_count());
|
|
160 |
double latest_cms_sum_concurrent_phases_time_secs =
|
|
161 |
_latest_cms_concurrent_marking_time_secs * concurrent_processor_fraction() +
|
|
162 |
_latest_cms_concurrent_precleaning_time_secs * one_processor_fraction +
|
|
163 |
_latest_cms_concurrent_sweeping_time_secs * one_processor_fraction ;
|
|
164 |
if (PrintAdaptiveSizePolicy && Verbose) {
|
|
165 |
gclog_or_tty->print_cr(
|
|
166 |
"\nCMSAdaptiveSizePolicy::scaled_concurrent_collection_time "
|
|
167 |
"_latest_cms_concurrent_marking_time_secs %f "
|
|
168 |
"_latest_cms_concurrent_precleaning_time_secs %f "
|
|
169 |
"_latest_cms_concurrent_sweeping_time_secs %f "
|
|
170 |
"concurrent_processor_fraction %f "
|
|
171 |
"latest_cms_sum_concurrent_phases_time_secs %f ",
|
|
172 |
_latest_cms_concurrent_marking_time_secs,
|
|
173 |
_latest_cms_concurrent_precleaning_time_secs,
|
|
174 |
_latest_cms_concurrent_sweeping_time_secs,
|
|
175 |
concurrent_processor_fraction(),
|
|
176 |
latest_cms_sum_concurrent_phases_time_secs);
|
|
177 |
}
|
|
178 |
return latest_cms_sum_concurrent_phases_time_secs;
|
|
179 |
}
|
|
180 |
|
|
181 |
void CMSAdaptiveSizePolicy::update_minor_pause_old_estimator(
|
|
182 |
double minor_pause_in_ms) {
|
|
183 |
// Get the equivalent of the free space
|
|
184 |
// that is available for promotions in the CMS generation
|
|
185 |
// and use that to update _minor_pause_old_estimator
|
|
186 |
|
|
187 |
// Don't implement this until it is needed. A warning is
|
|
188 |
// printed if _minor_pause_old_estimator is used.
|
|
189 |
}
|
|
190 |
|
|
191 |
void CMSAdaptiveSizePolicy::concurrent_marking_begin() {
|
|
192 |
if (PrintAdaptiveSizePolicy && Verbose) {
|
|
193 |
gclog_or_tty->print(" ");
|
|
194 |
gclog_or_tty->stamp();
|
|
195 |
gclog_or_tty->print(": concurrent_marking_begin ");
|
|
196 |
}
|
|
197 |
// Update the interval time
|
|
198 |
_concurrent_timer.stop();
|
|
199 |
_latest_cms_collection_end_to_collection_start_secs = _concurrent_timer.seconds();
|
|
200 |
if (PrintAdaptiveSizePolicy && Verbose) {
|
|
201 |
gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::concurrent_marking_begin: "
|
|
202 |
"mutator time %f", _latest_cms_collection_end_to_collection_start_secs);
|
|
203 |
}
|
|
204 |
_concurrent_timer.reset();
|
|
205 |
_concurrent_timer.start();
|
|
206 |
}
|
|
207 |
|
|
208 |
void CMSAdaptiveSizePolicy::concurrent_marking_end() {
|
|
209 |
if (PrintAdaptiveSizePolicy && Verbose) {
|
|
210 |
gclog_or_tty->stamp();
|
|
211 |
gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::concurrent_marking_end()");
|
|
212 |
}
|
|
213 |
|
|
214 |
_concurrent_timer.stop();
|
|
215 |
_latest_cms_concurrent_marking_time_secs = _concurrent_timer.seconds();
|
|
216 |
|
|
217 |
if (PrintAdaptiveSizePolicy && Verbose) {
|
|
218 |
gclog_or_tty->print_cr("\n CMSAdaptiveSizePolicy::concurrent_marking_end"
|
|
219 |
":concurrent marking time (s) %f",
|
|
220 |
_latest_cms_concurrent_marking_time_secs);
|
|
221 |
}
|
|
222 |
}
|
|
223 |
|
|
224 |
void CMSAdaptiveSizePolicy::concurrent_precleaning_begin() {
|
|
225 |
if (PrintAdaptiveSizePolicy && Verbose) {
|
|
226 |
gclog_or_tty->stamp();
|
|
227 |
gclog_or_tty->print_cr(
|
|
228 |
"CMSAdaptiveSizePolicy::concurrent_precleaning_begin()");
|
|
229 |
}
|
|
230 |
_concurrent_timer.reset();
|
|
231 |
_concurrent_timer.start();
|
|
232 |
}
|
|
233 |
|
|
234 |
|
|
235 |
void CMSAdaptiveSizePolicy::concurrent_precleaning_end() {
|
|
236 |
if (PrintAdaptiveSizePolicy && Verbose) {
|
|
237 |
gclog_or_tty->stamp();
|
|
238 |
gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::concurrent_precleaning_end()");
|
|
239 |
}
|
|
240 |
|
|
241 |
_concurrent_timer.stop();
|
|
242 |
// May be set again by a second call during the same collection.
|
|
243 |
_latest_cms_concurrent_precleaning_time_secs = _concurrent_timer.seconds();
|
|
244 |
|
|
245 |
if (PrintAdaptiveSizePolicy && Verbose) {
|
|
246 |
gclog_or_tty->print_cr("\n CMSAdaptiveSizePolicy::concurrent_precleaning_end"
|
|
247 |
":concurrent precleaning time (s) %f",
|
|
248 |
_latest_cms_concurrent_precleaning_time_secs);
|
|
249 |
}
|
|
250 |
}
|
|
251 |
|
|
252 |
void CMSAdaptiveSizePolicy::concurrent_sweeping_begin() {
|
|
253 |
if (PrintAdaptiveSizePolicy && Verbose) {
|
|
254 |
gclog_or_tty->stamp();
|
|
255 |
gclog_or_tty->print_cr(
|
|
256 |
"CMSAdaptiveSizePolicy::concurrent_sweeping_begin()");
|
|
257 |
}
|
|
258 |
_concurrent_timer.reset();
|
|
259 |
_concurrent_timer.start();
|
|
260 |
}
|
|
261 |
|
|
262 |
|
|
263 |
void CMSAdaptiveSizePolicy::concurrent_sweeping_end() {
|
|
264 |
if (PrintAdaptiveSizePolicy && Verbose) {
|
|
265 |
gclog_or_tty->stamp();
|
|
266 |
gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::concurrent_sweeping_end()");
|
|
267 |
}
|
|
268 |
|
|
269 |
_concurrent_timer.stop();
|
|
270 |
_latest_cms_concurrent_sweeping_time_secs = _concurrent_timer.seconds();
|
|
271 |
|
|
272 |
if (PrintAdaptiveSizePolicy && Verbose) {
|
|
273 |
gclog_or_tty->print_cr("\n CMSAdaptiveSizePolicy::concurrent_sweeping_end"
|
|
274 |
":concurrent sweeping time (s) %f",
|
|
275 |
_latest_cms_concurrent_sweeping_time_secs);
|
|
276 |
}
|
|
277 |
}
|
|
278 |
|
|
279 |
void CMSAdaptiveSizePolicy::concurrent_phases_end(GCCause::Cause gc_cause,
|
|
280 |
size_t cur_eden,
|
|
281 |
size_t cur_promo) {
|
|
282 |
if (PrintAdaptiveSizePolicy && Verbose) {
|
|
283 |
gclog_or_tty->print(" ");
|
|
284 |
gclog_or_tty->stamp();
|
|
285 |
gclog_or_tty->print(": concurrent_phases_end ");
|
|
286 |
}
|
|
287 |
|
|
288 |
// Update the concurrent timer
|
|
289 |
_concurrent_timer.stop();
|
|
290 |
|
|
291 |
if (gc_cause != GCCause::_java_lang_system_gc ||
|
|
292 |
UseAdaptiveSizePolicyWithSystemGC) {
|
|
293 |
|
|
294 |
avg_cms_free()->sample(cur_promo);
|
|
295 |
double latest_cms_sum_concurrent_phases_time_secs =
|
|
296 |
concurrent_collection_time();
|
|
297 |
|
|
298 |
_avg_concurrent_time->sample(latest_cms_sum_concurrent_phases_time_secs);
|
|
299 |
|
|
300 |
// Cost of collection (unit-less)
|
|
301 |
|
|
302 |
// Total interval for collection. May not be valid. Tests
|
|
303 |
// below determine whether to use this.
