author | goetz |
Thu, 20 Jun 2013 16:30:44 -0700 | |
changeset 22807 | 1cf02ef734e2 |
parent 15871 | b04dd94da4e6 |
child 22828 | 17ecb098bc1e |
permissions | -rw-r--r-- |
1 | 1 |
/* |
13963
e5b53c306fb5
7197424: update copyright year to match last edit in jdk8 hotspot repository
mikael
parents:
11567
diff
changeset
|
2 |
* Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved. |
1 | 3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 |
* |
|
5 |
* This code is free software; you can redistribute it and/or modify it |
|
6 |
* under the terms of the GNU General Public License version 2 only, as |
|
7 |
* published by the Free Software Foundation. |
|
8 |
* |
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT |
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that |
|
13 |
* accompanied this code). |
|
14 |
* |
|
15 |
* You should have received a copy of the GNU General Public License version |
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation, |
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 |
* |
|
5547
f4b087cbb361
6941466: Oracle rebranding changes for Hotspot repositories
trims
parents:
3186
diff
changeset
|
19 |
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
f4b087cbb361
6941466: Oracle rebranding changes for Hotspot repositories
trims
parents:
3186
diff
changeset
|
20 |
* or visit www.oracle.com if you need additional information or have any |
f4b087cbb361
6941466: Oracle rebranding changes for Hotspot repositories
trims
parents:
3186
diff
changeset
|
21 |
* questions. |
1 | 22 |
* |
23 |
*/ |
|
24 |
||
7397 | 25 |
#include "precompiled.hpp" |
26 |
#include "libadt/vectset.hpp" |
|
27 |
#include "memory/allocation.inline.hpp" |
|
28 |
#include "opto/block.hpp" |
|
29 |
#include "opto/c2compiler.hpp" |
|
30 |
#include "opto/callnode.hpp" |
|
31 |
#include "opto/cfgnode.hpp" |
|
32 |
#include "opto/machnode.hpp" |
|
33 |
#include "opto/opcodes.hpp" |
|
34 |
#include "opto/phaseX.hpp" |
|
35 |
#include "opto/rootnode.hpp" |
|
36 |
#include "opto/runtime.hpp" |
|
37 |
#include "runtime/deoptimization.hpp" |
|
38 |
#ifdef TARGET_ARCH_MODEL_x86_32 |
|
39 |
# include "adfiles/ad_x86_32.hpp" |
|
40 |
#endif |
|
41 |
#ifdef TARGET_ARCH_MODEL_x86_64 |
|
42 |
# include "adfiles/ad_x86_64.hpp" |
|
43 |
#endif |
|
44 |
#ifdef TARGET_ARCH_MODEL_sparc |
|
45 |
# include "adfiles/ad_sparc.hpp" |
|
46 |
#endif |
|
47 |
#ifdef TARGET_ARCH_MODEL_zero |
|
48 |
# include "adfiles/ad_zero.hpp" |
|
49 |
#endif |
|
8107
78e5bd944384
7016023: Enable building ARM and PPC from src/closed repository
bobv
parents:
7433
diff
changeset
|
50 |
#ifdef TARGET_ARCH_MODEL_arm |
78e5bd944384
7016023: Enable building ARM and PPC from src/closed repository
bobv
parents:
7433
diff
changeset
|
51 |
# include "adfiles/ad_arm.hpp" |
78e5bd944384
7016023: Enable building ARM and PPC from src/closed repository
bobv
parents:
7433
diff
changeset
|
52 |
#endif |
22807 | 53 |
#ifdef TARGET_ARCH_MODEL_ppc_32 |
54 |
# include "adfiles/ad_ppc_32.hpp" |
|
8107
78e5bd944384
7016023: Enable building ARM and PPC from src/closed repository
bobv
parents:
7433
diff
changeset
|
55 |
#endif |
22807 | 56 |
#ifdef TARGET_ARCH_MODEL_ppc_64 |
57 |
# include "adfiles/ad_ppc_64.hpp" |
|
58 |
#endif |
|
59 |
||
7397 | 60 |
|
1 | 61 |
// Portions of code courtesy of Clifford Click |
62 |
||
63 |
// Optimization - Graph Style |
|
64 |
||
2016
c1f73fa547fe
6784930: server jvm fails with assert(!n->is_SpillCopy(),"")
kvn
parents:
1498
diff
changeset
|
65 |
// To avoid float value underflow |
c1f73fa547fe
6784930: server jvm fails with assert(!n->is_SpillCopy(),"")
kvn
parents:
1498
diff
changeset
|
66 |
#define MIN_BLOCK_FREQUENCY 1.e-35f |
c1f73fa547fe
6784930: server jvm fails with assert(!n->is_SpillCopy(),"")
kvn
parents:
1498
diff
changeset
|
67 |
|
1 | 68 |
//----------------------------schedule_node_into_block------------------------- |
69 |
// Insert node n into block b. Look for projections of n and make sure they |
|
70 |
// are in b also. |
|
71 |
void PhaseCFG::schedule_node_into_block( Node *n, Block *b ) { |
|
72 |
// Set basic block of n, Add n to b, |
|
73 |
_bbs.map(n->_idx, b); |
|
74 |
b->add_inst(n); |
|
75 |
||
76 |
// After Matching, nearly any old Node may have projections trailing it. |
|
77 |
// These are usually machine-dependent flags. In any case, they might |
|
78 |
// float to another block below this one. Move them up. |
|
79 |
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { |
|
80 |
Node* use = n->fast_out(i); |
|
81 |
if (use->is_Proj()) { |
|
82 |
Block* buse = _bbs[use->_idx]; |
|
83 |
if (buse != b) { // In wrong block? |
|
84 |
if (buse != NULL) |
|
85 |
buse->find_remove(use); // Remove from wrong block |
|
86 |
_bbs.map(use->_idx, b); // Re-insert in this block |
|
87 |
b->add_inst(use); |
|
88 |
} |
|
89 |
} |
|
90 |
} |
|
91 |
} |
|
92 |
||
2127
268ea58ed775
6809798: SafePointScalarObject node placed into incorrect block during GCM
kvn
parents:
2016
diff
changeset
|
93 |
//----------------------------replace_block_proj_ctrl------------------------- |
268ea58ed775
6809798: SafePointScalarObject node placed into incorrect block during GCM
kvn
parents:
2016
diff
changeset
|
94 |
// Nodes that have is_block_proj() nodes as their control need to use |
268ea58ed775
6809798: SafePointScalarObject node placed into incorrect block during GCM
kvn
parents:
2016
diff
changeset
|
95 |
// the appropriate Region for their actual block as their control since |
268ea58ed775
6809798: SafePointScalarObject node placed into incorrect block during GCM
kvn
parents:
2016
diff
changeset
|
96 |
// the projection will be in a predecessor block. |
268ea58ed775
6809798: SafePointScalarObject node placed into incorrect block during GCM
kvn
parents:
2016
diff
changeset
|
97 |
void PhaseCFG::replace_block_proj_ctrl( Node *n ) { |
268ea58ed775
6809798: SafePointScalarObject node placed into incorrect block during GCM
kvn
parents:
2016
diff
changeset
|
98 |
const Node *in0 = n->in(0); |
268ea58ed775
6809798: SafePointScalarObject node placed into incorrect block during GCM
kvn
parents:
2016
diff
changeset
|
99 |
assert(in0 != NULL, "Only control-dependent"); |
268ea58ed775
6809798: SafePointScalarObject node placed into incorrect block during GCM
kvn
parents:
2016
diff
changeset
|
100 |
const Node *p = in0->is_block_proj(); |
268ea58ed775
6809798: SafePointScalarObject node placed into incorrect block during GCM
kvn
parents:
2016
diff
changeset
|
101 |
if (p != NULL && p != n) { // Control from a block projection? |
11191 | 102 |
assert(!n->pinned() || n->is_MachConstantBase(), "only pinned MachConstantBase node is expected here"); |
2127
268ea58ed775
6809798: SafePointScalarObject node placed into incorrect block during GCM
kvn
parents:
2016
diff
changeset
|
103 |
// Find trailing Region |
268ea58ed775
6809798: SafePointScalarObject node placed into incorrect block during GCM
kvn
parents:
2016
diff
changeset
|
104 |
Block *pb = _bbs[in0->_idx]; // Block-projection already has basic block |
268ea58ed775
6809798: SafePointScalarObject node placed into incorrect block during GCM
kvn
parents:
2016
diff
changeset
|
105 |
uint j = 0; |
268ea58ed775
6809798: SafePointScalarObject node placed into incorrect block during GCM
kvn
parents:
2016
diff
changeset
|
106 |
if (pb->_num_succs != 1) { // More then 1 successor? |
268ea58ed775
6809798: SafePointScalarObject node placed into incorrect block during GCM
kvn
parents:
2016
diff
changeset
|
107 |
// Search for successor |
268ea58ed775
6809798: SafePointScalarObject node placed into incorrect block during GCM
kvn
parents:
2016
diff
changeset
|
108 |
uint max = pb->_nodes.size(); |
268ea58ed775
6809798: SafePointScalarObject node placed into incorrect block during GCM
kvn
parents:
2016
diff
changeset
|
109 |
assert( max > 1, "" ); |
268ea58ed775
6809798: SafePointScalarObject node placed into incorrect block during GCM
kvn
parents:
2016
diff
changeset
|
110 |
uint start = max - pb->_num_succs; |
268ea58ed775
6809798: SafePointScalarObject node placed into incorrect block during GCM
kvn
parents:
2016
diff
changeset
|
111 |
// Find which output path belongs to projection |
268ea58ed775
6809798: SafePointScalarObject node placed into incorrect block during GCM
kvn
parents:
2016
diff
changeset
|
112 |
for (j = start; j < max; j++) { |
268ea58ed775
6809798: SafePointScalarObject node placed into incorrect block during GCM
kvn
parents:
2016
diff
changeset
|
113 |
if( pb->_nodes[j] == in0 ) |
268ea58ed775
6809798: SafePointScalarObject node placed into incorrect block during GCM
kvn
parents:
2016
diff
changeset
|
114 |
break; |
268ea58ed775
6809798: SafePointScalarObject node placed into incorrect block during GCM
kvn
parents:
2016
diff
changeset
|
115 |
} |
268ea58ed775
6809798: SafePointScalarObject node placed into incorrect block during GCM
kvn
parents:
2016
diff
changeset
|
116 |
assert( j < max, "must find" ); |
268ea58ed775
6809798: SafePointScalarObject node placed into incorrect block during GCM
kvn
parents:
2016
diff
changeset
|
117 |
// Change control to match head of successor basic block |
268ea58ed775
6809798: SafePointScalarObject node placed into incorrect block during GCM
kvn
parents:
2016
diff
changeset
|
118 |
j -= start; |
268ea58ed775
6809798: SafePointScalarObject node placed into incorrect block during GCM
kvn
parents:
2016
diff
changeset
|
119 |
} |
268ea58ed775
6809798: SafePointScalarObject node placed into incorrect block during GCM
kvn
parents:
2016
diff
changeset
|
120 |
n->set_req(0, pb->_succs[j]->head()); |
268ea58ed775
6809798: SafePointScalarObject node placed into incorrect block during GCM
kvn
parents:
2016
diff
changeset
|
121 |
} |
268ea58ed775
6809798: SafePointScalarObject node placed into incorrect block during GCM
kvn
parents:
2016
diff
changeset
|
122 |
} |
268ea58ed775
6809798: SafePointScalarObject node placed into incorrect block during GCM
kvn
parents:
2016
diff
changeset
|
123 |
|
1 | 124 |
|
125 |
//------------------------------schedule_pinned_nodes-------------------------- |
|
126 |
// Set the basic block for Nodes pinned into blocks |
|
127 |
void PhaseCFG::schedule_pinned_nodes( VectorSet &visited ) { |
|
128 |
// Allocate node stack of size C->unique()+8 to avoid frequent realloc |
|
129 |
GrowableArray <Node *> spstack(C->unique()+8); |
|
130 |
spstack.push(_root); |
|
131 |
while ( spstack.is_nonempty() ) { |
|
132 |
Node *n = spstack.pop(); |
|
133 |
if( !visited.test_set(n->_idx) ) { // Test node and flag it as visited |
|
134 |
if( n->pinned() && !_bbs.lookup(n->_idx) ) { // Pinned? Nail it down! |
|
2127
268ea58ed775
6809798: SafePointScalarObject node placed into incorrect block during GCM
kvn
parents:
2016
diff
changeset
|
135 |
assert( n->in(0), "pinned Node must have Control" ); |
268ea58ed775
6809798: SafePointScalarObject node placed into incorrect block during GCM
kvn
parents:
2016
diff
changeset
|
136 |
// Before setting block replace block_proj control edge |
268ea58ed775
6809798: SafePointScalarObject node placed into incorrect block during GCM
kvn
parents:
2016
diff
changeset
|
137 |
replace_block_proj_ctrl(n); |
1 | 138 |
Node *input = n->in(0); |
139 |
while( !input->is_block_start() ) |
|
140 |
input = input->in(0); |
|
141 |
Block *b = _bbs[input->_idx]; // Basic block of controlling input |
|
142 |
schedule_node_into_block(n, b); |
|
143 |
} |
|
144 |