|
|
304 |
//
|
|
305 |
if (PrintAdaptiveSizePolicy && Verbose) {
|
|
306 |
gclog_or_tty->print_cr("\nCMSAdaptiveSizePolicy::concurrent_phases_end \n"
|
|
307 |
"_latest_cms_reset_end_to_initial_mark_start_secs %f \n"
|
|
308 |
"_latest_cms_initial_mark_start_to_end_time_secs %f \n"
|
|
309 |
"_latest_cms_remark_start_to_end_time_secs %f \n"
|
|
310 |
"_latest_cms_concurrent_marking_time_secs %f \n"
|
|
311 |
"_latest_cms_concurrent_precleaning_time_secs %f \n"
|
|
312 |
"_latest_cms_concurrent_sweeping_time_secs %f \n"
|
|
313 |
"latest_cms_sum_concurrent_phases_time_secs %f \n"
|
|
314 |
"_latest_cms_collection_end_to_collection_start_secs %f \n"
|
|
315 |
"concurrent_processor_fraction %f",
|
|
316 |
_latest_cms_reset_end_to_initial_mark_start_secs,
|
|
317 |
_latest_cms_initial_mark_start_to_end_time_secs,
|
|
318 |
_latest_cms_remark_start_to_end_time_secs,
|
|
319 |
_latest_cms_concurrent_marking_time_secs,
|
|
320 |
_latest_cms_concurrent_precleaning_time_secs,
|
|
321 |
_latest_cms_concurrent_sweeping_time_secs,
|
|
322 |
latest_cms_sum_concurrent_phases_time_secs,
|
|
323 |
_latest_cms_collection_end_to_collection_start_secs,
|
|
324 |
concurrent_processor_fraction());
|
|
325 |
}
|
|
326 |
double interval_in_seconds =
|
|
327 |
_latest_cms_initial_mark_start_to_end_time_secs +
|
|
328 |
_latest_cms_remark_start_to_end_time_secs +
|
|
329 |
latest_cms_sum_concurrent_phases_time_secs +
|
|
330 |
_latest_cms_collection_end_to_collection_start_secs;
|
|
331 |
assert(interval_in_seconds >= 0.0,
|
|
332 |
"Bad interval between cms collections");
|
|
333 |
|
|
334 |
// Sample for performance counter
|
|
335 |
avg_concurrent_interval()->sample(interval_in_seconds);
|
|
336 |
|
|
337 |
// STW costs (initial and remark pauses)
|
|
338 |
// Cost of collection (unit-less)
|
|
339 |
assert(_latest_cms_initial_mark_start_to_end_time_secs >= 0.0,
|
|
340 |
"Bad initial mark pause");
|
|
341 |
assert(_latest_cms_remark_start_to_end_time_secs >= 0.0,
|
|
342 |
"Bad remark pause");
|
|
343 |
double STW_time_in_seconds =
|
|
344 |
_latest_cms_initial_mark_start_to_end_time_secs +
|
|
345 |
_latest_cms_remark_start_to_end_time_secs;
|
|
346 |
double STW_collection_cost = 0.0;
|
|
347 |
if (interval_in_seconds > 0.0) {
|
|
348 |
// cost for the STW phases of the concurrent collection.
|
|
349 |
STW_collection_cost = STW_time_in_seconds / interval_in_seconds;
|
|
350 |
avg_cms_STW_gc_cost()->sample(STW_collection_cost);
|
|
351 |
}
|
|
352 |
if (PrintAdaptiveSizePolicy && Verbose) {
|
|
353 |
gclog_or_tty->print("cmsAdaptiveSizePolicy::STW_collection_end: "
|
|
354 |
"STW gc cost: %f average: %f", STW_collection_cost,
|
|
355 |
avg_cms_STW_gc_cost()->average());
|
|
356 |
gclog_or_tty->print_cr(" STW pause: %f (ms) STW period %f (ms)",
|
|
357 |
(double) STW_time_in_seconds * MILLIUNITS,
|
|
358 |
(double) interval_in_seconds * MILLIUNITS);
|
|
359 |
}
|
|
360 |
|
|
361 |
double concurrent_cost = 0.0;
|
|
362 |
if (latest_cms_sum_concurrent_phases_time_secs > 0.0) {
|
|
363 |
concurrent_cost = concurrent_collection_cost(interval_in_seconds);
|
|
364 |
|
|
365 |
avg_concurrent_gc_cost()->sample(concurrent_cost);
|
|
366 |
// Average this ms cost into all the other types gc costs
|
|
367 |
|
|
368 |
if (PrintAdaptiveSizePolicy && Verbose) {
|
|
369 |
gclog_or_tty->print("cmsAdaptiveSizePolicy::concurrent_phases_end: "
|
|
370 |
"concurrent gc cost: %f average: %f",
|
|
371 |
concurrent_cost,
|
|
372 |
_avg_concurrent_gc_cost->average());
|
|
373 |
gclog_or_tty->print_cr(" concurrent time: %f (ms) cms period %f (ms)"
|
|
374 |
" processor fraction: %f",
|
|
375 |
latest_cms_sum_concurrent_phases_time_secs * MILLIUNITS,
|
|
376 |
interval_in_seconds * MILLIUNITS,
|
|
377 |
concurrent_processor_fraction());
|
|
378 |
}
|
|
379 |
}
|
|
380 |
double total_collection_cost = STW_collection_cost + concurrent_cost;
|
|
381 |
avg_major_gc_cost()->sample(total_collection_cost);
|
|
382 |
|
|
383 |
// Gather information for estimating future behavior
|
|
384 |
double initial_pause_in_ms = _latest_cms_initial_mark_start_to_end_time_secs * MILLIUNITS;
|
|
385 |
double remark_pause_in_ms = _latest_cms_remark_start_to_end_time_secs * MILLIUNITS;
|
|
386 |
|
|
387 |
double cur_promo_size_in_mbytes = ((double)cur_promo)/((double)M);
|
|
388 |
initial_pause_old_estimator()->update(cur_promo_size_in_mbytes,
|
|
389 |
initial_pause_in_ms);
|
|
390 |
remark_pause_old_estimator()->update(cur_promo_size_in_mbytes,
|
|
391 |
remark_pause_in_ms);
|
|
392 |
major_collection_estimator()->update(cur_promo_size_in_mbytes,
|
|
393 |
total_collection_cost);
|
|
394 |
|
|
395 |
// This estimate uses the average eden size. It could also
|
|
396 |
// have used the latest eden size. Which is better?
|
|
397 |
double cur_eden_size_in_mbytes = ((double)cur_eden)/((double) M);
|
|
398 |
initial_pause_young_estimator()->update(cur_eden_size_in_mbytes,
|
|
399 |
initial_pause_in_ms);
|
|
400 |
remark_pause_young_estimator()->update(cur_eden_size_in_mbytes,
|
|
401 |
remark_pause_in_ms);
|
|
402 |
}
|
|
403 |
|
|
404 |
clear_internal_time_intervals();
|
|
405 |
|
|
406 |
set_first_after_collection();
|
|
407 |
|
|
408 |
// The concurrent phases keeps track of it's own mutator interval
|
|
409 |
// with this timer. This allows the stop-the-world phase to
|
|
410 |
// be included in the mutator time so that the stop-the-world time
|
|
411 |
// is not double counted. Reset and start it.
|
|
412 |
_concurrent_timer.reset();
|
|
413 |
_concurrent_timer.start();
|
|
414 |
|
|
415 |
// The mutator time between STW phases does not include the
|
|
416 |
// concurrent collection time.
|
|
417 |
_STW_timer.reset();
|
|
418 |
_STW_timer.start();
|
|
419 |
}
|
|
420 |
|
|
421 |
void CMSAdaptiveSizePolicy::checkpoint_roots_initial_begin() {
|
|
422 |
// Update the interval time
|
|
423 |
_STW_timer.stop();
|
|
424 |
_latest_cms_reset_end_to_initial_mark_start_secs = _STW_timer.seconds();
|
|
425 |
// Reset for the initial mark
|
|
426 |
_STW_timer.reset();
|
|
427 |
_STW_timer.start();
|
|
428 |
}
|
|
429 |
|
|
430 |
void CMSAdaptiveSizePolicy::checkpoint_roots_initial_end(
|
|
431 |
GCCause::Cause gc_cause) {
|
|
432 |
_STW_timer.stop();
|
|
433 |
|
|
434 |
if (gc_cause != GCCause::_java_lang_system_gc ||
|
|
435 |
UseAdaptiveSizePolicyWithSystemGC) {
|
|
436 |
_latest_cms_initial_mark_start_to_end_time_secs = _STW_timer.seconds();
|
|
437 |
avg_initial_pause()->sample(_latest_cms_initial_mark_start_to_end_time_secs);
|
|
438 |
|
|
439 |
if (PrintAdaptiveSizePolicy && Verbose) {
|
|
440 |
gclog_or_tty->print(
|
|
441 |
"cmsAdaptiveSizePolicy::checkpoint_roots_initial_end: "
|
|
442 |
"initial pause: %f ", _latest_cms_initial_mark_start_to_end_time_secs);
|
|
443 |
}
|
|
444 |
}
|
|
445 |
|
|
446 |
_STW_timer.reset();
|
|
447 |
_STW_timer.start();
|
|
448 |
}
|
|
449 |
|
|
450 |
void CMSAdaptiveSizePolicy::checkpoint_roots_final_begin() {
|
|
451 |
_STW_timer.stop();
|
|
452 |
_latest_cms_initial_mark_end_to_remark_start_secs = _STW_timer.seconds();
|
|
453 |
// Start accumumlating time for the remark in the STW timer.
|
|
454 |
_STW_timer.reset();
|
|
455 |
_STW_timer.start();
|
|
456 |
}
|
|
457 |
|
|
458 |
void CMSAdaptiveSizePolicy::checkpoint_roots_final_end(
|
|
459 |
GCCause::Cause gc_cause) {
|
|
460 |
_STW_timer.stop();
|
|
461 |
if (gc_cause != GCCause::_java_lang_system_gc ||
|
|
462 |
UseAdaptiveSizePolicyWithSystemGC) {
|
|
463 |
// Total initial mark pause + remark pause.
|
|
464 |
_latest_cms_remark_start_to_end_time_secs = _STW_timer.seconds();
|
|
465 |
double STW_time_in_seconds = _latest_cms_initial_mark_start_to_end_time_secs +
|
|
466 |
_latest_cms_remark_start_to_end_time_secs;
|
|
467 |
double STW_time_in_ms = STW_time_in_seconds * MILLIUNITS;
|
|
468 |
|
|
469 |
avg_remark_pause()->sample(_latest_cms_remark_start_to_end_time_secs);
|
|
470 |
|
|
471 |
// Sample total for initial mark + remark
|
|
472 |
avg_cms_STW_time()->sample(STW_time_in_seconds);
|
|
473 |
|
|
474 |
if (PrintAdaptiveSizePolicy && Verbose) {
|
|
475 |
gclog_or_tty->print("cmsAdaptiveSizePolicy::checkpoint_roots_final_end: "
|
|
476 |
"remark pause: %f", _latest_cms_remark_start_to_end_time_secs);
|
|
477 |
}
|
|
478 |
|
|
479 |
}
|
|
480 |
// Don't start the STW times here because the concurrent
|
|
481 |
// sweep and reset has not happened.
|
|
482 |
// Keep the old comment above in case I don't understand
|
|
483 |
// what is going on but now
|
|
484 |
// Start the STW timer because it is used by ms_collection_begin()
|
|
485 |
// and ms_collection_end() to get the sweep time if a MS is being
|
|
486 |
// done in the foreground.
|
|
487 |
_STW_timer.reset();
|
|
488 |
_STW_timer.start();
|
|
489 |
}
|
|
490 |
|
|
491 |
void CMSAdaptiveSizePolicy::msc_collection_begin() {
|
|
492 |
if (PrintAdaptiveSizePolicy && Verbose) {
|
|
493 |
gclog_or_tty->print(" ");
|
|
494 |
gclog_or_tty->stamp();
|
|
495 |
gclog_or_tty->print(": msc_collection_begin ");
|
|
496 |
}
|
|
497 |
_STW_timer.stop();
|
|
498 |
_latest_cms_msc_end_to_msc_start_time_secs = _STW_timer.seconds();
|
|
499 |
if (PrintAdaptiveSizePolicy && Verbose) {
|
|
500 |
gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::msc_collection_begin: "
|
|
501 |
"mutator time %f",
|
|
502 |
_latest_cms_msc_end_to_msc_start_time_secs);
|
|
503 |
}
|
|
504 |
avg_msc_interval()->sample(_latest_cms_msc_end_to_msc_start_time_secs);
|
|
505 |
_STW_timer.reset();
|
|
506 |
_STW_timer.start();
|
|
507 |
}
|
|
508 |
|
|
509 |
void CMSAdaptiveSizePolicy::msc_collection_end(GCCause::Cause gc_cause) {
|
|
510 |
if (PrintAdaptiveSizePolicy && Verbose) {
|
|
511 |
gclog_or_tty->print(" ");
|
|
512 |
gclog_or_tty->stamp();
|
|
513 |
gclog_or_tty->print(": msc_collection_end ");
|
|
514 |
}
|
|
515 |
_STW_timer.stop();
|
|
516 |
if (gc_cause != GCCause::_java_lang_system_gc ||
|
|
517 |
UseAdaptiveSizePolicyWithSystemGC) {
|
|
518 |
double msc_pause_in_seconds = _STW_timer.seconds();
|
|
519 |
if ((_latest_cms_msc_end_to_msc_start_time_secs > 0.0) &&
|
|
520 |
(msc_pause_in_seconds > 0.0)) {
|
|
521 |
avg_msc_pause()->sample(msc_pause_in_seconds);
|
|
522 |
double mutator_time_in_seconds = 0.0;
|
|
523 |
if (_latest_cms_collection_end_to_collection_start_secs == 0.0) {
|
|
524 |
// This assertion may fail because of time stamp gradularity.
|
|
525 |
// Comment it out and investiage it at a later time. The large
|
|
526 |
// time stamp granularity occurs on some older linux systems.
|
|
527 |
#ifndef CLOCK_GRANULARITY_TOO_LARGE
|
|
528 |
assert((_latest_cms_concurrent_marking_time_secs == 0.0) &&
|
|
529 |
(_latest_cms_concurrent_precleaning_time_secs == 0.0) &&
|
|
530 |
(_latest_cms_concurrent_sweeping_time_secs == 0.0),
|
|
531 |
"There should not be any concurrent time");
|
|
532 |
#endif
|
|
533 |
// A concurrent collection did not start. Mutator time
|
|
534 |
// between collections comes from the STW MSC timer.
|
|
535 |
mutator_time_in_seconds = _latest_cms_msc_end_to_msc_start_time_secs;
|
|
536 |
} else {
|
|
537 |
// The concurrent collection did start so count the mutator
|
|
538 |
// time to the start of the concurrent collection. In this
|
|
539 |
// case the _latest_cms_msc_end_to_msc_start_time_secs measures
|
|
540 |
// the time between the initial mark or remark and the
|
|
541 |
// start of the MSC. That has no real meaning.
|
|
542 |
mutator_time_in_seconds = _latest_cms_collection_end_to_collection_start_secs;
|
|
543 |
}
|
|
544 |
|
|
545 |
double latest_cms_sum_concurrent_phases_time_secs =
|
|
546 |
concurrent_collection_time();
|
|
547 |
double interval_in_seconds =
|
|
548 |
mutator_time_in_seconds +
|
|
549 |
_latest_cms_initial_mark_start_to_end_time_secs +
|
|
550 |
_latest_cms_remark_start_to_end_time_secs +
|
|
551 |
latest_cms_sum_concurrent_phases_time_secs +
|
|
552 |
msc_pause_in_seconds;
|
|
553 |
|
|
554 |
if (PrintAdaptiveSizePolicy && Verbose) {
|
|
555 |
gclog_or_tty->print_cr(" interval_in_seconds %f \n"
|
|
556 |
" mutator_time_in_seconds %f \n"
|
|
557 |
" _latest_cms_initial_mark_start_to_end_time_secs %f\n"
|
|
558 |
" _latest_cms_remark_start_to_end_time_secs %f\n"
|
|
559 |
" latest_cms_sum_concurrent_phases_time_secs %f\n"
|
|
560 |
" msc_pause_in_seconds %f\n",
|
|
561 |
interval_in_seconds,
|
|
562 |
mutator_time_in_seconds,
|
|
563 |
_latest_cms_initial_mark_start_to_end_time_secs,
|
|
564 |
_latest_cms_remark_start_to_end_time_secs,
|
|
565 |
latest_cms_sum_concurrent_phases_time_secs,
|
|
566 |
msc_pause_in_seconds);
|
|
567 |
}
|
|
568 |
|
|
569 |
// The concurrent cost is wasted cost but it should be
|
|
570 |
// included.
|
|
571 |
double concurrent_cost = concurrent_collection_cost(interval_in_seconds);
|
|
572 |
|
|
573 |
// Initial mark and remark, also wasted.