for( int i = n->req() - 1; i >= 0; --i ) { // For all inputs |
|
145 |
if( n->in(i) != NULL ) |
|
146 |
spstack.push(n->in(i)); |
|
147 |
} |
|
148 |
} |
|
149 |
} |
|
150 |
} |
|
151 |
||
152 |
#ifdef ASSERT |
|
153 |
// Assert that new input b2 is dominated by all previous inputs. |
|
154 |
// Check this by by seeing that it is dominated by b1, the deepest |
|
155 |
// input observed until b2. |
|
156 |
static void assert_dom(Block* b1, Block* b2, Node* n, Block_Array &bbs) { |
|
157 |
if (b1 == NULL) return; |
|
158 |
assert(b1->_dom_depth < b2->_dom_depth, "sanity"); |
|
159 |
Block* tmp = b2; |
|
160 |
while (tmp != b1 && tmp != NULL) { |
|
161 |
tmp = tmp->_idom; |
|
162 |
} |
|
163 |
if (tmp != b1) { |
|
164 |
// Detected an unschedulable graph. Print some nice stuff and die. |
|
165 |
tty->print_cr("!!! Unschedulable graph !!!"); |
|
166 |
for (uint j=0; j<n->len(); j++) { // For all inputs |
|
167 |
Node* inn = n->in(j); // Get input |
|
168 |
if (inn == NULL) continue; // Ignore NULL, missing inputs |
|
169 |
Block* inb = bbs[inn->_idx]; |
|
170 |
tty->print("B%d idom=B%d depth=%2d ",inb->_pre_order, |
|
171 |
inb->_idom ? inb->_idom->_pre_order : 0, inb->_dom_depth); |
|
172 |
inn->dump(); |
|
173 |
} |
|
174 |
tty->print("Failing node: "); |
|
175 |
n->dump(); |
|
176 |
assert(false, "unscheduable graph"); |
|
177 |
} |
|
178 |
} |
|
179 |
#endif |
|
180 |
||
181 |
static Block* find_deepest_input(Node* n, Block_Array &bbs) { |
|
182 |
// Find the last input dominated by all other inputs. |
|
183 |
Block* deepb = NULL; // Deepest block so far |
|
184 |
int deepb_dom_depth = 0; |
|
185 |
for (uint k = 0; k < n->len(); k++) { // For all inputs |
|
186 |
Node* inn = n->in(k); // Get input |
|
187 |
if (inn == NULL) continue; // Ignore NULL, missing inputs |
|
188 |
Block* inb = bbs[inn->_idx]; |
|
189 |
assert(inb != NULL, "must already have scheduled this input"); |
|
190 |
if (deepb_dom_depth < (int) inb->_dom_depth) { |
|
191 |
// The new inb must be dominated by the previous deepb. |
|
192 |
// The various inputs must be linearly ordered in the dom |
|
193 |
// tree, or else there will not be a unique deepest block. |
|
194 |
DEBUG_ONLY(assert_dom(deepb, inb, n, bbs)); |
|
195 |
deepb = inb; // Save deepest block |
|
196 |
deepb_dom_depth = deepb->_dom_depth; |
|
197 |
} |
|
198 |
} |
|
199 |
assert(deepb != NULL, "must be at least one input to n"); |
|
200 |
return deepb; |
|
201 |
} |
|
202 |
||
203 |
||
204 |
//------------------------------schedule_early--------------------------------- |
|
205 |
// Find the earliest Block any instruction can be placed in. Some instructions |
|
206 |
// are pinned into Blocks. Unpinned instructions can appear in last block in |
|
207 |
// which all their inputs occur. |
|
208 |
bool PhaseCFG::schedule_early(VectorSet &visited, Node_List &roots) { |
|
209 |
// Allocate stack with enough space to avoid frequent realloc |
|
210 |
Node_Stack nstack(roots.Size() + 8); // (unique >> 1) + 24 from Java2D stats |
|
211 |
// roots.push(_root); _root will be processed among C->top() inputs |
|
212 |
roots.push(C->top()); |
|
213 |
visited.set(C->top()->_idx); |
|
214 |
||
215 |
while (roots.size() != 0) { |
|
216 |
// Use local variables nstack_top_n & nstack_top_i to cache values |
|
217 |
// on stack's top. |
|
218 |
Node *nstack_top_n = roots.pop(); |
|
219 |
uint nstack_top_i = 0; |
|
220 |
//while_nstack_nonempty: |
|
221 |
while (true) { |
|
222 |
// Get parent node and next input's index from stack's top. |
|
223 |
Node *n = nstack_top_n; |
|
224 |
uint i = nstack_top_i; |
|
225 |
||
226 |
if (i == 0) { |
|
2127
268ea58ed775
6809798: SafePointScalarObject node placed into incorrect block during GCM
kvn
parents:
2016
diff
changeset
|
227 |
// Fixup some control. Constants without control get attached |
268ea58ed775
6809798: SafePointScalarObject node placed into incorrect block during GCM
kvn
parents:
2016
diff
changeset
|
228 |
// to root and nodes that use is_block_proj() nodes should be attached |
268ea58ed775
6809798: SafePointScalarObject node placed into incorrect block during GCM
kvn
parents:
2016
diff
changeset
|
229 |
// to the region that starts their block. |
1 | 230 |
const Node *in0 = n->in(0); |
231 |
if (in0 != NULL) { // Control-dependent? |
|
2127
268ea58ed775
6809798: SafePointScalarObject node placed into incorrect block during GCM
kvn
parents:
2016
diff
changeset
|
232 |
replace_block_proj_ctrl(n); |
1 | 233 |
} else { // n->in(0) == NULL |
234 |
if (n->req() == 1) { // This guy is a constant with NO inputs? |
|
235 |
n->set_req(0, _root); |
|
236 |
} |
|
237 |
} |
|
238 |
} |
|
239 |
||
240 |
// First, visit all inputs and force them to get a block. If an |
|
241 |
// input is already in a block we quit following inputs (to avoid |
|
242 |
// cycles). Instead we put that Node on a worklist to be handled |
|
243 |
// later (since IT'S inputs may not have a block yet). |
|
244 |
bool done = true; // Assume all n's inputs will be processed |
|
245 |
while (i < n->len()) { // For all inputs |
|
246 |
Node *in = n->in(i); // Get input |
|
247 |
++i; |
|
248 |
if (in == NULL) continue; // Ignore NULL, missing inputs |
|
249 |
int is_visited = visited.test_set(in->_idx); |
|
250 |
if (!_bbs.lookup(in->_idx)) { // Missing block selection? |
|
251 |
if (is_visited) { |
|
252 |
// assert( !visited.test(in->_idx), "did not schedule early" ); |
|
253 |
return false; |
|
254 |
} |
|
255 |
nstack.push(n, i); // Save parent node and next input's index. |
|
256 |
nstack_top_n = in; // Process current input now. |
|
257 |
nstack_top_i = 0; |
|
258 |
done = false; // Not all n's inputs processed. |
|
259 |
break; // continue while_nstack_nonempty; |
|
260 |
} else if (!is_visited) { // Input not yet visited? |
|
261 |
roots.push(in); // Visit this guy later, using worklist |
|
262 |
} |
|
263 |
} |
|
264 |
if (done) { |
|
265 |
// All of n's inputs have been processed, complete post-processing. |
|
266 |
||
267 |
// Some instructions are pinned into a block. These include Region, |
|
268 |
// Phi, Start, Return, and other control-dependent instructions and |
|
269 |
// any projections which depend on them. |
|
270 |
if (!n->pinned()) { |
|
271 |
// Set earliest legal block. |
|
272 |
_bbs.map(n->_idx, find_deepest_input(n, _bbs)); |
|
2127
268ea58ed775
6809798: SafePointScalarObject node placed into incorrect block during GCM
kvn
parents:
2016
diff
changeset
|
273 |
} else { |
268ea58ed775
6809798: SafePointScalarObject node placed into incorrect block during GCM
kvn
parents:
2016
diff
changeset
|
274 |
assert(_bbs[n->_idx] == _bbs[n->in(0)->_idx], "Pinned Node should be at the same block as its control edge"); |
1 | 275 |
} |
276 |
||
277 |
if (nstack.is_empty()) { |
|
278 |
// Finished all nodes on stack. |
|
279 |
// Process next node on the worklist 'roots'. |
|
280 |
break; |
|
281 |
} |
|
282 |
// Get saved parent node and next input's index. |
|
283 |
nstack_top_n = nstack.node(); |
|
284 |
nstack_top_i = nstack.index(); |
|
285 |
nstack.pop(); |
|
286 |
} // if (done) |
|
287 |
} // while (true) |
|
288 |
} // while (roots.size() != 0) |
|
289 |
return true; |
|
290 |
} |
|
291 |
||
292 |
//------------------------------dom_lca---------------------------------------- |
|
293 |
// Find least common ancestor in dominator tree |
|
294 |
// LCA is a current notion of LCA, to be raised above 'this'. |
|
295 |
// As a convenient boundary condition, return 'this' if LCA is NULL. |
|
296 |
// Find the LCA of those two nodes. |
|
297 |
Block* Block::dom_lca(Block* LCA) { |
|
298 |
if (LCA == NULL || LCA == this) return this; |
|
299 |
||
300 |
Block* anc = this; |
|
301 |
while (anc->_dom_depth > LCA->_dom_depth) |
|
302 |
anc = anc->_idom; // Walk up till anc is as high as LCA |
|
303 |
||
304 |
while (LCA->_dom_depth > anc->_dom_depth) |
|
305 |
LCA = LCA->_idom; // Walk up till LCA is as high as anc |
|
306 |
||
307 |
while (LCA != anc) { // Walk both up till they are the same |
|
308 |
LCA = LCA->_idom; |
|
309 |
anc = anc->_idom; |
|
310 |
} |
|
311 |
||
312 |
return LCA; |
|
313 |
} |
|
314 |
||
315 |
//--------------------------raise_LCA_above_use-------------------------------- |
|
316 |
// We are placing a definition, and have been given a def->use edge. |
|
317 |
// The definition must dominate the use, so move the LCA upward in the |
|
318 |
// dominator tree to dominate the use. If the use is a phi, adjust |
|
319 |
// the LCA only with the phi input paths which actually use this def. |
|
320 |
static Block* raise_LCA_above_use(Block* LCA, Node* use, Node* def, Block_Array &bbs) { |
|
321 |
Block* buse = bbs[use->_idx]; |
|
322 |
if (buse == NULL) return LCA; // Unused killing Projs have no use block |
|
323 |
if (!use->is_Phi()) return buse->dom_lca(LCA); |
|
324 |
uint pmax = use->req(); // Number of Phi inputs |
|
325 |
// Why does not this loop just break after finding the matching input to |
|
326 |
// the Phi? Well...it's like this. I do not have true def-use/use-def |
|
327 |
// chains. Means I cannot distinguish, from the def-use direction, which |
|
328 |
// of many use-defs lead from the same use to the same def. That is, this |
|
329 |
// Phi might have several uses of the same def. Each use appears in a |
|
330 |
// different predecessor block. But when I enter here, I cannot distinguish |
|
331 |
// which use-def edge I should find the predecessor block for. So I find |
|
332 |
// them all. Means I do a little extra work if a Phi uses the same value |
|
333 |
// more than once. |
|
334 |
for (uint j=1; j<pmax; j++) { // For all inputs |
|
335 |
if (use->in(j) == def) { // Found matching input? |
|
336 |
Block* pred = bbs[buse->pred(j)->_idx]; |
|
337 |
LCA = pred->dom_lca(LCA); |
|
338 |
} |
|
339 |
} |
|
340 |
return LCA; |
|
341 |
} |
|
342 |
||
343 |
//----------------------------raise_LCA_above_marks---------------------------- |
|
344 |
// Return a new LCA that dominates LCA and any of its marked predecessors. |
|
345 |
// Search all my parents up to 'early' (exclusive), looking for predecessors |
|
346 |
// which are marked with the given index. Return the LCA (in the dom tree) |
|
347 |
// of all marked blocks. If there are none marked, return the original |
|
348 |
// LCA. |
|
349 |
static Block* raise_LCA_above_marks(Block* LCA, node_idx_t mark, |
|
350 |
Block* early, Block_Array &bbs) { |
|
351 |
Block_List worklist; |
|
352 |
worklist.push(LCA); |
|
353 |
while (worklist.size() > 0) { |
|
354 |
Block* mid = worklist.pop(); |
|
355 |
if (mid == early) continue; // stop searching here |
|
356 |
||
357 |
// Test and set the visited bit. |
|
358 |
if (mid->raise_LCA_visited() == mark) continue; // already visited |
|
359 |
||
360 |
// Don't process the current LCA, otherwise the search may terminate early |
|
361 |
if (mid != LCA && mid->raise_LCA_mark() == mark) { |
|
362 |
// Raise the LCA. |
|
363 |
LCA = mid->dom_lca(LCA); |
|
364 |
if (LCA == early) break; // stop searching everywhere |
|
365 |
assert(early->dominates(LCA), "early is high enough"); |
|
366 |
// Resume searching at that point, skipping intermediate levels. |
|
367 |
worklist.push(LCA); |
|
761
312de898447e
6714694: assertion in 64bit server vm (store->find_edge(load) != -1,"missing precedence edge") with COOPs
kvn
parents:
204
diff
changeset
|
368 |
if (LCA == mid) |
312de898447e
6714694: assertion in 64bit server vm (store->find_edge(load) != -1,"missing precedence edge") with COOPs