|
|
574 |
double STW_time_in_seconds = _latest_cms_initial_mark_start_to_end_time_secs +
|
|
575 |
_latest_cms_remark_start_to_end_time_secs;
|
|
576 |
double STW_collection_cost =
|
|
577 |
collection_cost(STW_time_in_seconds, interval_in_seconds) +
|
|
578 |
concurrent_cost;
|
|
579 |
|
|
580 |
if (PrintAdaptiveSizePolicy && Verbose) {
|
|
581 |
gclog_or_tty->print_cr(" msc_collection_end:\n"
|
|
582 |
"_latest_cms_collection_end_to_collection_start_secs %f\n"
|
|
583 |
"_latest_cms_msc_end_to_msc_start_time_secs %f\n"
|
|
584 |
"_latest_cms_initial_mark_start_to_end_time_secs %f\n"
|
|
585 |
"_latest_cms_remark_start_to_end_time_secs %f\n"
|
|
586 |
"latest_cms_sum_concurrent_phases_time_secs %f\n",
|
|
587 |
_latest_cms_collection_end_to_collection_start_secs,
|
|
588 |
_latest_cms_msc_end_to_msc_start_time_secs,
|
|
589 |
_latest_cms_initial_mark_start_to_end_time_secs,
|
|
590 |
_latest_cms_remark_start_to_end_time_secs,
|
|
591 |
latest_cms_sum_concurrent_phases_time_secs);
|
|
592 |
|
|
593 |
gclog_or_tty->print_cr(" msc_collection_end: \n"
|
|
594 |
"latest_cms_sum_concurrent_phases_time_secs %f\n"
|
|
595 |
"STW_time_in_seconds %f\n"
|
|
596 |
"msc_pause_in_seconds %f\n",
|
|
597 |
latest_cms_sum_concurrent_phases_time_secs,
|
|
598 |
STW_time_in_seconds,
|
|
599 |
msc_pause_in_seconds);
|
|
600 |
}
|
|
601 |
|
|
602 |
double cost = concurrent_cost + STW_collection_cost +
|
|
603 |
collection_cost(msc_pause_in_seconds, interval_in_seconds);
|
|
604 |
|
|
605 |
_avg_msc_gc_cost->sample(cost);
|
|
606 |
|
|
607 |
// Average this ms cost into all the other types gc costs
|
|
608 |
avg_major_gc_cost()->sample(cost);
|
|
609 |
|
|
610 |
// Sample for performance counter
|
|
611 |
_avg_msc_interval->sample(interval_in_seconds);
|
|
612 |
if (PrintAdaptiveSizePolicy && Verbose) {
|
|
613 |
gclog_or_tty->print("cmsAdaptiveSizePolicy::msc_collection_end: "
|
|
614 |
"MSC gc cost: %f average: %f", cost,
|
|
615 |
_avg_msc_gc_cost->average());
|
|
616 |
|
|
617 |
double msc_pause_in_ms = msc_pause_in_seconds * MILLIUNITS;
|
|
618 |
gclog_or_tty->print_cr(" MSC pause: %f (ms) MSC period %f (ms)",
|
|
619 |
msc_pause_in_ms, (double) interval_in_seconds * MILLIUNITS);
|
|
620 |
}
|
|
621 |
}
|
|
622 |
}
|
|
623 |
|
|
624 |
clear_internal_time_intervals();
|
|
625 |
|
|
626 |
// Can this call be put into the epilogue?
|
|
627 |
set_first_after_collection();
|
|
628 |
|
|
629 |
// The concurrent phases keeps track of it's own mutator interval
|
|
630 |
// with this timer. This allows the stop-the-world phase to
|
|
631 |
// be included in the mutator time so that the stop-the-world time
|
|
632 |
// is not double counted. Reset and start it.
|
|
633 |
_concurrent_timer.stop();
|
|
634 |
_concurrent_timer.reset();
|
|
635 |
_concurrent_timer.start();
|
|
636 |
|
|
637 |
_STW_timer.reset();
|
|
638 |
_STW_timer.start();
|
|
639 |
}
|
|
640 |
|
|
641 |
void CMSAdaptiveSizePolicy::ms_collection_begin() {
|
|
642 |
if (PrintAdaptiveSizePolicy && Verbose) {
|
|
643 |
gclog_or_tty->print(" ");
|
|
644 |
gclog_or_tty->stamp();
|
|
645 |
gclog_or_tty->print(": ms_collection_begin ");
|
|
646 |
}
|
|
647 |
_STW_timer.stop();
|
|
648 |
_latest_cms_ms_end_to_ms_start = _STW_timer.seconds();
|
|
649 |
if (PrintAdaptiveSizePolicy && Verbose) {
|
|
650 |
gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::ms_collection_begin: "
|
|
651 |
"mutator time %f",
|
|
652 |
_latest_cms_ms_end_to_ms_start);
|
|
653 |
}
|
|
654 |
avg_ms_interval()->sample(_STW_timer.seconds());
|
|
655 |
_STW_timer.reset();
|
|
656 |
_STW_timer.start();
|
|
657 |
}
|
|
658 |
|
|
659 |
void CMSAdaptiveSizePolicy::ms_collection_end(GCCause::Cause gc_cause) {
|
|
660 |
if (PrintAdaptiveSizePolicy && Verbose) {
|
|
661 |
gclog_or_tty->print(" ");
|
|
662 |
gclog_or_tty->stamp();
|
|
663 |
gclog_or_tty->print(": ms_collection_end ");
|
|
664 |
}
|
|
665 |
_STW_timer.stop();
|
|
666 |
if (gc_cause != GCCause::_java_lang_system_gc ||
|
|
667 |
UseAdaptiveSizePolicyWithSystemGC) {
|
|
668 |
// The MS collection is a foreground collection that does all
|
|
669 |
// the parts of a mostly concurrent collection.
|
|
670 |
//
|
|
671 |
// For this collection include the cost of the
|
|
672 |
// initial mark
|
|
673 |
// remark
|
|
674 |
// all concurrent time (scaled down by the
|
|
675 |
// concurrent_processor_fraction). Some
|
|
676 |
// may be zero if the baton was passed before
|
|
677 |
// it was reached.
|
|
678 |
// concurrent marking
|
|
679 |
// sweeping
|
|
680 |
// resetting
|
|
681 |
// STW after baton was passed (STW_in_foreground_in_seconds)
|
|
682 |
double STW_in_foreground_in_seconds = _STW_timer.seconds();
|
|
683 |
|
|
684 |
double latest_cms_sum_concurrent_phases_time_secs =
|
|
685 |
concurrent_collection_time();
|
|
686 |
if (PrintAdaptiveSizePolicy && Verbose) {
|
|
687 |
gclog_or_tty->print_cr("\nCMSAdaptiveSizePolicy::ms_collecton_end "
|
|
688 |
"STW_in_foreground_in_seconds %f "
|
|
689 |
"_latest_cms_initial_mark_start_to_end_time_secs %f "
|
|
690 |
"_latest_cms_remark_start_to_end_time_secs %f "
|
|
691 |
"latest_cms_sum_concurrent_phases_time_secs %f "
|
|
692 |
"_latest_cms_ms_marking_start_to_end_time_secs %f "
|
|
693 |
"_latest_cms_ms_end_to_ms_start %f",
|
|
694 |
STW_in_foreground_in_seconds,
|
|
695 |
_latest_cms_initial_mark_start_to_end_time_secs,
|
|
696 |
_latest_cms_remark_start_to_end_time_secs,
|
|
697 |
latest_cms_sum_concurrent_phases_time_secs,
|
|
698 |
_latest_cms_ms_marking_start_to_end_time_secs,
|
|
699 |
_latest_cms_ms_end_to_ms_start);
|
|
700 |
}
|
|
701 |
|
|
702 |
double STW_marking_in_seconds = _latest_cms_initial_mark_start_to_end_time_secs +
|
|
703 |
_latest_cms_remark_start_to_end_time_secs;
|
|
704 |
#ifndef CLOCK_GRANULARITY_TOO_LARGE
|
|
705 |
assert(_latest_cms_ms_marking_start_to_end_time_secs == 0.0 ||
|
|
706 |
latest_cms_sum_concurrent_phases_time_secs == 0.0,
|
|
707 |
"marking done twice?");
|
|
708 |
#endif
|
|
709 |
double ms_time_in_seconds = STW_marking_in_seconds +
|
|
710 |
STW_in_foreground_in_seconds +
|
|
711 |
_latest_cms_ms_marking_start_to_end_time_secs +
|
|
712 |
scaled_concurrent_collection_time();
|
|
713 |
avg_ms_pause()->sample(ms_time_in_seconds);
|
|
714 |
// Use the STW costs from the initial mark and remark plus
|
|
715 |
// the cost of the concurrent phase to calculate a
|
|
716 |
// collection cost.
|
|
717 |
double cost = 0.0;
|
|
718 |
if ((_latest_cms_ms_end_to_ms_start > 0.0) &&
|
|
719 |
(ms_time_in_seconds > 0.0)) {
|
|
720 |
double interval_in_seconds =
|
|
721 |
_latest_cms_ms_end_to_ms_start + ms_time_in_seconds;
|
|
722 |
|
|
723 |
if (PrintAdaptiveSizePolicy && Verbose) {
|
|
724 |
gclog_or_tty->print_cr("\n ms_time_in_seconds %f "
|
|
725 |
"latest_cms_sum_concurrent_phases_time_secs %f "
|
|
726 |
"interval_in_seconds %f",
|
|
727 |
ms_time_in_seconds,
|
|
728 |
latest_cms_sum_concurrent_phases_time_secs,
|
|
729 |
interval_in_seconds);
|
|
730 |
}
|
|
731 |
|
|
732 |
cost = collection_cost(ms_time_in_seconds, interval_in_seconds);
|
|
733 |
|
|
734 |
_avg_ms_gc_cost->sample(cost);
|
|
735 |
// Average this ms cost into all the other types gc costs
|
|
736 |
avg_major_gc_cost()->sample(cost);
|
|
737 |
|
|
738 |
// Sample for performance counter
|
|
739 |
_avg_ms_interval->sample(interval_in_seconds);
|
|
740 |
}
|
|
741 |
if (PrintAdaptiveSizePolicy && Verbose) {
|
|
742 |
gclog_or_tty->print("cmsAdaptiveSizePolicy::ms_collection_end: "
|
|
743 |
"MS gc cost: %f average: %f", cost, _avg_ms_gc_cost->average());
|
|
744 |
|
|
745 |
double ms_time_in_ms = ms_time_in_seconds * MILLIUNITS;
|
|
746 |
gclog_or_tty->print_cr(" MS pause: %f (ms) MS period %f (ms)",
|
|
747 |
ms_time_in_ms,
|
|
748 |
_latest_cms_ms_end_to_ms_start * MILLIUNITS);
|
|
749 |
}
|
|
750 |
}
|
|
751 |
|
|
752 |
// Consider putting this code (here to end) into a
|
|
753 |
// method for convenience.
|
|
754 |
clear_internal_time_intervals();
|
|
755 |
|
|
756 |
set_first_after_collection();
|
|
757 |
|
|
758 |
// The concurrent phases keeps track of it's own mutator interval
|
|
759 |
// with this timer. This allows the stop-the-world phase to
|
|
760 |
// be included in the mutator time so that the stop-the-world time
|
|
761 |
// is not double counted. Reset and start it.
|
|
762 |
_concurrent_timer.stop();
|
|
763 |
_concurrent_timer.reset();
|
|
764 |
_concurrent_timer.start();
|
|
765 |
|
|
766 |
_STW_timer.reset();
|
|
767 |
_STW_timer.start();
|
|
768 |
}
|
|
769 |
|
|
770 |
void CMSAdaptiveSizePolicy::clear_internal_time_intervals() {
|
|
771 |
_latest_cms_reset_end_to_initial_mark_start_secs = 0.0;
|
|
772 |
_latest_cms_initial_mark_end_to_remark_start_secs = 0.0;
|
|
773 |
_latest_cms_collection_end_to_collection_start_secs = 0.0;
|
|
774 |
_latest_cms_concurrent_marking_time_secs = 0.0;
|
|
775 |
_latest_cms_concurrent_precleaning_time_secs = 0.0;
|
|
776 |
_latest_cms_concurrent_sweeping_time_secs = 0.0;
|
|
777 |
_latest_cms_msc_end_to_msc_start_time_secs = 0.0;
|
|
778 |
_latest_cms_ms_end_to_ms_start = 0.0;
|
|
779 |
_latest_cms_remark_start_to_end_time_secs = 0.0;
|
|
780 |
_latest_cms_initial_mark_start_to_end_time_secs = 0.0;
|
|
781 |
_latest_cms_ms_marking_start_to_end_time_secs = 0.0;
|
|
782 |
}
|
|
783 |
|
|
784 |
void CMSAdaptiveSizePolicy::clear_generation_free_space_flags() {
|
|
785 |
AdaptiveSizePolicy::clear_generation_free_space_flags();
|
|
786 |
|
|
787 |
set_change_young_gen_for_maj_pauses(0);
|
|
788 |
}
|
|
789 |
|
|
790 |
void CMSAdaptiveSizePolicy::concurrent_phases_resume() {
|
|
791 |
if (PrintAdaptiveSizePolicy && Verbose) {
|
|
792 |
gclog_or_tty->stamp();
|
|
793 |
gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::concurrent_phases_resume()");
|
|
794 |
}
|
|
795 |
_concurrent_timer.start();
|
|
796 |
}
|
|
797 |
|
|
798 |
double CMSAdaptiveSizePolicy::time_since_major_gc() const {
|
|
799 |
_concurrent_timer.stop();
|
|
800 |
double time_since_cms_gc = _concurrent_timer.seconds();
|
|
801 |
_concurrent_timer.start();
|
|
802 |
_STW_timer.stop();
|
|
803 |
double time_since_STW_gc = _STW_timer.seconds();
|
|
804 |
_STW_timer.start();
|
|
805 |
|
|
806 |
return MIN2(time_since_cms_gc, time_since_STW_gc);
|
|
807 |
}
|
|
808 |
|
|
809 |
double CMSAdaptiveSizePolicy::major_gc_interval_average_for_decay() const {
|
|
810 |
double cms_interval = _avg_concurrent_interval->average();
|
|
811 |
double msc_interval = _avg_msc_interval->average();
|
|
812 |
double ms_interval = _avg_ms_interval->average();
|
|
813 |
|
|
814 |
return MAX3(cms_interval, msc_interval, ms_interval);
|
|
815 |
}
|
|
816 |
|
|
817 |
double CMSAdaptiveSizePolicy::cms_gc_cost() const {
|
|
818 |
return avg_major_gc_cost()->average();
|
|
819 |
}
|
|
820 |
|
|
821 |
void CMSAdaptiveSizePolicy::ms_collection_marking_begin() {
|
|
822 |
_STW_timer.stop();
|
|
823 |
// Start accumumlating time for the marking in the STW timer.
|
|
824 |
_STW_timer.reset();
|
|
825 |
_STW_timer.start();
|
|
826 |
}
|
|
827 |
|
|
828 |
void CMSAdaptiveSizePolicy::ms_collection_marking_end(
|
|
829 |
GCCause::Cause gc_cause) {
|
|
830 |
_STW_timer.stop();
|
|
831 |
if (gc_cause != GCCause::_java_lang_system_gc ||
|
|
832 |
UseAdaptiveSizePolicyWithSystemGC) {
|
|
833 |
_latest_cms_ms_marking_start_to_end_time_secs = _STW_timer.seconds();
|
|
834 |
if (PrintAdaptiveSizePolicy && Verbose) {
|
|
835 |
gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::"
|
|
836 |
"msc_collection_marking_end: mutator time %f",
|
|
837 |
_latest_cms_ms_marking_start_to_end_time_secs);
|
|
838 |
}
|
|
839 |
}
|
|
840 |
_STW_timer.reset();
|
|
841 |
_STW_timer.start();
|
|
842 |
}
|
|
843 |
|
|
844 |
double CMSAdaptiveSizePolicy::gc_cost() const {
|
|
845 |
double cms_gen_cost = cms_gc_cost();
|
|
846 |
double result = MIN2(1.0, minor_gc_cost() + cms_gen_cost);
|
|
847 |
assert(result >= 0.0, "Both minor and major costs are non-negative");
|
|
848 |
return result;
|
|
849 |
}
|
|
850 |
|
|
851 |
// Cost of collection (unit-less)
|
|
852 |
double CMSAdaptiveSizePolicy::collection_cost(double pause_in_seconds,
|
|
853 |
double interval_in_seconds) {
|
|
854 |
// Cost of collection (unit-less)
|
|
855 |
double cost = 0.0;
|
|
856 |
if ((interval_in_seconds > 0.0) &&
|
|
857 |
(pause_in_seconds > 0.0)) {
|
|
858 |
cost =
|
|
859 |
pause_in_seconds / interval_in_seconds;
|
|
860 |
}
|
|
861 |
return cost;
|
|
862 |
}
|
|
863 |
|
|
864 |
size_t CMSAdaptiveSizePolicy::adjust_eden_for_pause_time(size_t cur_eden) {
|
|
865 |
size_t change = 0;
|
|
866 |
size_t desired_eden = cur_eden;
|
|
867 |
|
|
868 |
// reduce eden size
|
|
869 |
change = eden_decrement_aligned_down(cur_eden);
|
|
870 |
desired_eden = cur_eden - change;
|
|
871 |
|
|
872 |
if (PrintAdaptiveSizePolicy && Verbose) {
|
|
873 |
gclog_or_tty->print_cr(
|
|
874 |
"CMSAdaptiveSizePolicy::adjust_eden_for_pause_time "
|
|
875 |
"adjusting eden for pause time. "
|
|
876 |
" starting eden size " SIZE_FORMAT
|
|
877 |
" reduced eden size " SIZE_FORMAT
|
|
878 |
" eden delta " SIZE_FORMAT,
|
|
879 |
cur_eden, desired_eden, change);
|
|
880 |
}
|
|
881 |
|
|
882 |
return desired_eden;
|
|
883 |
}
|
|
884 |
|
|
885 |
size_t CMSAdaptiveSizePolicy::adjust_eden_for_throughput(size_t cur_eden) {
|
|
886 |
|
|
887 |
size_t desired_eden = cur_eden;
|
|
888 |
|
|
889 |
set_change_young_gen_for_throughput(increase_young_gen_for_througput_true);
|
|
890 |
|
|
891 |
size_t change = eden_increment_aligned_up(cur_eden);
|
|
892 |
size_t scaled_change = scale_by_gen_gc_cost(change, minor_gc_cost());
|
|
893 |
|
|
894 |
if (cur_eden + scaled_change > cur_eden) {
|
|
895 |
desired_eden = cur_eden + scaled_change;
|
|
896 |
}
|
|
897 |
|
|
898 |
_young_gen_change_for_minor_throughput++;
|
|
899 |
|
|
900 |
if (PrintAdaptiveSizePolicy && Verbose) {
|
|
901 |
gclog_or_tty->print_cr(
|
|
902 |
"CMSAdaptiveSizePolicy::adjust_eden_for_throughput "
|
|
903 |
"adjusting eden for throughput. "
|
|
904 |
" starting eden size " SIZE_FORMAT
|
|
905 |
" increased eden size " SIZE_FORMAT
|
|
906 |
" eden delta " SIZE_FORMAT,
|
|
907 |
cur_eden, desired_eden, scaled_change);
|
|
908 |
}
|
|
909 |
|
|
910 |
return desired_eden;
|
|
911 |
}
|
|
912 |
|
|
913 |
size_t CMSAdaptiveSizePolicy::adjust_eden_for_footprint(size_t cur_eden) {
|
|
914 |
|
|
915 |
set_decrease_for_footprint(decrease_young_gen_for_footprint_true);
|
|
916 |
|
|
917 |
size_t change = eden_decrement(cur_eden);
|
|
918 |
size_t desired_eden_size = cur_eden - change;
|
|
919 |
|
|
920 |
if (PrintAdaptiveSizePolicy && Verbose) {
|
|
921 |
gclog_or_tty->print_cr(
|
|
922 |
"CMSAdaptiveSizePolicy::adjust_eden_for_footprint "
|
|
923 |
"adjusting eden for footprint. "
|
|
924 |
" starting eden size " SIZE_FORMAT
|
|
925 |
" reduced eden size " SIZE_FORMAT
|
|
926 |
" eden delta " SIZE_FORMAT,
|
|
927 |
cur_eden, desired_eden_size, change);
|
|
928 |
}
|
|
929 |
return desired_eden_size;
|
|
930 |
}
|
|
931 |
|
|
932 |
// The eden and promo versions should be combined if possible.