kvn
parents:
204
diff
changeset
|
369 |
continue; // Don't mark as visited to avoid early termination. |
1 | 370 |
} else { |
371 |
// Keep searching through this block's predecessors. |
|
372 |
for (uint j = 1, jmax = mid->num_preds(); j < jmax; j++) { |
|
373 |
Block* mid_parent = bbs[ mid->pred(j)->_idx ]; |
|
374 |
worklist.push(mid_parent); |
|
375 |
} |
|
376 |
} |
|
761
312de898447e
6714694: assertion in 64bit server vm (store->find_edge(load) != -1,"missing precedence edge") with COOPs
kvn
parents:
204
diff
changeset
|
377 |
mid->set_raise_LCA_visited(mark); |
1 | 378 |
} |
379 |
return LCA; |
|
380 |
} |
|
381 |
||
382 |
//--------------------------memory_early_block-------------------------------- |
|
383 |
// This is a variation of find_deepest_input, the heart of schedule_early. |
|
384 |
// Find the "early" block for a load, if we considered only memory and |
|
385 |
// address inputs, that is, if other data inputs were ignored. |
|
386 |
// |
|
387 |
// Because a subset of edges are considered, the resulting block will |
|
388 |
// be earlier (at a shallower dom_depth) than the true schedule_early |
|
389 |
// point of the node. We compute this earlier block as a more permissive |
|
390 |
// site for anti-dependency insertion, but only if subsume_loads is enabled. |
|
391 |
static Block* memory_early_block(Node* load, Block* early, Block_Array &bbs) { |
|
392 |
Node* base; |
|
393 |
Node* index; |
|
394 |
Node* store = load->in(MemNode::Memory); |
|
395 |
load->as_Mach()->memory_inputs(base, index); |
|
396 |
||
397 |
assert(base != NodeSentinel && index != NodeSentinel, |
|
398 |
"unexpected base/index inputs"); |
|
399 |
||
400 |
Node* mem_inputs[4]; |
|
401 |
int mem_inputs_length = 0; |
|
402 |
if (base != NULL) mem_inputs[mem_inputs_length++] = base; |
|
403 |
if (index != NULL) mem_inputs[mem_inputs_length++] = index; |
|
404 |
if (store != NULL) mem_inputs[mem_inputs_length++] = store; |
|
405 |
||
406 |
// In the comparision below, add one to account for the control input, |
|
407 |
// which may be null, but always takes up a spot in the in array. |
|
408 |
if (mem_inputs_length + 1 < (int) load->req()) { |
|
409 |
// This "load" has more inputs than just the memory, base and index inputs. |
|
410 |
// For purposes of checking anti-dependences, we need to start |
|
411 |
// from the early block of only the address portion of the instruction, |
|
412 |
// and ignore other blocks that may have factored into the wider |
|
413 |
// schedule_early calculation. |
|
414 |
if (load->in(0) != NULL) mem_inputs[mem_inputs_length++] = load->in(0); |
|
415 |
||
416 |
Block* deepb = NULL; // Deepest block so far |
|
417 |
int deepb_dom_depth = 0; |
|
418 |
for (int i = 0; i < mem_inputs_length; i++) { |
|
419 |
Block* inb = bbs[mem_inputs[i]->_idx]; |
|
420 |
if (deepb_dom_depth < (int) inb->_dom_depth) { |
|
421 |
// The new inb must be dominated by the previous deepb. |
|
422 |
// The various inputs must be linearly ordered in the dom |
|
423 |
// tree, or else there will not be a unique deepest block. |
|
424 |
DEBUG_ONLY(assert_dom(deepb, inb, load, bbs)); |
|
425 |
deepb = inb; // Save deepest block |
|
426 |
deepb_dom_depth = deepb->_dom_depth; |
|
427 |
} |
|
428 |
} |
|
429 |
early = deepb; |
|
430 |
} |
|
431 |
||
432 |
return early; |
|
433 |
} |
|
434 |
||
435 |
//--------------------------insert_anti_dependences--------------------------- |
|
436 |
// A load may need to witness memory that nearby stores can overwrite. |
|
437 |
// For each nearby store, either insert an "anti-dependence" edge |
|
438 |
// from the load to the store, or else move LCA upward to force the |
|
439 |
// load to (eventually) be scheduled in a block above the store. |
|
440 |
// |
|
441 |
// Do not add edges to stores on distinct control-flow paths; |
|
442 |
// only add edges to stores which might interfere. |
|
443 |
// |
|
444 |
// Return the (updated) LCA. There will not be any possibly interfering |
|
445 |
// store between the load's "early block" and the updated LCA. |
|
446 |
// Any stores in the updated LCA will have new precedence edges |
|
447 |
// back to the load. The caller is expected to schedule the load |
|
448 |
// in the LCA, in which case the precedence edges will make LCM |
|
449 |
// preserve anti-dependences. The caller may also hoist the load |
|
450 |
// above the LCA, if it is not the early block. |
|
451 |
Block* PhaseCFG::insert_anti_dependences(Block* LCA, Node* load, bool verify) { |
|
452 |
assert(load->needs_anti_dependence_check(), "must be a load of some sort"); |
|
453 |
assert(LCA != NULL, ""); |
|
454 |
DEBUG_ONLY(Block* LCA_orig = LCA); |
|
455 |
||
456 |
// Compute the alias index. Loads and stores with different alias indices |
|
457 |
// do not need anti-dependence edges. |
|
458 |
uint load_alias_idx = C->get_alias_index(load->adr_type()); |
|
459 |
#ifdef ASSERT |
|
460 |
if (load_alias_idx == Compile::AliasIdxBot && C->AliasLevel() > 0 && |
|
461 |
(PrintOpto || VerifyAliases || |
|
462 |
PrintMiscellaneous && (WizardMode || Verbose))) { |
|
463 |
// Load nodes should not consume all of memory. |
|
464 |
// Reporting a bottom type indicates a bug in adlc. |
|
465 |
// If some particular type of node validly consumes all of memory, |
|
466 |
// sharpen the preceding "if" to exclude it, so we can catch bugs here. |
|
467 |
tty->print_cr("*** Possible Anti-Dependence Bug: Load consumes all of memory."); |
|
468 |
load->dump(2); |
|
469 |
if (VerifyAliases) assert(load_alias_idx != Compile::AliasIdxBot, ""); |
|
470 |
} |
|
471 |
#endif |
|
472 |
assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrComp), |
|
473 |
"String compare is only known 'load' that does not conflict with any stores"); |
|
2348 | 474 |
assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrEquals), |
475 |
"String equals is a 'load' that does not conflict with any stores"); |
|
476 |
assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrIndexOf), |
|
477 |
"String indexOf is a 'load' that does not conflict with any stores"); |
|
478 |
assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_AryEq), |
|
479 |
"Arrays equals is a 'load' that do not conflict with any stores"); |
|
1 | 480 |
|
481 |
if (!C->alias_type(load_alias_idx)->is_rewritable()) { |
|
482 |
// It is impossible to spoil this load by putting stores before it, |
|
483 |
// because we know that the stores will never update the value |
|
484 |
// which 'load' must witness. |
|
485 |
return LCA; |
|
486 |
} |
|
487 |
||
488 |
node_idx_t load_index = load->_idx; |
|
489 |
||
490 |
// Note the earliest legal placement of 'load', as determined by |
|
491 |
// by the unique point in the dom tree where all memory effects |
|
492 |
// and other inputs are first available. (Computed by schedule_early.) |
|
493 |
// For normal loads, 'early' is the shallowest place (dom graph wise) |
|
494 |
// to look for anti-deps between this load and any store. |
|
495 |
Block* early = _bbs[load_index]; |
|
496 |
||
497 |
// If we are subsuming loads, compute an "early" block that only considers |
|
498 |
// memory or address inputs. This block may be different than the |
|
499 |
// schedule_early block in that it could be at an even shallower depth in the |
|
500 |
// dominator tree, and allow for a broader discovery of anti-dependences. |
|
501 |
if (C->subsume_loads()) { |
|
502 |
early = memory_early_block(load, early, _bbs); |
|
503 |
} |
|
504 |
||
505 |
ResourceArea *area = Thread::current()->resource_area(); |
|
506 |
Node_List worklist_mem(area); // prior memory state to store |
|
507 |
Node_List worklist_store(area); // possible-def to explore |
|
204
154149c3f7ba
6590177: jck60019 test assert(!repeated,"do not walk merges twice")
kvn
parents:
1
diff
changeset
|
508 |
Node_List worklist_visited(area); // visited mergemem nodes |
1 | 509 |
Node_List non_early_stores(area); // all relevant stores outside of early |
510 |
bool must_raise_LCA = false; |
|
511 |
||
512 |
#ifdef TRACK_PHI_INPUTS |
|
513 |
// %%% This extra checking fails because MergeMem nodes are not GVNed. |
|
514 |
// Provide "phi_inputs" to check if every input to a PhiNode is from the |
|
515 |
// original memory state. This indicates a PhiNode for which should not |
|
516 |
// prevent the load from sinking. For such a block, set_raise_LCA_mark |
|
517 |
// may be overly conservative. |
|
518 |
// Mechanism: count inputs seen for each Phi encountered in worklist_store. |
|
519 |
DEBUG_ONLY(GrowableArray<uint> phi_inputs(area, C->unique(),0,0)); |
|
520 |
#endif |
|
521 |
||
522 |
// 'load' uses some memory state; look for users of the same state. |
|
523 |
// Recurse through MergeMem nodes to the stores that use them. |
|
524 |
||
525 |
// Each of these stores is a possible definition of memory |
|
526 |
// that 'load' needs to use. We need to force 'load' |
|
527 |
// to occur before each such store. When the store is in |
|
528 |
// the same block as 'load', we insert an anti-dependence |
|
529 |
// edge load->store. |
|
530 |
||
531 |
// The relevant stores "nearby" the load consist of a tree rooted |
|
532 |
// at initial_mem, with internal nodes of type MergeMem. |
|
533 |
// Therefore, the branches visited by the worklist are of this form: |
|
534 |
// initial_mem -> (MergeMem ->)* store |
|
535 |
// The anti-dependence constraints apply only to the fringe of this tree. |
|
536 |
||
537 |
Node* initial_mem = load->in(MemNode::Memory); |
|
538 |
worklist_store.push(initial_mem); |
|
204
154149c3f7ba
6590177: jck60019 test assert(!repeated,"do not walk merges twice")
kvn
parents:
1
diff
changeset
|
539 |
worklist_visited.push(initial_mem); |
1 | 540 |
worklist_mem.push(NULL); |
541 |
while (worklist_store.size() > 0) { |
|
542 |
// Examine a nearby store to see if it might interfere with our load. |
|
543 |
Node* mem = worklist_mem.pop(); |
|
544 |
Node* store = worklist_store.pop(); |
|
545 |
uint op = store->Opcode(); |
|
546 |
||
547 |
// MergeMems do not directly have anti-deps. |
|
548 |
// Treat them as internal nodes in a forward tree of memory states, |
|
549 |
// the leaves of which are each a 'possible-def'. |
|
550 |
if (store == initial_mem // root (exclusive) of tree we are searching |
|
551 |
|| op == Op_MergeMem // internal node of tree we are searching |
|
552 |
) { |
|
553 |
mem = store; // It's not a possibly interfering store. |
|
204
154149c3f7ba
6590177: jck60019 test assert(!repeated,"do not walk merges twice")
kvn
parents:
1
diff
changeset
|
554 |
if (store == initial_mem) |
154149c3f7ba
6590177: jck60019 test assert(!repeated,"do not walk merges twice")
kvn
parents:
1
diff
changeset
|
555 |
initial_mem = NULL; // only process initial memory once |
154149c3f7ba
6590177: jck60019 test assert(!repeated,"do not walk merges twice")
kvn
parents:
1
diff
changeset
|
556 |
|
1 | 557 |
for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) { |
558 |
store = mem->fast_out(i); |
|
559 |
if (store->is_MergeMem()) { |
|
560 |
// Be sure we don't get into combinatorial problems. |
|
561 |
// (Allow phis to be repeated; they can merge two relevant states.) |
|
204
154149c3f7ba
6590177: jck60019 test assert(!repeated,"do not walk merges twice")
kvn
parents:
1
diff
changeset
|
562 |
uint j = worklist_visited.size(); |
154149c3f7ba
6590177: jck60019 test assert(!repeated,"do not walk merges twice")