|
|
933 |
// They are the same except that the sizes of the decrement
|
|
934 |
// and increment are different for eden and promo.
|
|
935 |
size_t CMSAdaptiveSizePolicy::eden_decrement_aligned_down(size_t cur_eden) {
|
|
936 |
size_t delta = eden_decrement(cur_eden);
|
|
937 |
return align_size_down(delta, generation_alignment());
|
|
938 |
}
|
|
939 |
|
|
940 |
size_t CMSAdaptiveSizePolicy::eden_increment_aligned_up(size_t cur_eden) {
|
|
941 |
size_t delta = eden_increment(cur_eden);
|
|
942 |
return align_size_up(delta, generation_alignment());
|
|
943 |
}
|
|
944 |
|
|
945 |
size_t CMSAdaptiveSizePolicy::promo_decrement_aligned_down(size_t cur_promo) {
|
|
946 |
size_t delta = promo_decrement(cur_promo);
|
|
947 |
return align_size_down(delta, generation_alignment());
|
|
948 |
}
|
|
949 |
|
|
950 |
size_t CMSAdaptiveSizePolicy::promo_increment_aligned_up(size_t cur_promo) {
|
|
951 |
size_t delta = promo_increment(cur_promo);
|
|
952 |
return align_size_up(delta, generation_alignment());
|
|
953 |
}
|
|
954 |
|
|
955 |
|
|
956 |
void CMSAdaptiveSizePolicy::compute_young_generation_free_space(size_t cur_eden,
|
|
957 |
size_t max_eden_size)
|
|
958 |
{
|
|
959 |
size_t desired_eden_size = cur_eden;
|
|
960 |
size_t eden_limit = max_eden_size;
|
|
961 |
|
|
962 |
// Printout input
|
|
963 |
if (PrintGC && PrintAdaptiveSizePolicy) {
|
|
964 |
gclog_or_tty->print_cr(
|
|
965 |
"CMSAdaptiveSizePolicy::compute_young_generation_free_space: "
|
|
966 |
"cur_eden " SIZE_FORMAT,
|
|
967 |
cur_eden);
|
|
968 |
}
|
|
969 |
|
|
970 |
// Used for diagnostics
|
|
971 |
clear_generation_free_space_flags();
|
|
972 |
|
|
973 |
if (_avg_minor_pause->padded_average() > gc_pause_goal_sec()) {
|
|
974 |
if (minor_pause_young_estimator()->decrement_will_decrease()) {
|
|
975 |
// If the minor pause is too long, shrink the young gen.
|
|
976 |
set_change_young_gen_for_min_pauses(
|
|
977 |
decrease_young_gen_for_min_pauses_true);
|
|
978 |
desired_eden_size = adjust_eden_for_pause_time(desired_eden_size);
|
|
979 |
}
|
|
980 |
} else if ((avg_remark_pause()->padded_average() > gc_pause_goal_sec()) ||
|
|
981 |
(avg_initial_pause()->padded_average() > gc_pause_goal_sec())) {
|
|
982 |
// The remark or initial pauses are not meeting the goal. Should
|
|
983 |
// the generation be shrunk?
|
|
984 |
if (get_and_clear_first_after_collection() &&
|
|
985 |
((avg_remark_pause()->padded_average() > gc_pause_goal_sec() &&
|
|
986 |
remark_pause_young_estimator()->decrement_will_decrease()) ||
|
|
987 |
(avg_initial_pause()->padded_average() > gc_pause_goal_sec() &&
|
|
988 |
initial_pause_young_estimator()->decrement_will_decrease()))) {
|
|
989 |
|
|
990 |
set_change_young_gen_for_maj_pauses(
|
|
991 |
decrease_young_gen_for_maj_pauses_true);
|
|
992 |
|
|
993 |
// If the remark or initial pause is too long and this is the
|
|
994 |
// first young gen collection after a cms collection, shrink
|
|
995 |
// the young gen.
|
|
996 |
desired_eden_size = adjust_eden_for_pause_time(desired_eden_size);
|
|
997 |
}
|
|
998 |
// If not the first young gen collection after a cms collection,
|
|
999 |
// don't do anything. In this case an adjustment has already
|
|
1000 |
// been made and the results of the adjustment has not yet been
|
|
1001 |
// measured.
|
|
1002 |
} else if ((minor_gc_cost() >= 0.0) &&
|
|
1003 |
(adjusted_mutator_cost() < _throughput_goal)) {
|
|
1004 |
desired_eden_size = adjust_eden_for_throughput(desired_eden_size);
|
|
1005 |
} else {
|
|
1006 |
desired_eden_size = adjust_eden_for_footprint(desired_eden_size);
|
|
1007 |
}
|
|
1008 |
|
|
1009 |
if (PrintGC && PrintAdaptiveSizePolicy) {
|
|
1010 |
gclog_or_tty->print_cr(
|
|
1011 |
"CMSAdaptiveSizePolicy::compute_young_generation_free_space limits:"
|
|
1012 |
" desired_eden_size: " SIZE_FORMAT
|
|
1013 |
" old_eden_size: " SIZE_FORMAT,
|
|
1014 |
desired_eden_size, cur_eden);
|
|
1015 |
}
|
|
1016 |
|
|
1017 |
set_eden_size(desired_eden_size);
|
|
1018 |
}
|
|
1019 |
|
|
1020 |
size_t CMSAdaptiveSizePolicy::adjust_promo_for_pause_time(size_t cur_promo) {
|
|
1021 |
size_t change = 0;
|
|
1022 |
size_t desired_promo = cur_promo;
|
|
1023 |
// Move this test up to caller like the adjust_eden_for_pause_time()
|
|
1024 |
// call.