kvn
parents:
1
diff
changeset
|
563 |
for (; j > 0; j--) { |
154149c3f7ba
6590177: jck60019 test assert(!repeated,"do not walk merges twice")
kvn
parents:
1
diff
changeset
|
564 |
if (worklist_visited.at(j-1) == store) break; |
1 | 565 |
} |
204
154149c3f7ba
6590177: jck60019 test assert(!repeated,"do not walk merges twice")
kvn
parents:
1
diff
changeset
|
566 |
if (j > 0) continue; // already on work list; do not repeat |
154149c3f7ba
6590177: jck60019 test assert(!repeated,"do not walk merges twice")
kvn
parents:
1
diff
changeset
|
567 |
worklist_visited.push(store); |
1 | 568 |
} |
569 |
worklist_mem.push(mem); |
|
570 |
worklist_store.push(store); |
|
571 |
} |
|
572 |
continue; |
|
573 |
} |
|
574 |
||
575 |
if (op == Op_MachProj || op == Op_Catch) continue; |
|
576 |
if (store->needs_anti_dependence_check()) continue; // not really a store |
|
577 |
||
578 |
// Compute the alias index. Loads and stores with different alias |
|
579 |
// indices do not need anti-dependence edges. Wide MemBar's are |
|
580 |
// anti-dependent on everything (except immutable memories). |
|
581 |
const TypePtr* adr_type = store->adr_type(); |
|
582 |
if (!C->can_alias(adr_type, load_alias_idx)) continue; |
|
583 |
||
584 |
// Most slow-path runtime calls do NOT modify Java memory, but |
|
585 |
// they can block and so write Raw memory. |
|
586 |
if (store->is_Mach()) { |
|
587 |
MachNode* mstore = store->as_Mach(); |
|
588 |
if (load_alias_idx != Compile::AliasIdxRaw) { |
|
589 |
// Check for call into the runtime using the Java calling |
|
590 |
// convention (and from there into a wrapper); it has no |
|
591 |
// _method. Can't do this optimization for Native calls because |
|
592 |
// they CAN write to Java memory. |
|
593 |
if (mstore->ideal_Opcode() == Op_CallStaticJava) { |
|
594 |
assert(mstore->is_MachSafePoint(), ""); |
|
595 |
MachSafePointNode* ms = (MachSafePointNode*) mstore; |
|
596 |
assert(ms->is_MachCallJava(), ""); |
|
597 |
MachCallJavaNode* mcj = (MachCallJavaNode*) ms; |
|
598 |
if (mcj->_method == NULL) { |
|
599 |
// These runtime calls do not write to Java visible memory |
|
600 |
// (other than Raw) and so do not require anti-dependence edges. |
|
601 |
continue; |
|
602 |
} |
|
603 |
} |
|
604 |
// Same for SafePoints: they read/write Raw but only read otherwise. |
|
605 |
// This is basically a workaround for SafePoints only defining control |
|
606 |
// instead of control + memory. |
|
607 |
if (mstore->ideal_Opcode() == Op_SafePoint) |
|
608 |
continue; |
|
609 |
} else { |
|
610 |
// Some raw memory, such as the load of "top" at an allocation, |
|
611 |
// can be control dependent on the previous safepoint. See |
|
612 |
// comments in GraphKit::allocate_heap() about control input. |
|
613 |
// Inserting an anti-dep between such a safepoint and a use |
|
614 |
// creates a cycle, and will cause a subsequent failure in |
|
615 |
// local scheduling. (BugId 4919904) |
|
616 |
// (%%% How can a control input be a safepoint and not a projection??) |
|
617 |
if (mstore->ideal_Opcode() == Op_SafePoint && load->in(0) == mstore) |
|
618 |
continue; |
|
619 |
} |
|
620 |
} |
|
621 |
||
622 |
// Identify a block that the current load must be above, |
|
623 |
// or else observe that 'store' is all the way up in the |
|
624 |
// earliest legal block for 'load'. In the latter case, |
|
625 |
// immediately insert an anti-dependence edge. |
|
626 |
Block* store_block = _bbs[store->_idx]; |
|
627 |
assert(store_block != NULL, "unused killing projections skipped above"); |
|
628 |
||
629 |
if (store->is_Phi()) { |
|
630 |
// 'load' uses memory which is one (or more) of the Phi's inputs. |
|
631 |
// It must be scheduled not before the Phi, but rather before |
|
632 |
// each of the relevant Phi inputs. |
|
633 |
// |
|
634 |
// Instead of finding the LCA of all inputs to a Phi that match 'mem', |
|
635 |
// we mark each corresponding predecessor block and do a combined |
|
636 |
// hoisting operation later (raise_LCA_above_marks). |
|
637 |
// |
|
638 |
// Do not assert(store_block != early, "Phi merging memory after access") |
|
639 |
// PhiNode may be at start of block 'early' with backedge to 'early' |
|
640 |
DEBUG_ONLY(bool found_match = false); |
|
641 |
for (uint j = PhiNode::Input, jmax = store->req(); j < jmax; j++) { |
|
642 |
if (store->in(j) == mem) { // Found matching input? |
|
643 |
DEBUG_ONLY(found_match = true); |
|
644 |
Block* pred_block = _bbs[store_block->pred(j)->_idx]; |
|
645 |
if (pred_block != early) { |
|
646 |
// If any predecessor of the Phi matches the load's "early block", |
|
647 |
// we do not need a precedence edge between the Phi and 'load' |
|
2131 | 648 |
// since the load will be forced into a block preceding the Phi. |
1 | 649 |
pred_block->set_raise_LCA_mark(load_index); |
650 |
assert(!LCA_orig->dominates(pred_block) || |
|
651 |
early->dominates(pred_block), "early is high enough"); |
|
652 |
must_raise_LCA = true; |
|
2875
549b4d80b29e
6843752: missing code for an anti-dependent Phi in GCM
kvn
parents:
2348
diff
changeset
|
653 |
} else { |
549b4d80b29e
6843752: missing code for an anti-dependent Phi in GCM
kvn
parents:
2348
diff
changeset
|
654 |
// anti-dependent upon PHI pinned below 'early', no edge needed |
549b4d80b29e
6843752: missing code for an anti-dependent Phi in GCM
kvn
parents:
2348
diff
changeset
|
655 |
LCA = early; // but can not schedule below 'early' |
1 | 656 |
} |
657 |
} |
|
658 |
} |
|
659 |
assert(found_match, "no worklist bug"); |
|
660 |
#ifdef TRACK_PHI_INPUTS |
|
661 |
#ifdef ASSERT |
|
662 |
// This assert asks about correct handling of PhiNodes, which may not |
|
663 |
// have all input edges directly from 'mem'. See BugId 4621264 |
|
664 |
int num_mem_inputs = phi_inputs.at_grow(store->_idx,0) + 1; |
|
665 |
// Increment by exactly one even if there are multiple copies of 'mem' |
|
666 |
// coming into the phi, because we will run this block several times |
|
667 |
// if there are several copies of 'mem'. (That's how DU iterators work.) |
|
668 |
phi_inputs.at_put(store->_idx, num_mem_inputs); |
|
669 |
assert(PhiNode::Input + num_mem_inputs < store->req(), |
|
670 |
"Expect at least one phi input will not be from original memory state"); |
|
671 |
#endif //ASSERT |
|
672 |
#endif //TRACK_PHI_INPUTS |
|
673 |
} else if (store_block != early) { |
|
674 |
// 'store' is between the current LCA and earliest possible block. |
|
675 |
// Label its block, and decide later on how to raise the LCA |
|
676 |
// to include the effect on LCA of this store. |
|
677 |
// If this store's block gets chosen as the raised LCA, we |
|
678 |
// will find him on the non_early_stores list and stick him |
|
679 |
// with a precedence edge. |
|
680 |
// (But, don't bother if LCA is already raised all the way.) |
|
681 |
if (LCA != early) { |
|
682 |
store_block->set_raise_LCA_mark(load_index); |
|
683 |
must_raise_LCA = true; |
|
684 |
non_early_stores.push(store); |
|
685 |
} |
|
686 |
} else { |
|
687 |
// Found a possibly-interfering store in the load's 'early' block. |
|
688 |
// This means 'load' cannot sink at all in the dominator tree. |
|
689 |
// Add an anti-dep edge, and squeeze 'load' into the highest block. |
|
690 |
assert(store != load->in(0), "dependence cycle found"); |
|
691 |
if (verify) { |
|
692 |
assert(store->find_edge(load) != -1, "missing precedence edge"); |
|
693 |
} else { |
|
694 |
store->add_prec(load); |
|
695 |
} |
|
696 |
LCA = early; |
|
697 |
// This turns off the process of gathering non_early_stores. |
|
698 |
} |
|
699 |
} |
|
700 |
// (Worklist is now empty; all nearby stores have been visited.) |
|
701 |
||
702 |
// Finished if 'load' must be scheduled in its 'early' block. |
|
703 |
// If we found any stores there, they have already been given |
|
704 |
// precedence edges. |
|
705 |
if (LCA == early) return LCA; |
|
706 |
||
707 |
// We get here only if there are no possibly-interfering stores |
|
708 |
// in the load's 'early' block. Move LCA up above all predecessors |
|
709 |
// which contain stores we have noted. |
|
710 |
// |
|
711 |
// The raised LCA block can be a home to such interfering stores, |
|
712 |
// but its predecessors must not contain any such stores. |
|
713 |
// |
|
714 |
// The raised LCA will be a lower bound for placing the load, |
|
715 |
// preventing the load from sinking past any block containing |
|
716 |
// a store that may invalidate the memory state required by 'load'. |
|
717 |
if (must_raise_LCA) |
|
718 |
LCA = raise_LCA_above_marks(LCA, load->_idx, early, _bbs); |
|
719 |
if (LCA == early) return LCA; |
|
720 |
||
721 |
// Insert anti-dependence edges from 'load' to each store |
|
722 |
// in the non-early LCA block. |
|
723 |
// Mine the non_early_stores list for such stores. |
|
724 |
if (LCA->raise_LCA_mark() == load_index) { |
|
725 |
while (non_early_stores.size() > 0) { |
|
726 |
Node* store = non_early_stores.pop(); |
|
727 |
Block* store_block = _bbs[store->_idx]; |
|
728 |
if (store_block == LCA) { |
|
729 |
// add anti_dependence from store to load in its own block |
|
730 |
assert(store != load->in(0), "dependence cycle found"); |
|
731 |
if (verify) { |
|
732 |
assert(store->find_edge(load) != -1, "missing precedence edge"); |
|
733 |
} else { |
|
734 |
store->add_prec(load); |
|
735 |
} |
|
736 |
} else { |
|
737 |
assert(store_block->raise_LCA_mark() == load_index, "block was marked"); |
|
738 |
// Any other stores we found must be either inside the new LCA |
|
739 |
// or else outside the original LCA. In the latter case, they |
|
740 |
// did not interfere with any use of 'load'. |
|
741 |
assert(LCA->dominates(store_block) |
|
742 |
|| !LCA_orig->dominates(store_block), "no stray stores"); |
|
743 |
} |
|
744 |
} |
|
745 |
} |
|
746 |
||
747 |
// Return the highest block containing stores; any stores |
|
748 |
// within that block have been given anti-dependence edges. |
|
749 |
return LCA; |
|
750 |
} |
|
751 |
||
752 |
// This class is used to iterate backwards over the nodes in the graph. |
|
753 |
||
754 |
class Node_Backward_Iterator { |
|
755 |
||
756 |
private: |
|
757 |
Node_Backward_Iterator(); |
|
758 |
||
759 |
public: |
|
760 |
// Constructor for the iterator |
|
761 |
Node_Backward_Iterator(Node *root, VectorSet &visited, Node_List &stack, Block_Array &bbs); |
|
762 |
||
763 |
// Postincrement operator to iterate over the nodes |
|
764 |
Node *next(); |
|
765 |
||
766 |
private: |
|
767 |
VectorSet &_visited; |
|
768 |
Node_List &_stack; |
|
769 |
Block_Array &_bbs; |
|
770 |
}; |
|
771 |
||
772 |
// Constructor for the Node_Backward_Iterator |
|
773 |
Node_Backward_Iterator::Node_Backward_Iterator( Node *root, VectorSet &visited, Node_List &stack, Block_Array &bbs ) |
|
774 |
: _visited(visited), _stack(stack), _bbs(bbs) { |
|
775 |
// The stack should contain exactly the root |
|
776 |
stack.clear(); |
|
777 |
stack.push(root); |
|
778 |
||
779 |
// Clear the visited bits |
|
780 |
visited.Clear(); |
|
781 |
} |
|
782 |
||
783 |
// Iterator for the Node_Backward_Iterator |
|
784 |
Node *Node_Backward_Iterator::next() { |
|
785 |
||
786 |
// If the _stack is empty, then just return NULL: finished. |
|
787 |
if ( !_stack.size() ) |
|
788 |
return NULL; |
|
789 |
||
790 |
// '_stack' is emulating a real _stack. The 'visit-all-users' loop has been |
|
791 |
// made stateless, so I do not need to record the index 'i' on my _stack. |
|
792 |
// Instead I visit all users each time, scanning for unvisited users. |
|
793 |
// I visit unvisited not-anti-dependence users first, then anti-dependent |
|
794 |
// children next. |
|
795 |
Node *self = _stack.pop(); |
|
796 |
||
797 |
// I cycle here when I am entering a deeper level of recursion. |
|
798 |
// The key variable 'self' was set prior to jumping here. |
|
799 |
while( 1 ) { |
|
800 |
||
801 |
_visited.set(self->_idx); |
|
802 |
||
803 |
// Now schedule all uses as late as possible. |
|
804 |
uint src = self->is_Proj() ? self->in(0)->_idx : self->_idx; |
|
805 |
uint src_rpo = _bbs[src]->_rpo; |
|
806 |
||
807 |
// Schedule all nodes in a post-order visit |
|
808 |
Node *unvisited = NULL; // Unvisited anti-dependent Node, if any |
|
809 |
||
810 |
// Scan for unvisited nodes |
|
811 |
for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) { |
|
812 |
// For all uses, schedule late |
|
813 |
Node* n = self->fast_out(i); // Use |
|
814 |
||
815 |
// Skip already visited children |
|
816 |
if ( _visited.test(n->_idx) ) |
|
817 |
continue; |
|
818 |
||
819 |
// do not traverse backward control edges |
|
820 |
Node *use = n->is_Proj() ? n->in(0) : n; |
|
821 |
uint use_rpo = _bbs[use->_idx]->_rpo; |
|
822 |
||
823 |
if ( use_rpo < src_rpo ) |
|
824 |
continue; |
|
825 |
||
826 |
// Phi nodes always precede uses in a basic block |
|
827 |
if ( use_rpo == src_rpo && use->is_Phi() ) |
|
828 |
continue; |
|
829 |
||
830 |
unvisited = n; // Found unvisited |
|
831 |
||
832 |
// Check for possible-anti-dependent |
|
833 |
if( !n->needs_anti_dependence_check() ) |
|
834 |
break; // Not visited, not anti-dep; schedule it NOW |
|
835 |
} |
|
836 |
||
837 |
// Did I find an unvisited not-anti-dependent Node? |
|
838 |
if ( !unvisited ) |
|
839 |
break; // All done with children; post-visit 'self' |
|
840 |
||
841 |
// Visit the unvisited Node. Contains the obvious push to |
|
842 |
// indicate I'm entering a deeper level of recursion. I push the |
|
843 |
// old state onto the _stack and set a new state and loop (recurse). |
|
844 |
_stack.push(self); |
|
845 |
self = unvisited; |
|
846 |
} // End recursion loop |
|
847 |
||
848 |
return self; |
|
849 |
} |
|
850 |
||
851 |
//------------------------------ComputeLatenciesBackwards---------------------- |
|
852 |
// Compute the latency of all the instructions. |
|
853 |
void PhaseCFG::ComputeLatenciesBackwards(VectorSet &visited, Node_List &stack) { |
|
854 |
#ifndef PRODUCT |
|
855 |
if (trace_opto_pipelining()) |
|
856 |
tty->print("\n#---- ComputeLatenciesBackwards ----\n"); |
|
857 |
#endif |
|
858 |
||
859 |
Node_Backward_Iterator iter((Node *)_root, visited, stack, _bbs); |
|
860 |
Node *n; |
|
861 |
||
862 |
// Walk over all the nodes from last to first |
|
863 |
while (n = iter.next()) { |
|
864 |
// Set the latency for the definitions of this instruction |
|
865 |
partial_latency_of_defs(n); |
|
866 |
} |
|
867 |
} // end ComputeLatenciesBackwards |
|
868 |
||
869 |
//------------------------------partial_latency_of_defs------------------------ |
|
870 |
// Compute the latency impact of this node on all defs. This computes |
|
871 |
// a number that increases as we approach the beginning of the routine. |
|
872 |
void PhaseCFG::partial_latency_of_defs(Node *n) { |
|
873 |
// Set the latency for this instruction |
|
874 |
#ifndef PRODUCT |
|
875 |
if (trace_opto_pipelining()) { |
|
876 |
tty->print("# latency_to_inputs: node_latency[%d] = %d for node", |
|
6180 | 877 |
n->_idx, _node_latency->at_grow(n->_idx)); |
1 | 878 |
dump(); |
879 |
} |
|
880 |
#endif |
|
881 |
||
882 |
if (n->is_Proj()) |
|
883 |
n = n->in(0); |
|
884 |
||
885 |
if (n->is_Root()) |
|
886 |
return; |
|
887 |
||
888 |
uint nlen = n->len(); |
|
6180 | 889 |
uint use_latency = _node_latency->at_grow(n->_idx); |
1 | 890 |
uint use_pre_order = _bbs[n->_idx]->_pre_order; |
891 |
||
892 |
for ( uint j=0; j<nlen; j++ ) { |
|
893 |
Node *def = n->in(j); |
|
894 |
||
895 |
if (!def || def == n) |
|
896 |
continue; |
|
897 |
||
898 |
// Walk backwards thru projections |
|
899 |
if (def->is_Proj()) |
|
900 |
def = def->in(0); |
|
901 |
||
902 |
#ifndef PRODUCT |
|
903 |
if (trace_opto_pipelining()) { |
|
904 |
tty->print("# in(%2d): ", j); |
|
905 |
def->dump(); |
|
906 |
} |
|
907 |
#endif |
|
908 |
||
909 |
// If the defining block is not known, assume it is ok |
|
910 |
Block *def_block = _bbs[def->_idx]; |
|
911 |
uint def_pre_order = def_block ? def_block->_pre_order : 0; |
|
912 |
||
913 |
if ( (use_pre_order < def_pre_order) || |
|
914 |
(use_pre_order == def_pre_order && n->is_Phi()) ) |
|
915 |
continue; |
|
916 |
||
917 |
uint delta_latency = n->latency(j); |
|
918 |
uint current_latency = delta_latency + use_latency; |
|
919 |
||
6180 | 920 |
if (_node_latency->at_grow(def->_idx) < current_latency) { |
921 |
_node_latency->at_put_grow(def->_idx, current_latency); |
|
1 | 922 |
} |
923 |
||
924 |
#ifndef PRODUCT |
|
925 |
if (trace_opto_pipelining()) { |
|
926 |
tty->print_cr("# %d + edge_latency(%d) == %d -> %d, node_latency[%d] = %d", |
|
927 |
use_latency, j, delta_latency, current_latency, def->_idx, |
|
6180 | 928 |
_node_latency->at_grow(def->_idx)); |
1 | 929 |
} |
930 |
#endif |
|
931 |
} |
|
932 |
} |
|
933 |
||
934 |
//------------------------------latency_from_use------------------------------- |
|
935 |
// Compute the latency of a specific use |
|
936 |
int PhaseCFG::latency_from_use(Node *n, const Node *def, Node *use) { |
|
937 |
// If self-reference, return no latency |
|
938 |
if (use == n || use->is_Root()) |
|
939 |
return 0; |
|
940 |
||
941 |
uint def_pre_order = _bbs[def->_idx]->_pre_order; |
|
942 |
uint latency = 0; |
|
943 |
||
944 |
// If the use is not a projection, then it is simple... |
|
945 |
if (!use->is_Proj()) { |
|
946 |
#ifndef PRODUCT |
|
947 |
if (trace_opto_pipelining()) { |
|
948 |
tty->print("# out(): "); |
|
949 |
use->dump(); |
|
950 |
} |
|
951 |
#endif |
|
952 |
||
953 |
uint use_pre_order = _bbs[use->_idx]->_pre_order; |
|
954 |
||
955 |
if (use_pre_order < def_pre_order) |
|
956 |
return 0; |
|
957 |
||
958 |
if (use_pre_order == def_pre_order && use->is_Phi()) |
|
959 |
return 0; |
|
960 |
||
961 |
uint nlen = use->len(); |
|
6180 | 962 |
uint nl = _node_latency->at_grow(use->_idx); |
1 | 963 |
|
964 |
for ( uint j=0; j<nlen; j++ ) { |
|
965 |
if (use->in(j) == n) { |
|
966 |
// Change this if we want local latencies |
|
967 |
uint ul = use->latency(j); |
|
968 |
uint l = ul + nl; |
|
969 |
if (latency < l) latency = l; |
|
970 |
#ifndef PRODUCT |
|
971 |
if (trace_opto_pipelining()) { |
|
972 |
tty->print_cr("# %d + edge_latency(%d) == %d -> %d, latency = %d", |
|
973 |
nl, j, ul, l, latency); |
|
974 |
} |
|
975 |
#endif |
|
976 |
} |
|
977 |
} |
|
978 |
} else { |
|
979 |
// This is a projection, just grab the latency of the use(s) |
|
980 |
for (DUIterator_Fast jmax, j = use->fast_outs(jmax); j < jmax; j++) { |
|
981 |
uint l = latency_from_use(use, def, use->fast_out(j)); |
|
982 |
if (latency < l) latency = l; |
|
983 |
} |
|
984 |
} |
|
985 |
||
986 |
return latency; |
|
987 |
} |
|
988 |
||
989 |
//------------------------------latency_from_uses------------------------------ |
|
990 |
// Compute the latency of this instruction relative to all of it's uses. |
|
991 |
// This computes a number that increases as we approach the beginning of the |
|
992 |
// routine. |
|
993 |
void PhaseCFG::latency_from_uses(Node *n) { |
|
994 |
// Set the latency for this instruction |
|
995 |
#ifndef PRODUCT |
|
996 |
if (trace_opto_pipelining()) { |
|
997 |
tty->print("# latency_from_outputs: node_latency[%d] = %d for node", |
|
6180 | 998 |
n->_idx, _node_latency->at_grow(n->_idx)); |
1 | 999 |
dump(); |
1000 |
} |
|
1001 |
#endif |
|
1002 |
uint latency=0; |
|
1003 |
const Node *def = n->is_Proj() ? n->in(0): n; |
|
1004 |
||
1005 |
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { |
|
1006 |
uint l = latency_from_use(n, def, n->fast_out(i)); |
|
1007 |
||
1008 |
if (latency < l) latency = l; |
|
1009 |
} |
|
1010 |
||
6180 | 1011 |
_node_latency->at_put_grow(n->_idx, latency); |
1 | 1012 |
} |
1013 |
||
1014 |
//------------------------------hoist_to_cheaper_block------------------------- |
|
1015 |
// Pick a block for node self, between early and LCA, that is a cheaper |
|
1016 |
// alternative to LCA. |
|
1017 |
Block* PhaseCFG::hoist_to_cheaper_block(Block* LCA, Block* early, Node* self) { |
|
1018 |
const double delta = 1+PROB_UNLIKELY_MAG(4); |
|
1019 |
Block* least = LCA; |
|
1020 |
double least_freq = least->_freq; |
|
6180 | 1021 |
uint target = _node_latency->at_grow(self->_idx); |
1022 |
uint start_latency = _node_latency->at_grow(LCA->_nodes[0]->_idx); |
|
1023 |
uint end_latency = _node_latency->at_grow(LCA->_nodes[LCA->end_idx()]->_idx); |
|
1 | 1024 |
bool in_latency = (target <= start_latency); |
1025 |
const Block* root_block = _bbs[_root->_idx]; |
|
1026 |
||
1027 |
// Turn off latency scheduling if scheduling is just plain off |
|
1028 |
if (!C->do_scheduling()) |
|
1029 |
in_latency = true; |
|
1030 |
||
1031 |
// Do not hoist (to cover latency) instructions which target a |
|
1032 |
// single register. Hoisting stretches the live range of the |
|
1033 |
// single register and may force spilling. |
|
1034 |
MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL; |
|
1035 |
if (mach && mach->out_RegMask().is_bound1() && mach->out_RegMask().is_NotEmpty()) |
|
1036 |
in_latency = true; |
|
1037 |
||
1038 |
#ifndef PRODUCT |
|
1039 |
if (trace_opto_pipelining()) { |
|
1040 |
tty->print("# Find cheaper block for latency %d: ", |
|
6180 | 1041 |
_node_latency->at_grow(self->_idx)); |
1 | 1042 |
self->dump(); |
1043 |
tty->print_cr("# B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g", |
|
1044 |
LCA->_pre_order, |
|
1045 |
LCA->_nodes[0]->_idx, |
|
1046 |
start_latency, |
|
1047 |
LCA->_nodes[LCA->end_idx()]->_idx, |
|
1048 |
end_latency, |
|
1049 |
least_freq); |
|
1050 |
} |
|
1051 |
#endif |
|
1052 |
||
15871
b04dd94da4e6
8009120: Fuzz instruction scheduling in HotSpot compilers
shade
parents:
14623
diff
changeset
|
1053 |
int cand_cnt = 0; // number of candidates tried |
b04dd94da4e6
8009120: Fuzz instruction scheduling in HotSpot compilers
shade
parents:
14623
diff
changeset
|
1054 |
|
1 | 1055 |
// Walk up the dominator tree from LCA (Lowest common ancestor) to |
1056 |
// the earliest legal location. Capture the least execution frequency. |
|
1057 |
while (LCA != early) { |
|
1058 |
LCA = LCA->_idom; // Follow up the dominator tree |
|
1059 |
||
1060 |
if (LCA == NULL) { |
|
1061 |
// Bailout without retry |
|
1062 |
C->record_method_not_compilable("late schedule failed: LCA == NULL"); |
|
1063 |
return least; |
|
1064 |
} |
|
1065 |
||
1066 |
// Don't hoist machine instructions to the root basic block |
|
1067 |
if (mach && LCA == root_block) |
|
1068 |
break; |
|
1069 |
||
6180 | 1070 |
uint start_lat = _node_latency->at_grow(LCA->_nodes[0]->_idx); |
1 | 1071 |
uint end_idx = LCA->end_idx(); |
6180 | 1072 |
uint end_lat = _node_latency->at_grow(LCA->_nodes[end_idx]->_idx); |
1 | 1073 |
double LCA_freq = LCA->_freq; |
1074 |
#ifndef PRODUCT |
|
1075 |
if (trace_opto_pipelining()) { |
|
1076 |
tty->print_cr("# B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g", |
|
1077 |
LCA->_pre_order, LCA->_nodes[0]->_idx, start_lat, end_idx, end_lat, LCA_freq); |