|
|
1025 |
if ((AdaptiveSizePausePolicy == 0) &&
|
|
1026 |
((avg_remark_pause()->padded_average() > gc_pause_goal_sec()) ||
|
|
1027 |
(avg_initial_pause()->padded_average() > gc_pause_goal_sec()))) {
|
|
1028 |
set_change_old_gen_for_maj_pauses(decrease_old_gen_for_maj_pauses_true);
|
|
1029 |
change = promo_decrement_aligned_down(cur_promo);
|
|
1030 |
desired_promo = cur_promo - change;
|
|
1031 |
} else if ((AdaptiveSizePausePolicy > 0) &&
|
|
1032 |
(((avg_remark_pause()->padded_average() > gc_pause_goal_sec()) &&
|
|
1033 |
remark_pause_old_estimator()->decrement_will_decrease()) ||
|
|
1034 |
((avg_initial_pause()->padded_average() > gc_pause_goal_sec()) &&
|
|
1035 |
initial_pause_old_estimator()->decrement_will_decrease()))) {
|
|
1036 |
set_change_old_gen_for_maj_pauses(decrease_old_gen_for_maj_pauses_true);
|
|
1037 |
change = promo_decrement_aligned_down(cur_promo);
|
|
1038 |
desired_promo = cur_promo - change;
|
|
1039 |
}
|
|
1040 |
|
|
1041 |
if ((change != 0) &&PrintAdaptiveSizePolicy && Verbose) {
|
|
1042 |
gclog_or_tty->print_cr(
|
|
1043 |
"CMSAdaptiveSizePolicy::adjust_promo_for_pause_time "
|
|
1044 |
"adjusting promo for pause time. "
|
|
1045 |
" starting promo size " SIZE_FORMAT
|
|
1046 |
" reduced promo size " SIZE_FORMAT
|
|
1047 |
" promo delta " SIZE_FORMAT,
|
|
1048 |
cur_promo, desired_promo, change);
|
|
1049 |
}
|
|
1050 |
|
|
1051 |
return desired_promo;
|
|
1052 |
}
|
|
1053 |
|
|
1054 |
// Try to share this with PS.
|
|
1055 |
size_t CMSAdaptiveSizePolicy::scale_by_gen_gc_cost(size_t base_change,
|
|
1056 |
double gen_gc_cost) {
|
|
1057 |
|
|
1058 |
// Calculate the change to use for the tenured gen.
|
|
1059 |
size_t scaled_change = 0;
|
|
1060 |
// Can the increment to the generation be scaled?
|
|
1061 |
if (gc_cost() >= 0.0 && gen_gc_cost >= 0.0) {
|
|
1062 |
double scale_by_ratio = gen_gc_cost / gc_cost();
|
|
1063 |
scaled_change =
|
|
1064 |
(size_t) (scale_by_ratio * (double) base_change);
|
|
1065 |
if (PrintAdaptiveSizePolicy && Verbose) {
|
|
1066 |
gclog_or_tty->print_cr(
|
|
1067 |
"Scaled tenured increment: " SIZE_FORMAT " by %f down to "
|
|
1068 |
SIZE_FORMAT,
|
|
1069 |
base_change, scale_by_ratio, scaled_change);
|
|
1070 |
}
|
|
1071 |
} else if (gen_gc_cost >= 0.0) {
|
|
1072 |
// Scaling is not going to work. If the major gc time is the
|
|
1073 |
// larger than the other GC costs, give it a full increment.
|
|
1074 |
if (gen_gc_cost >= (gc_cost() - gen_gc_cost)) {
|
|
1075 |
scaled_change = base_change;
|
|
1076 |
}
|
|
1077 |
} else {
|
|
1078 |
// Don't expect to get here but it's ok if it does
|
|
1079 |
// in the product build since the delta will be 0
|
|
1080 |
// and nothing will change.
|
|
1081 |
assert(false, "Unexpected value for gc costs");
|
|
1082 |
}
|
|
1083 |
|
|
1084 |
return scaled_change;
|
|
1085 |
}
|
|
1086 |
|
|
1087 |
size_t CMSAdaptiveSizePolicy::adjust_promo_for_throughput(size_t cur_promo) {
|
|
1088 |
|
|
1089 |
size_t desired_promo = cur_promo;
|
|
1090 |
|
|
1091 |
set_change_old_gen_for_throughput(increase_old_gen_for_throughput_true);
|
|
1092 |
|
|
1093 |
size_t change = promo_increment_aligned_up(cur_promo);
|
|
1094 |
size_t scaled_change = scale_by_gen_gc_cost(change, major_gc_cost());
|
|
1095 |
|
|
1096 |
if (cur_promo + scaled_change > cur_promo) {
|
|
1097 |
desired_promo = cur_promo + scaled_change;
|
|
1098 |
}
|
|
1099 |
|
|
1100 |
_old_gen_change_for_major_throughput++;
|
|
1101 |
|
|
1102 |
if (PrintAdaptiveSizePolicy && Verbose) {
|
|
1103 |
gclog_or_tty->print_cr(
|
|
1104 |
"CMSAdaptiveSizePolicy::adjust_promo_for_throughput "
|
|
1105 |
"adjusting promo for throughput. "
|
|
1106 |
" starting promo size " SIZE_FORMAT
|
|
1107 |
" increased promo size " SIZE_FORMAT
|
|
1108 |
" promo delta " SIZE_FORMAT,
|
|
1109 |
cur_promo, desired_promo, scaled_change);
|
|
1110 |
}
|
|
1111 |
|
|
1112 |
return desired_promo;
|
|
1113 |
}
|
|
1114 |
|
|
1115 |
size_t CMSAdaptiveSizePolicy::adjust_promo_for_footprint(size_t cur_promo,
|
|
1116 |
size_t cur_eden) {
|
|
1117 |
|
|
1118 |
set_decrease_for_footprint(decrease_young_gen_for_footprint_true);
|
|
1119 |
|
|
1120 |
size_t change = promo_decrement(cur_promo);
|
|
1121 |
size_t desired_promo_size = cur_promo - change;
|
|
1122 |
|
|
1123 |
if (PrintAdaptiveSizePolicy && Verbose) {
|
|
1124 |
gclog_or_tty->print_cr(
|
|
1125 |
"CMSAdaptiveSizePolicy::adjust_promo_for_footprint "
|
|
1126 |
"adjusting promo for footprint. "
|
|
1127 |
" starting promo size " SIZE_FORMAT
|
|
1128 |
" reduced promo size " SIZE_FORMAT
|
|
1129 |
" promo delta " SIZE_FORMAT,
|
|
1130 |
cur_promo, desired_promo_size, change);
|
|
1131 |
}
|
|
1132 |
return desired_promo_size;
|
|
1133 |
}
|
|
1134 |
|
|
1135 |
void CMSAdaptiveSizePolicy::compute_tenured_generation_free_space(
|
|
1136 |
size_t cur_tenured_free,
|
|
1137 |
size_t max_tenured_available,
|
|
1138 |
size_t cur_eden) {
|
|
1139 |
// This can be bad if the desired value grows/shrinks without
|
|
1140 |
// any connection to the read free space
|
|
1141 |
size_t desired_promo_size = promo_size();
|
|
1142 |
size_t tenured_limit = max_tenured_available;
|
|
1143 |
|
|
1144 |
// Printout input
|
|
1145 |
if (PrintGC && PrintAdaptiveSizePolicy) {
|
|
1146 |
gclog_or_tty->print_cr(
|
|
1147 |
"CMSAdaptiveSizePolicy::compute_tenured_generation_free_space: "
|
|
1148 |
"cur_tenured_free " SIZE_FORMAT
|
|
1149 |
" max_tenured_available " SIZE_FORMAT,
|
|
1150 |
cur_tenured_free, max_tenured_available);
|
|
1151 |
}
|
|
1152 |
|
|
1153 |
// Used for diagnostics
|
|
1154 |
clear_generation_free_space_flags();
|
|
1155 |
|
|
1156 |
set_decide_at_full_gc(decide_at_full_gc_true);
|
|
1157 |
if (avg_remark_pause()->padded_average() > gc_pause_goal_sec() ||
|
|
1158 |
avg_initial_pause()->padded_average() > gc_pause_goal_sec()) {
|
|
1159 |
desired_promo_size = adjust_promo_for_pause_time(cur_tenured_free);
|
|
1160 |
} else if (avg_minor_pause()->padded_average() > gc_pause_goal_sec()) {
|
|
1161 |
// Nothing to do since the minor collections are too large and
|
|
1162 |
// this method only deals with the cms generation.
|
|
1163 |
} else if ((cms_gc_cost() >= 0.0) &&
|
|
1164 |
(adjusted_mutator_cost() < _throughput_goal)) {
|
|
1165 |
desired_promo_size = adjust_promo_for_throughput(cur_tenured_free);
|
|
1166 |
} else {
|
|
1167 |
desired_promo_size = adjust_promo_for_footprint(cur_tenured_free,
|
|
1168 |
cur_eden);
|
|
1169 |
}
|
|
1170 |
|
|
1171 |
if (PrintGC && PrintAdaptiveSizePolicy) {
|
|
1172 |
gclog_or_tty->print_cr(
|
|
1173 |
"CMSAdaptiveSizePolicy::compute_tenured_generation_free_space limits:"
|
|
1174 |
" desired_promo_size: " SIZE_FORMAT
|
|
1175 |
" old_promo_size: " SIZE_FORMAT,
|
|
1176 |
desired_promo_size, cur_tenured_free);
|
|
1177 |
}
|
|
1178 |
|
|
1179 |
set_promo_size(desired_promo_size);
|
|
1180 |
}
|
|
1181 |
|
|
1182 |
int CMSAdaptiveSizePolicy::compute_survivor_space_size_and_threshold(
|
|
1183 |
bool is_survivor_overflow,
|
|
1184 |
int tenuring_threshold,
|
|
1185 |
size_t survivor_limit) {
|
|
1186 |
assert(survivor_limit >= generation_alignment(),
|
|
1187 |
"survivor_limit too small");
|
|
1188 |
assert((size_t)align_size_down(survivor_limit, generation_alignment())
|
|
1189 |
== survivor_limit, "survivor_limit not aligned");
|
|
1190 |
|
|
1191 |
// Change UsePSAdaptiveSurvivorSizePolicy -> UseAdaptiveSurvivorSizePolicy?