|
1078 |
} |
|
1079 |
#endif |
|
15871
b04dd94da4e6
8009120: Fuzz instruction scheduling in HotSpot compilers
shade
parents:
14623
diff
changeset
|
1080 |
cand_cnt++; |
1 | 1081 |
if (LCA_freq < least_freq || // Better Frequency |
15871
b04dd94da4e6
8009120: Fuzz instruction scheduling in HotSpot compilers
shade
parents:
14623
diff
changeset
|
1082 |
(StressGCM && Compile::randomized_select(cand_cnt)) || // Should be randomly accepted in stress mode |
b04dd94da4e6
8009120: Fuzz instruction scheduling in HotSpot compilers
shade
parents:
14623
diff
changeset
|
1083 |
(!StressGCM && // Otherwise, choose with latency |
b04dd94da4e6
8009120: Fuzz instruction scheduling in HotSpot compilers
shade
parents:
14623
diff
changeset
|
1084 |
!in_latency && // No block containing latency |
1 | 1085 |
LCA_freq < least_freq * delta && // No worse frequency |
1086 |
target >= end_lat && // within latency range |
|
1087 |
!self->is_iteratively_computed() ) // But don't hoist IV increments |
|
1088 |
// because they may end up above other uses of their phi forcing |
|
1089 |
// their result register to be different from their input. |
|
1090 |
) { |
|
1091 |
least = LCA; // Found cheaper block |
|
1092 |
least_freq = LCA_freq; |
|
1093 |
start_latency = start_lat; |
|
1094 |
end_latency = end_lat; |
|
1095 |
if (target <= start_lat) |
|
1096 |
in_latency = true; |
|
1097 |
} |
|
1098 |
} |
|
1099 |
||
1100 |
#ifndef PRODUCT |
|
1101 |
if (trace_opto_pipelining()) { |
|
1102 |
tty->print_cr("# Choose block B%d with start latency=%d and freq=%g", |
|
1103 |
least->_pre_order, start_latency, least_freq); |
|
1104 |
} |
|
1105 |
#endif |
|
1106 |
||
1107 |
// See if the latency needs to be updated |
|
1108 |
if (target < end_latency) { |
|
1109 |
#ifndef PRODUCT |
|
1110 |
if (trace_opto_pipelining()) { |
|
1111 |
tty->print_cr("# Change latency for [%4d] from %d to %d", self->_idx, target, end_latency); |
|
1112 |
} |
|
1113 |
#endif |
|
6180 | 1114 |
_node_latency->at_put_grow(self->_idx, end_latency); |
1 | 1115 |
partial_latency_of_defs(self); |
1116 |
} |
|
1117 |
||
1118 |
return least; |
|
1119 |
} |
|
1120 |
||
1121 |
||
1122 |
//------------------------------schedule_late----------------------------------- |
|
1123 |
// Now schedule all codes as LATE as possible. This is the LCA in the |
|
1124 |
// dominator tree of all USES of a value. Pick the block with the least |
|
1125 |
// loop nesting depth that is lowest in the dominator tree. |
|
1126 |
extern const char must_clone[]; |
|
1127 |
void PhaseCFG::schedule_late(VectorSet &visited, Node_List &stack) { |
|
1128 |
#ifndef PRODUCT |
|
1129 |
if (trace_opto_pipelining()) |
|
1130 |
tty->print("\n#---- schedule_late ----\n"); |
|
1131 |
#endif |
|
1132 |
||
1133 |
Node_Backward_Iterator iter((Node *)_root, visited, stack, _bbs); |
|
1134 |
Node *self; |
|
1135 |
||
1136 |
// Walk over all the nodes from last to first |
|
1137 |
while (self = iter.next()) { |
|
1138 |
Block* early = _bbs[self->_idx]; // Earliest legal placement |
|
1139 |
||
1140 |
if (self->is_top()) { |
|
1141 |
// Top node goes in bb #2 with other constants. |
|
1142 |
// It must be special-cased, because it has no out edges. |
|
1143 |
early->add_inst(self); |
|
1144 |
continue; |
|
1145 |
} |
|
1146 |
||
1147 |
// No uses, just terminate |
|
1148 |
if (self->outcnt() == 0) { |
|
10255 | 1149 |
assert(self->is_MachProj(), "sanity"); |
1 | 1150 |
continue; // Must be a dead machine projection |
1151 |
} |
|
1152 |
||
1153 |
// If node is pinned in the block, then no scheduling can be done. |
|
1154 |
if( self->pinned() ) // Pinned in block? |
|
1155 |
continue; |
|
1156 |
||
1157 |
MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL; |
|
1158 |
if (mach) { |
|
1159 |
switch (mach->ideal_Opcode()) { |
|
1160 |
case Op_CreateEx: |
|
1161 |
// Don't move exception creation |
|
1162 |
early->add_inst(self); |
|
1163 |
continue; |
|
1164 |
break; |
|
1165 |
case Op_CheckCastPP: |
|
1166 |
// Don't move CheckCastPP nodes away from their input, if the input |
|
1167 |
// is a rawptr (5071820). |
|
1168 |
Node *def = self->in(1); |
|
1169 |
if (def != NULL && def->bottom_type()->base() == Type::RawPtr) { |
|
1170 |
early->add_inst(self); |
|
3186
11ba3d09bd0e
6840775: Multiple JVM crashes seen with 1.6.0_10 through 1.6.0_14
kvn
parents:
2875
diff
changeset
|
1171 |
#ifdef ASSERT |
11ba3d09bd0e
6840775: Multiple JVM crashes seen with 1.6.0_10 through 1.6.0_14
kvn
parents:
2875
diff
changeset
|
1172 |
_raw_oops.push(def); |
11ba3d09bd0e
6840775: Multiple JVM crashes seen with 1.6.0_10 through 1.6.0_14
kvn
parents:
2875
diff
changeset
|
1173 |
#endif |
1 | 1174 |
continue; |
1175 |
} |
|
1176 |
break; |
|
1177 |
} |
|
1178 |
} |
|
1179 |
||
1180 |
// Gather LCA of all uses |
|
1181 |
Block *LCA = NULL; |
|
1182 |
{ |
|
1183 |
for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) { |
|
1184 |
// For all uses, find LCA |
|
1185 |
Node* use = self->fast_out(i); |
|
1186 |
LCA = raise_LCA_above_use(LCA, use, self, _bbs); |
|
1187 |
} |
|
1188 |
} // (Hide defs of imax, i from rest of block.) |
|
1189 |
||
1190 |
// Place temps in the block of their use. This isn't a |
|
1191 |
// requirement for correctness but it reduces useless |
|
1192 |
// interference between temps and other nodes. |
|
1193 |
if (mach != NULL && mach->is_MachTemp()) { |
|
1194 |
_bbs.map(self->_idx, LCA); |
|
1195 |
LCA->add_inst(self); |
|
1196 |
continue; |
|
1197 |
} |
|
1198 |
||
1199 |
// Check if 'self' could be anti-dependent on memory |
|
1200 |
if (self->needs_anti_dependence_check()) { |
|
1201 |
// Hoist LCA above possible-defs and insert anti-dependences to |
|
1202 |
// defs in new LCA block. |
|
1203 |
LCA = insert_anti_dependences(LCA, self); |
|
1204 |
} |
|
1205 |
||
1206 |
if (early->_dom_depth > LCA->_dom_depth) { |
|
1207 |
// Somehow the LCA has moved above the earliest legal point. |
|
1208 |
// (One way this can happen is via memory_early_block.) |
|
1209 |
if (C->subsume_loads() == true && !C->failing()) { |
|
1210 |
// Retry with subsume_loads == false |
|
1211 |
// If this is the first failure, the sentinel string will "stick" |
|
1212 |
// to the Compile object, and the C2Compiler will see it and retry. |
|
1213 |
C->record_failure(C2Compiler::retry_no_subsuming_loads()); |
|
1214 |
} else { |
|
1215 |
// Bailout without retry when (early->_dom_depth > LCA->_dom_depth) |
|
1216 |
C->record_method_not_compilable("late schedule failed: incorrect graph"); |
|
1217 |
} |
|
1218 |
return; |
|
1219 |
} |
|
1220 |
||
1221 |
// If there is no opportunity to hoist, then we're done. |
|
15871
b04dd94da4e6
8009120: Fuzz instruction scheduling in HotSpot compilers
shade
parents:
14623
diff
changeset
|
1222 |
// In stress mode, try to hoist even the single operations. |
b04dd94da4e6
8009120: Fuzz instruction scheduling in HotSpot compilers
shade
parents:
14623
diff
changeset
|
1223 |
bool try_to_hoist = StressGCM || (LCA != early); |
1 | 1224 |
|
1225 |
// Must clone guys stay next to use; no hoisting allowed. |
|
1226 |
// Also cannot hoist guys that alter memory or are otherwise not |
|
1227 |
// allocatable (hoisting can make a value live longer, leading to |
|
1228 |
// anti and output dependency problems which are normally resolved |
|
1229 |
// by the register allocator giving everyone a different register). |
|
1230 |
if (mach != NULL && must_clone[mach->ideal_Opcode()]) |
|
1231 |
try_to_hoist = false; |
|
1232 |
||
1233 |
Block* late = NULL; |
|
1234 |
if (try_to_hoist) { |
|
1235 |
// Now find the block with the least execution frequency. |
|
1236 |
// Start at the latest schedule and work up to the earliest schedule |
|
1237 |
// in the dominator tree. Thus the Node will dominate all its uses. |
|
1238 |
late = hoist_to_cheaper_block(LCA, early, self); |
|
1239 |
} else { |
|
1240 |
// Just use the LCA of the uses. |
|
1241 |
late = LCA; |
|
1242 |
} |
|
1243 |
||
1244 |
// Put the node into target block |
|
1245 |
schedule_node_into_block(self, late); |
|
1246 |
||
1247 |
#ifdef ASSERT |
|
1248 |
if (self->needs_anti_dependence_check()) { |
|
1249 |
// since precedence edges are only inserted when we're sure they |
|
1250 |
// are needed make sure that after placement in a block we don't |
|
1251 |
// need any new precedence edges. |
|
1252 |
verify_anti_dependences(late, self); |
|
1253 |
} |
|
1254 |
#endif |
|
1255 |
} // Loop until all nodes have been visited |
|
1256 |
||
1257 |
} // end ScheduleLate |
|
1258 |
||
1259 |
//------------------------------GlobalCodeMotion------------------------------- |
|
1260 |
void PhaseCFG::GlobalCodeMotion( Matcher &matcher, uint unique, Node_List &proj_list ) { |
|
1261 |
ResourceMark rm; |
|
1262 |
||
1263 |
#ifndef PRODUCT |
|
1264 |
if (trace_opto_pipelining()) { |
|
1265 |
tty->print("\n---- Start GlobalCodeMotion ----\n"); |
|
1266 |
} |
|
1267 |
#endif |
|
1268 |
||
1269 |
// Initialize the bbs.map for things on the proj_list |
|
1270 |
uint i; |
|
1271 |
for( i=0; i < proj_list.size(); i++ ) |
|
1272 |
_bbs.map(proj_list[i]->_idx, NULL); |
|
1273 |
||
1274 |
// Set the basic block for Nodes pinned into blocks |
|
1275 |
Arena *a = Thread::current()->resource_area(); |
|
1276 |
VectorSet visited(a); |
|
1277 |
schedule_pinned_nodes( visited ); |
|
1278 |
||
1279 |
// Find the earliest Block any instruction can be placed in. Some |
|
1280 |
// instructions are pinned into Blocks. Unpinned instructions can |
|
1281 |
// appear in last block in which all their inputs occur. |
|
1282 |
visited.Clear(); |
|
1283 |
Node_List stack(a); |
|
1284 |
stack.map( (unique >> 1) + 16, NULL); // Pre-grow the list |
|
1285 |
if (!schedule_early(visited, stack)) { |
|
1286 |
// Bailout without retry |
|
1287 |
C->record_method_not_compilable("early schedule failed"); |
|
1288 |
return; |
|
1289 |
} |
|
1290 |
||
1291 |
// Build Def-Use edges. |
|
1292 |
proj_list.push(_root); // Add real root as another root |
|
1293 |
proj_list.pop(); |
|
1294 |
||
1295 |
// Compute the latency information (via backwards walk) for all the |
|
1296 |
// instructions in the graph |
|
6180 | 1297 |
_node_latency = new GrowableArray<uint>(); // resource_area allocation |
1 | 1298 |
|
1299 |
if( C->do_scheduling() ) |
|
1300 |
ComputeLatenciesBackwards(visited, stack); |
|
1301 |
||
1302 |
// Now schedule all codes as LATE as possible. This is the LCA in the |
|
1303 |
// dominator tree of all USES of a value. Pick the block with the least |
|
1304 |
// loop nesting depth that is lowest in the dominator tree. |
|
1305 |
// ( visited.Clear() called in schedule_late()->Node_Backward_Iterator() ) |
|
1306 |
schedule_late(visited, stack); |
|
1307 |
if( C->failing() ) { |
|
1308 |
// schedule_late fails only when graph is incorrect. |
|
1309 |
assert(!VerifyGraphEdges, "verification should have failed"); |
|
1310 |
return; |
|
1311 |
} |
|
1312 |
||
1313 |
unique = C->unique(); |
|
1314 |
||
1315 |
#ifndef PRODUCT |
|
1316 |
if (trace_opto_pipelining()) { |
|
1317 |
tty->print("\n---- Detect implicit null checks ----\n"); |
|
1318 |
} |
|
1319 |
#endif |
|
1320 |
||
1321 |
// Detect implicit-null-check opportunities. Basically, find NULL checks |
|
1322 |
// with suitable memory ops nearby. Use the memory op to do the NULL check. |
|
1323 |
// I can generate a memory op if there is not one nearby. |
|
1324 |
if (C->is_method_compilation()) { |
|
1325 |
// Don't do it for natives, adapters, or runtime stubs |
|
1326 |
int allowed_reasons = 0; |
|
1327 |
// ...and don't do it when there have been too many traps, globally. |
|
1328 |
for (int reason = (int)Deoptimization::Reason_none+1; |
|
1329 |
reason < Compile::trapHistLength; reason++) { |
|
1330 |
assert(reason < BitsPerInt, "recode bit map"); |
|
1331 |
if (!C->too_many_traps((Deoptimization::DeoptReason) reason)) |
|
1332 |
allowed_reasons |= nth_bit(reason); |
|
1333 |
} |
|
1334 |
// By reversing the loop direction we get a very minor gain on mpegaudio. |
|
1335 |
// Feel free to revert to a forward loop for clarity. |
|
1336 |
// for( int i=0; i < (int)matcher._null_check_tests.size(); i+=2 ) { |
|
1337 |
for( int i= matcher._null_check_tests.size()-2; i>=0; i-=2 ) { |
|
1338 |
Node *proj = matcher._null_check_tests[i ]; |
|
1339 |
Node *val = matcher._null_check_tests[i+1]; |
|
1340 |
_bbs[proj->_idx]->implicit_null_check(this, proj, val, allowed_reasons); |
|
1341 |
// The implicit_null_check will only perform the transformation |
|
1342 |
// if the null branch is truly uncommon, *and* it leads to an |
|
1343 |
// uncommon trap. Combined with the too_many_traps guards |
|
1344 |
// above, this prevents SEGV storms reported in 6366351, |
|
1345 |
// by recompiling offending methods without this optimization. |
|
1346 |
} |
|
1347 |
} |
|
1348 |
||
1349 |
#ifndef PRODUCT |
|
1350 |
if (trace_opto_pipelining()) { |
|
1351 |
tty->print("\n---- Start Local Scheduling ----\n"); |
|
1352 |
} |
|
1353 |
#endif |
|
1354 |
||
1355 |
// Schedule locally. Right now a simple topological sort. |
|
1356 |
// Later, do a real latency aware scheduler. |
|
11567
512b2c76e3b7
7116050: C2/ARM: memory stomping error with DivideMcTests
roland
parents:
11191
diff
changeset
|
1357 |
uint max_idx = C->unique(); |
512b2c76e3b7
7116050: C2/ARM: memory stomping error with DivideMcTests
roland
parents:
11191
diff
changeset
|
1358 |
GrowableArray<int> ready_cnt(max_idx, max_idx, -1); |
1 | 1359 |
visited.Clear(); |
1360 |
for (i = 0; i < _num_blocks; i++) { |
|
1361 |
if (!_blocks[i]->schedule_local(this, matcher, ready_cnt, visited)) { |
|
1362 |
if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) { |
|
1363 |
C->record_method_not_compilable("local schedule failed"); |
|
1364 |
} |
|
1365 |
return; |
|
1366 |
} |
|
1367 |
} |
|
1368 |
||
1369 |
// If we inserted any instructions between a Call and his CatchNode, |
|
1370 |
// clone the instructions on all paths below the Catch. |
|
1371 |
for( i=0; i < _num_blocks; i++ ) |
|
14623
70c4c1be0a14
7092905: C2: Keep track of the number of dead nodes
bharadwaj
parents:
13963
diff
changeset
|
1372 |
_blocks[i]->call_catch_cleanup(_bbs, C); |
1 | 1373 |
|
1374 |
#ifndef PRODUCT |
|
1375 |
if (trace_opto_pipelining()) { |
|
1376 |
tty->print("\n---- After GlobalCodeMotion ----\n"); |
|
1377 |
for (uint i = 0; i < _num_blocks; i++) { |
|
1378 |
_blocks[i]->dump(); |
|
1379 |
} |
|
1380 |
} |
|
1381 |
#endif |
|
6180 | 1382 |
// Dead. |
1383 |
_node_latency = (GrowableArray<uint> *)0xdeadbeef; |
|
1 | 1384 |
} |
1385 |
||
1386 |
||
1387 |
//------------------------------Estimate_Block_Frequency----------------------- |
|
1388 |
// Estimate block frequencies based on IfNode probabilities. |
|
1389 |
void PhaseCFG::Estimate_Block_Frequency() { |
|
1498 | 1390 |
|
1391 |
// Force conditional branches leading to uncommon traps to be unlikely, |
|
1392 |
// not because we get to the uncommon_trap with less relative frequency, |
|
1393 |
// but because an uncommon_trap typically causes a deopt, so we only get |
|
1394 |
// there once. |
|
1395 |
if (C->do_freq_based_layout()) { |
|
1396 |
Block_List worklist; |
|
1397 |
Block* root_blk = _blocks[0]; |
|
1398 |
for (uint i = 1; i < root_blk->num_preds(); i++) { |
|
1399 |
Block *pb = _bbs[root_blk->pred(i)->_idx]; |
|
1400 |
if (pb->has_uncommon_code()) { |
|
1401 |
worklist.push(pb); |
|
1402 |
} |
|
1403 |
} |
|
1404 |
while (worklist.size() > 0) { |
|
1405 |
Block* uct = worklist.pop(); |
|
1406 |
if (uct == _broot) continue; |
|
1407 |
for (uint i = 1; i < uct->num_preds(); i++) { |
|
1408 |
Block *pb = _bbs[uct->pred(i)->_idx]; |
|
1409 |
if (pb->_num_succs == 1) { |
|
1410 |
worklist.push(pb); |
|
1411 |
} else if (pb->num_fall_throughs() == 2) { |
|
1412 |
pb->update_uncommon_branch(uct); |
|
1413 |
} |
|
1414 |
} |
|
1415 |
} |
|
1416 |
} |
|
1 | 1417 |
|
1418 |
// Create the loop tree and calculate loop depth. |
|
1419 |
_root_loop = create_loop_tree(); |
|
1420 |
_root_loop->compute_loop_depth(0); |
|
1421 |
||
1422 |
// Compute block frequency of each block, relative to a single loop entry. |
|
1423 |
_root_loop->compute_freq(); |
|
1424 |
||
1425 |
// Adjust all frequencies to be relative to a single method entry |
|
1498 | 1426 |
_root_loop->_freq = 1.0; |
1 | 1427 |
_root_loop->scale_freq(); |
1428 |
||
2340 | 1429 |
// Save outmost loop frequency for LRG frequency threshold |
1430 |
_outer_loop_freq = _root_loop->outer_loop_freq(); |
|
1431 |
||
1 | 1432 |
// force paths ending at uncommon traps to be infrequent |
1498 | 1433 |
if (!C->do_freq_based_layout()) { |
1434 |
Block_List worklist; |
|
1435 |
Block* root_blk = _blocks[0]; |
|
1436 |
for (uint i = 1; i < root_blk->num_preds(); i++) { |
|
1437 |
Block *pb = _bbs[root_blk->pred(i)->_idx]; |
|
1438 |
if (pb->has_uncommon_code()) { |
|
1439 |
worklist.push(pb); |
|
1440 |
} |
|
1 | 1441 |
} |
1498 | 1442 |
while (worklist.size() > 0) { |
1443 |
Block* uct = worklist.pop(); |
|
1444 |
uct->_freq = PROB_MIN; |
|
1445 |
for (uint i = 1; i < uct->num_preds(); i++) { |
|
1446 |
Block *pb = _bbs[uct->pred(i)->_idx]; |
|
1447 |
if (pb->_num_succs == 1 && pb->_freq > PROB_MIN) { |
|
1448 |
worklist.push(pb); |
|
1449 |
} |
|
1 | 1450 |
} |
1451 |
} |
|
1452 |
} |
|
1453 |
||
2016
c1f73fa547fe
6784930: server jvm fails with assert(!n->is_SpillCopy(),"")
kvn
parents:
1498
diff
changeset
|
1454 |
#ifdef ASSERT |
c1f73fa547fe
6784930: server jvm fails with assert(!n->is_SpillCopy(),"")
kvn
parents:
1498
diff
changeset
|
1455 |
for (uint i = 0; i < _num_blocks; i++ ) { |
c1f73fa547fe
6784930: server jvm fails with assert(!n->is_SpillCopy(),"")
kvn
parents:
1498
diff
changeset
|
1456 |
Block *b = _blocks[i]; |
2131 | 1457 |
assert(b->_freq >= MIN_BLOCK_FREQUENCY, "Register Allocator requires meaningful block frequency"); |
2016
c1f73fa547fe
6784930: server jvm fails with assert(!n->is_SpillCopy(),"")
kvn
parents:
1498
diff
changeset
|
1458 |
} |
c1f73fa547fe
6784930: server jvm fails with assert(!n->is_SpillCopy(),"")
kvn
parents:
1498
diff
changeset
|
1459 |
#endif |
c1f73fa547fe
6784930: server jvm fails with assert(!n->is_SpillCopy(),"")
kvn
parents:
1498
diff
changeset
|
1460 |
|
1 | 1461 |
#ifndef PRODUCT |
1462 |
if (PrintCFGBlockFreq) { |
|
1463 |
tty->print_cr("CFG Block Frequencies"); |
|
1464 |
_root_loop->dump_tree(); |
|
1465 |
if (Verbose) { |
|
1466 |
tty->print_cr("PhaseCFG dump"); |
|
1467 |
dump(); |
|
1468 |
tty->print_cr("Node dump"); |
|
1469 |
_root->dump(99999); |
|
1470 |
} |
|
1471 |
} |
|
1472 |
#endif |
|
1473 |
} |
|
1474 |
||
1475 |
//----------------------------create_loop_tree-------------------------------- |
|
1476 |
// Create a loop tree from the CFG |
|
1477 |
CFGLoop* PhaseCFG::create_loop_tree() { |
|
1478 |
||
1479 |
#ifdef ASSERT |
|
1480 |
assert( _blocks[0] == _broot, "" ); |
|
1481 |
for (uint i = 0; i < _num_blocks; i++ ) { |
|
1482 |
Block *b = _blocks[i]; |
|
1483 |
// Check that _loop field are clear...we could clear them if not. |
|
1484 |
assert(b->_loop == NULL, "clear _loop expected"); |
|
1485 |
// Sanity check that the RPO numbering is reflected in the _blocks array. |
|
1486 |
// It doesn't have to be for the loop tree to be built, but if it is not, |
|
1487 |
// then the blocks have been reordered since dom graph building...which |
|
1488 |
// may question the RPO numbering |
|
1489 |
assert(b->_rpo == i, "unexpected reverse post order number"); |
|
1490 |
} |
|
1491 |
#endif |
|
1492 |
||
1493 |
int idct = 0; |
|
1494 |
CFGLoop* root_loop = new CFGLoop(idct++); |
|
1495 |
||
1496 |
Block_List worklist; |
|
1497 |
||
1498 |
// Assign blocks to loops |
|
1499 |
for(uint i = _num_blocks - 1; i > 0; i-- ) { // skip Root block |
|
1500 |
Block *b = _blocks[i]; |
|
1501 |
||
1502 |
if (b->head()->is_Loop()) { |
|
1503 |
Block* loop_head = b; |
|
1504 |
assert(loop_head->num_preds() - 1 == 2, "loop must have 2 predecessors"); |
|
1505 |
Node* tail_n = loop_head->pred(LoopNode::LoopBackControl); |
|
1506 |
Block* tail = _bbs[tail_n->_idx]; |
|
1507 |
||
1508 |
// Defensively filter out Loop nodes for non-single-entry loops. |
|
1509 |
// For all reasonable loops, the head occurs before the tail in RPO. |
|
1510 |
if (i <= tail->_rpo) { |
|
1511 |
||
1512 |
// The tail and (recursive) predecessors of the tail |
|
1513 |
// are made members of a new loop. |
|
1514 |
||
1515 |
assert(worklist.size() == 0, "nonempty worklist"); |
|
1516 |
CFGLoop* nloop = new CFGLoop(idct++); |
|
1517 |
assert(loop_head->_loop == NULL, "just checking"); |
|
1518 |
loop_head->_loop = nloop; |
|
1519 |
// Add to nloop so push_pred() will skip over inner loops |
|
1520 |
nloop->add_member(loop_head); |
|
1521 |
nloop->push_pred(loop_head, LoopNode::LoopBackControl, worklist, _bbs); |
|
1522 |
||
1523 |
while (worklist.size() > 0) { |
|
1524 |
Block* member = worklist.pop(); |
|
1525 |
if (member != loop_head) { |
|
1526 |
for (uint j = 1; j < member->num_preds(); j++) { |
|
1527 |
nloop->push_pred(member, j, worklist, _bbs); |
|
1528 |
} |
|
1529 |
} |
|
1530 |
} |
|
1531 |
} |
|
1532 |
} |
|
1533 |
} |
|
1534 |
||
1535 |
// Create a member list for each loop consisting |
|
1536 |
// of both blocks and (immediate child) loops. |
|
1537 |
for (uint i = 0; i < _num_blocks; i++) { |
|
1538 |
Block *b = _blocks[i]; |
|
1539 |
CFGLoop* lp = b->_loop; |
|
1540 |
if (lp == NULL) { |
|
1541 |
// Not assigned to a loop. Add it to the method's pseudo loop. |
|
1542 |
b->_loop = root_loop; |
|
1543 |
lp = root_loop; |
|
1544 |
} |
|
1545 |
if (lp == root_loop || b != lp->head()) { // loop heads are already members |
|
1546 |
lp->add_member(b); |
|
1547 |
} |
|
1548 |
if (lp != root_loop) { |
|
1549 |
if (lp->parent() == NULL) { |
|
1550 |
// Not a nested loop. Make it a child of the method's pseudo loop. |
|
1551 |
root_loop->add_nested_loop(lp); |
|
1552 |
} |
|
1553 |
if (b == lp->head()) { |
|
1554 |
// Add nested loop to member list of parent loop. |
|
1555 |
lp->parent()->add_member(lp); |
|
1556 |
} |
|
1557 |
} |
|
1558 |
} |
|
1559 |
||
1560 |
return root_loop; |
|
1561 |
} |
|
1562 |
||
1563 |
//------------------------------push_pred-------------------------------------- |
|
1564 |
void CFGLoop::push_pred(Block* blk, int i, Block_List& worklist, Block_Array& node_to_blk) { |
|
1565 |
Node* pred_n = blk->pred(i); |
|
1566 |
Block* pred = node_to_blk[pred_n->_idx]; |
|
1567 |
CFGLoop *pred_loop = pred->_loop; |
|
1568 |
if (pred_loop == NULL) { |
|
1569 |
// Filter out blocks for non-single-entry loops. |
|
1570 |
// For all reasonable loops, the head occurs before the tail in RPO. |
|
1571 |
if (pred->_rpo > head()->_rpo) { |
|
1572 |
pred->_loop = this; |
|
1573 |
worklist.push(pred); |
|
1574 |
} |
|
1575 |
} else if (pred_loop != this) { |
|
1576 |
// Nested loop. |
|
1577 |
while (pred_loop->_parent != NULL && pred_loop->_parent != this) { |