|
|
1192 |
if (!UsePSAdaptiveSurvivorSizePolicy ||
|
|
1193 |
!young_gen_policy_is_ready()) {
|
|
1194 |
return tenuring_threshold;
|
|
1195 |
}
|
|
1196 |
|
|
1197 |
// We'll decide whether to increase or decrease the tenuring
|
|
1198 |
// threshold based partly on the newly computed survivor size
|
|
1199 |
// (if we hit the maximum limit allowed, we'll always choose to
|
|
1200 |
// decrement the threshold).
|
|
1201 |
bool incr_tenuring_threshold = false;
|
|
1202 |
bool decr_tenuring_threshold = false;
|
|
1203 |
|
|
1204 |
set_decrement_tenuring_threshold_for_gc_cost(false);
|
|
1205 |
set_increment_tenuring_threshold_for_gc_cost(false);
|
|
1206 |
set_decrement_tenuring_threshold_for_survivor_limit(false);
|
|
1207 |
|
|
1208 |
if (!is_survivor_overflow) {
|
|
1209 |
// Keep running averages on how much survived
|
|
1210 |
|
|
1211 |
// We use the tenuring threshold to equalize the cost of major
|
|
1212 |
// and minor collections.
|
|
1213 |
// ThresholdTolerance is used to indicate how sensitive the
|
|
1214 |
// tenuring threshold is to differences in cost betweent the
|
|
1215 |
// collection types.
|
|
1216 |
|
|
1217 |
// Get the times of interest. This involves a little work, so
|
|
1218 |
// we cache the values here.
|
|
1219 |
const double major_cost = major_gc_cost();
|
|
1220 |
const double minor_cost = minor_gc_cost();
|
|
1221 |
|
|
1222 |
if (minor_cost > major_cost * _threshold_tolerance_percent) {
|
|
1223 |
// Minor times are getting too long; lower the threshold so
|
|
1224 |
// less survives and more is promoted.
|
|
1225 |
decr_tenuring_threshold = true;
|
|
1226 |
set_decrement_tenuring_threshold_for_gc_cost(true);
|
|
1227 |
} else if (major_cost > minor_cost * _threshold_tolerance_percent) {
|
|
1228 |
// Major times are too long, so we want less promotion.
|
|
1229 |
incr_tenuring_threshold = true;
|
|
1230 |
set_increment_tenuring_threshold_for_gc_cost(true);
|
|
1231 |
}
|
|
1232 |
|
|
1233 |
} else {
|
|
1234 |
// Survivor space overflow occurred, so promoted and survived are
|
|
1235 |
// not accurate. We'll make our best guess by combining survived
|
|
1236 |
// and promoted and count them as survivors.
|
|
1237 |
//
|
|
1238 |
// We'll lower the tenuring threshold to see if we can correct
|
|
1239 |
// things. Also, set the survivor size conservatively. We're
|
|
1240 |
// trying to avoid many overflows from occurring if defnew size
|
|
1241 |
// is just too small.
|
|
1242 |
|
|
1243 |
decr_tenuring_threshold = true;
|
|
1244 |
}
|
|
1245 |
|
|
1246 |
// The padded average also maintains a deviation from the average;
|
|
1247 |
// we use this to see how good of an estimate we have of what survived.
|
|
1248 |
// We're trying to pad the survivor size as little as possible without
|
|
1249 |
// overflowing the survivor spaces.
|
|
1250 |
size_t target_size = align_size_up((size_t)_avg_survived->padded_average(),
|
|
1251 |
generation_alignment());
|
|
1252 |
target_size = MAX2(target_size, generation_alignment());
|
|
1253 |
|
|
1254 |
if (target_size > survivor_limit) {
|
|
1255 |
// Target size is bigger than we can handle. Let's also reduce
|
|
1256 |
// the tenuring threshold.
|
|
1257 |
target_size = survivor_limit;
|
|
1258 |
decr_tenuring_threshold = true;
|
|
1259 |
set_decrement_tenuring_threshold_for_survivor_limit(true);
|
|
1260 |
}
|
|
1261 |
|
|
1262 |
// Finally, increment or decrement the tenuring threshold, as decided above.
|
|
1263 |
// We test for decrementing first, as we might have hit the target size
|
|
1264 |
// limit.
|
|
1265 |
if (decr_tenuring_threshold && !(AlwaysTenure || NeverTenure)) {
|
|
1266 |
if (tenuring_threshold > 1) {
|
|
1267 |
tenuring_threshold--;
|
|
1268 |
}
|
|
1269 |
} else if (incr_tenuring_threshold && !(AlwaysTenure || NeverTenure)) {
|
|
1270 |
if (tenuring_threshold < MaxTenuringThreshold) {
|
|
1271 |
tenuring_threshold++;
|
|
1272 |
}
|
|
1273 |
}
|
|
1274 |
|
|
1275 |
// We keep a running average of the amount promoted which is used
|
|
1276 |
// to decide when we should collect the old generation (when
|
|
1277 |
// the amount of old gen free space is less than what we expect to
|
|
1278 |
// promote).
|
|
1279 |
|
|
1280 |
if (PrintAdaptiveSizePolicy) {
|
|
1281 |
// A little more detail if Verbose is on
|
|
1282 |
GenCollectedHeap* gch = GenCollectedHeap::heap();
|
|
1283 |
if (Verbose) {
|
|
1284 |
gclog_or_tty->print( " avg_survived: %f"
|
|
1285 |
" avg_deviation: %f",
|
|
1286 |
_avg_survived->average(),
|
|
1287 |
_avg_survived->deviation());
|
|
1288 |
}
|
|
1289 |
|
|
1290 |
gclog_or_tty->print( " avg_survived_padded_avg: %f",
|
|
1291 |
_avg_survived->padded_average());
|
|
1292 |
|
|
1293 |
if (Verbose) {
|
|
1294 |
gclog_or_tty->print( " avg_promoted_avg: %f"
|
|
1295 |
" avg_promoted_dev: %f",
|
|
1296 |
gch->gc_stats(1)->avg_promoted()->average(),
|
|
1297 |
gch->gc_stats(1)->avg_promoted()->deviation());
|
|
1298 |
}
|
|
1299 |
|
|
1300 |
gclog_or_tty->print( " avg_promoted_padded_avg: %f"
|
|
1301 |
" avg_pretenured_padded_avg: %f"
|
|
1302 |
" tenuring_thresh: %d"
|
|
1303 |
" target_size: " SIZE_FORMAT
|
|
1304 |
" survivor_limit: " SIZE_FORMAT,
|
|
1305 |
gch->gc_stats(1)->avg_promoted()->padded_average(),
|
|
1306 |
_avg_pretenured->padded_average(),
|
|
1307 |
tenuring_threshold, target_size, survivor_limit);
|
|
1308 |
gclog_or_tty->cr();
|
|
1309 |
}
|
|
1310 |
|
|
1311 |
set_survivor_size(target_size);
|
|
1312 |
|
|
1313 |
return tenuring_threshold;
|
|
1314 |
}
|
|
1315 |
|
|
1316 |
bool CMSAdaptiveSizePolicy::get_and_clear_first_after_collection() {
|
|
1317 |
bool result = _first_after_collection;
|
|
1318 |
_first_after_collection = false;
|
|
1319 |
return result;
|
|
1320 |
}
|
|
1321 |
|
|
1322 |
bool CMSAdaptiveSizePolicy::print_adaptive_size_policy_on(
|
|
1323 |
outputStream* st) const {
|
|
1324 |
|
|
1325 |
if (!UseAdaptiveSizePolicy) return false;
|
|
1326 |
|
|
1327 |
GenCollectedHeap* gch = GenCollectedHeap::heap();
|
|
1328 |
Generation* gen0 = gch->get_gen(0);
|
|
1329 |
DefNewGeneration* def_new = gen0->as_DefNewGeneration();
|
|
1330 |
return
|
|
1331 |
AdaptiveSizePolicy::print_adaptive_size_policy_on(
|
|
1332 |
st,
|
|
1333 |
def_new->tenuring_threshold());
|
|
1334 |
}
|