|
1578 |
pred_loop = pred_loop->_parent; |
|
1579 |
} |
|
1580 |
// Make pred's loop be a child |
|
1581 |
if (pred_loop->_parent == NULL) { |
|
1582 |
add_nested_loop(pred_loop); |
|
1583 |
// Continue with loop entry predecessor. |
|
1584 |
Block* pred_head = pred_loop->head(); |
|
1585 |
assert(pred_head->num_preds() - 1 == 2, "loop must have 2 predecessors"); |
|
1586 |
assert(pred_head != head(), "loop head in only one loop"); |
|
1587 |
push_pred(pred_head, LoopNode::EntryControl, worklist, node_to_blk); |
|
1588 |
} else { |
|
1589 |
assert(pred_loop->_parent == this && _parent == NULL, "just checking"); |
|
1590 |
} |
|
1591 |
} |
|
1592 |
} |
|
1593 |
||
1594 |
//------------------------------add_nested_loop-------------------------------- |
|
1595 |
// Make cl a child of the current loop in the loop tree. |
|
1596 |
void CFGLoop::add_nested_loop(CFGLoop* cl) { |
|
1597 |
assert(_parent == NULL, "no parent yet"); |
|
1598 |
assert(cl != this, "not my own parent"); |
|
1599 |
cl->_parent = this; |
|
1600 |
CFGLoop* ch = _child; |
|
1601 |
if (ch == NULL) { |
|
1602 |
_child = cl; |
|
1603 |
} else { |
|
1604 |
while (ch->_sibling != NULL) { ch = ch->_sibling; } |
|
1605 |
ch->_sibling = cl; |
|
1606 |
} |
|
1607 |
} |
|
1608 |
||
1609 |
//------------------------------compute_loop_depth----------------------------- |
|
1610 |
// Store the loop depth in each CFGLoop object. |
|
1611 |
// Recursively walk the children to do the same for them. |
|
1612 |
void CFGLoop::compute_loop_depth(int depth) { |
|
1613 |
_depth = depth; |
|
1614 |
CFGLoop* ch = _child; |
|
1615 |
while (ch != NULL) { |
|
1616 |
ch->compute_loop_depth(depth + 1); |
|
1617 |
ch = ch->_sibling; |
|
1618 |
} |
|
1619 |
} |
|
1620 |
||
1621 |
//------------------------------compute_freq----------------------------------- |
|
1622 |
// Compute the frequency of each block and loop, relative to a single entry |
|
1623 |
// into the dominating loop head. |
|
1624 |
void CFGLoop::compute_freq() { |
|
1625 |
// Bottom up traversal of loop tree (visit inner loops first.) |
|
1626 |
// Set loop head frequency to 1.0, then transitively |
|
1627 |
// compute frequency for all successors in the loop, |
|
1628 |
// as well as for each exit edge. Inner loops are |
|
1629 |
// treated as single blocks with loop exit targets |
|
1630 |
// as the successor blocks. |
|
1631 |
||
1632 |
// Nested loops first |
|
1633 |
CFGLoop* ch = _child; |
|
1634 |
while (ch != NULL) { |
|
1635 |
ch->compute_freq(); |
|
1636 |
ch = ch->_sibling; |
|
1637 |
} |
|
1638 |
assert (_members.length() > 0, "no empty loops"); |
|
1639 |
Block* hd = head(); |
|
1640 |
hd->_freq = 1.0f; |
|
1641 |
for (int i = 0; i < _members.length(); i++) { |
|
1642 |
CFGElement* s = _members.at(i); |
|
1643 |
float freq = s->_freq; |
|
1644 |
if (s->is_block()) { |
|
1645 |
Block* b = s->as_Block(); |
|
1646 |
for (uint j = 0; j < b->_num_succs; j++) { |
|
1647 |
Block* sb = b->_succs[j]; |
|
1648 |
update_succ_freq(sb, freq * b->succ_prob(j)); |
|
1649 |
} |
|
1650 |
} else { |
|
1651 |
CFGLoop* lp = s->as_CFGLoop(); |
|
1652 |
assert(lp->_parent == this, "immediate child"); |
|
1653 |
for (int k = 0; k < lp->_exits.length(); k++) { |
|
1654 |
Block* eb = lp->_exits.at(k).get_target(); |
|
1655 |
float prob = lp->_exits.at(k).get_prob(); |
|
1656 |
update_succ_freq(eb, freq * prob); |
|
1657 |
} |
|
1658 |
} |
|
1659 |
} |
|
1660 |
||
1661 |
// For all loops other than the outer, "method" loop, |
|
1662 |
// sum and normalize the exit probability. The "method" loop |
|
1663 |
// should keep the initial exit probability of 1, so that |
|
1664 |
// inner blocks do not get erroneously scaled. |
|
1665 |
if (_depth != 0) { |
|
1666 |
// Total the exit probabilities for this loop. |
|
1667 |
float exits_sum = 0.0f; |
|
1668 |
for (int i = 0; i < _exits.length(); i++) { |
|
1669 |
exits_sum += _exits.at(i).get_prob(); |
|
1670 |
} |
|
1671 |
||
1672 |
// Normalize the exit probabilities. Until now, the |
|
1673 |
// probabilities estimate the possibility of exit per |
|
1674 |
// a single loop iteration; afterward, they estimate |
|
1675 |
// the probability of exit per loop entry. |
|
1676 |
for (int i = 0; i < _exits.length(); i++) { |
|
1677 |
Block* et = _exits.at(i).get_target(); |
|
1498 | 1678 |
float new_prob = 0.0f; |
1679 |
if (_exits.at(i).get_prob() > 0.0f) { |
|
1680 |
new_prob = _exits.at(i).get_prob() / exits_sum; |
|
1681 |
} |
|
1 | 1682 |
BlockProbPair bpp(et, new_prob); |
1683 |
_exits.at_put(i, bpp); |
|
1684 |
} |
|
1685 |
||
1498 | 1686 |
// Save the total, but guard against unreasonable probability, |
1 | 1687 |
// as the value is used to estimate the loop trip count. |
1688 |
// An infinite trip count would blur relative block |
|
1689 |
// frequencies. |
|
1690 |
if (exits_sum > 1.0f) exits_sum = 1.0; |
|
1691 |
if (exits_sum < PROB_MIN) exits_sum = PROB_MIN; |
|
1692 |
_exit_prob = exits_sum; |
|
1693 |
} |
|
1694 |
} |
|
1695 |
||
1696 |
//------------------------------succ_prob------------------------------------- |
|
1697 |
// Determine the probability of reaching successor 'i' from the receiver block. |
|
1698 |
float Block::succ_prob(uint i) { |
|
1699 |
int eidx = end_idx(); |
|
1700 |
Node *n = _nodes[eidx]; // Get ending Node |
|
1070 | 1701 |
|
1702 |
int op = n->Opcode(); |
|
1703 |
if (n->is_Mach()) { |
|
1704 |
if (n->is_MachNullCheck()) { |
|
1705 |
// Can only reach here if called after lcm. The original Op_If is gone, |
|
1706 |
// so we attempt to infer the probability from one or both of the |
|
1707 |
// successor blocks. |
|
1708 |
assert(_num_succs == 2, "expecting 2 successors of a null check"); |
|
1709 |
// If either successor has only one predecessor, then the |
|
2131 | 1710 |
// probability estimate can be derived using the |
1070 | 1711 |
// relative frequency of the successor and this block. |
1712 |
if (_succs[i]->num_preds() == 2) { |
|
1713 |
return _succs[i]->_freq / _freq; |
|
1714 |
} else if (_succs[1-i]->num_preds() == 2) { |
|
1715 |
return 1 - (_succs[1-i]->_freq / _freq); |
|
1716 |
} else { |
|
1717 |
// Estimate using both successor frequencies |
|
1718 |
float freq = _succs[i]->_freq; |
|
1719 |
return freq / (freq + _succs[1-i]->_freq); |
|
1720 |
} |
|
1721 |
} |
|
1722 |
op = n->as_Mach()->ideal_Opcode(); |
|
1723 |
} |
|
1724 |
||
1 | 1725 |
|
1726 |
// Switch on branch type |
|
1727 |
switch( op ) { |
|
1728 |
case Op_CountedLoopEnd: |
|
1729 |
case Op_If: { |
|
1730 |
assert (i < 2, "just checking"); |
|
1731 |
// Conditionals pass on only part of their frequency |
|
1732 |
float prob = n->as_MachIf()->_prob; |
|
1733 |
assert(prob >= 0.0 && prob <= 1.0, "out of range probability"); |
|
1734 |
// If succ[i] is the FALSE branch, invert path info |
|
1735 |
if( _nodes[i + eidx + 1]->Opcode() == Op_IfFalse ) { |
|
1736 |
return 1.0f - prob; // not taken |
|
1737 |
} else { |
|
1738 |
return prob; // taken |
|
1739 |
} |
|
1740 |
} |
|
1741 |
||
1742 |
case Op_Jump: |
|
1743 |
// Divide the frequency between all successors evenly |
|
1744 |
return 1.0f/_num_succs; |
|
1745 |
||
1746 |
case Op_Catch: { |
|
1747 |
const CatchProjNode *ci = _nodes[i + eidx + 1]->as_CatchProj(); |
|
1748 |
if (ci->_con == CatchProjNode::fall_through_index) { |
|
1749 |
// Fall-thru path gets the lion's share. |
|
1750 |
return 1.0f - PROB_UNLIKELY_MAG(5)*_num_succs; |
|
1751 |
} else { |
|
1752 |
// Presume exceptional paths are equally unlikely |
|
1753 |
return PROB_UNLIKELY_MAG(5); |
|
1754 |
} |
|
1755 |
} |
|
1756 |
||
1757 |
case Op_Root: |
|
1758 |
case Op_Goto: |
|
1759 |
// Pass frequency straight thru to target |
|
1760 |
return 1.0f; |
|
1761 |
||
1762 |
case Op_NeverBranch: |
|
1763 |
return 0.0f; |
|
1764 |
||
1765 |
case Op_TailCall: |
|
1766 |
case Op_TailJump: |
|
1767 |
case Op_Return: |
|
1768 |
case Op_Halt: |
|
1769 |
case Op_Rethrow: |
|
1770 |
// Do not push out freq to root block |
|
1771 |
return 0.0f; |
|
1772 |
||
1773 |
default: |
|
1774 |
ShouldNotReachHere(); |
|
1775 |
} |
|
1776 |
||
1777 |
return 0.0f; |
|
1778 |
} |
|
1779 |
||
1498 | 1780 |
//------------------------------num_fall_throughs----------------------------- |
1781 |
// Return the number of fall-through candidates for a block |
|
1782 |
int Block::num_fall_throughs() { |
|
1783 |
int eidx = end_idx(); |
|
1784 |
Node *n = _nodes[eidx]; // Get ending Node |
|
1785 |
||
1786 |
int op = n->Opcode(); |
|
1787 |
if (n->is_Mach()) { |
|
1788 |
if (n->is_MachNullCheck()) { |
|
1789 |
// In theory, either side can fall-thru, for simplicity sake, |
|
1790 |
// let's say only the false branch can now. |
|
1791 |
return 1; |
|
1792 |
} |
|
1793 |
op = n->as_Mach()->ideal_Opcode(); |
|
1794 |
} |
|
1795 |
||
1796 |
// Switch on branch type |
|
1797 |
switch( op ) { |
|
1798 |
case Op_CountedLoopEnd: |
|
1799 |
case Op_If: |
|
1800 |
return 2; |
|
1801 |
||
1802 |
case Op_Root: |
|
1803 |
case Op_Goto: |
|
1804 |
return 1; |
|
1805 |
||
1806 |
case Op_Catch: { |
|
1807 |
for (uint i = 0; i < _num_succs; i++) { |
|
1808 |
const CatchProjNode *ci = _nodes[i + eidx + 1]->as_CatchProj(); |
|
1809 |
if (ci->_con == CatchProjNode::fall_through_index) { |
|
1810 |
return 1; |
|
1811 |
} |
|
1812 |
} |
|
1813 |
return 0; |
|
1814 |
} |
|
1815 |
||
1816 |
case Op_Jump: |
|
1817 |
case Op_NeverBranch: |
|
1818 |
case Op_TailCall: |
|
1819 |
case Op_TailJump: |
|
1820 |
case Op_Return: |
|
1821 |
case Op_Halt: |
|
1822 |
case Op_Rethrow: |
|
1823 |
return 0; |
|
1824 |
||
1825 |
default: |
|
1826 |
ShouldNotReachHere(); |
|
1827 |
} |
|
1828 |
||
1829 |
return 0; |
|
1830 |
} |
|
1831 |
||
1832 |
//------------------------------succ_fall_through----------------------------- |
|
1833 |
// Return true if a specific successor could be fall-through target. |
|
1834 |
bool Block::succ_fall_through(uint i) { |
|
1835 |
int eidx = end_idx(); |
|
1836 |
Node *n = _nodes[eidx]; // Get ending Node |
|
1837 |
||
1838 |
int op = n->Opcode(); |
|
1839 |
if (n->is_Mach()) { |
|
1840 |
if (n->is_MachNullCheck()) { |
|
1841 |
// In theory, either side can fall-thru, for simplicity sake, |
|
1842 |
// let's say only the false branch can now. |
|
1843 |
return _nodes[i + eidx + 1]->Opcode() == Op_IfFalse; |
|
1844 |
} |
|
1845 |
op = n->as_Mach()->ideal_Opcode(); |
|
1846 |
} |
|
1847 |
||
1848 |
// Switch on branch type |
|
1849 |
switch( op ) { |
|
1850 |
case Op_CountedLoopEnd: |
|
1851 |
case Op_If: |
|
1852 |
case Op_Root: |
|
1853 |
case Op_Goto: |
|
1854 |
return true; |
|
1855 |
||
1856 |
case Op_Catch: { |
|
1857 |
const CatchProjNode *ci = _nodes[i + eidx + 1]->as_CatchProj(); |
|
1858 |
return ci->_con == CatchProjNode::fall_through_index; |
|
1859 |
} |
|
1860 |
||
1861 |
case Op_Jump: |
|
1862 |
case Op_NeverBranch: |
|
1863 |
case Op_TailCall: |
|
1864 |
case Op_TailJump: |
|
1865 |
case Op_Return: |
|
1866 |
case Op_Halt: |
|
1867 |
case Op_Rethrow: |
|
1868 |
return false; |
|
1869 |
||
1870 |
default: |
|
1871 |
ShouldNotReachHere(); |
|
1872 |
} |
|
1873 |
||
1874 |
return false; |
|
1875 |
} |
|
1876 |
||
1877 |
//------------------------------update_uncommon_branch------------------------ |
|
1878 |
// Update the probability of a two-branch to be uncommon |
|
1879 |
void Block::update_uncommon_branch(Block* ub) { |
|
1880 |
int eidx = end_idx(); |
|
1881 |
Node *n = _nodes[eidx]; // Get ending Node |
|
1882 |
||
1883 |
int op = n->as_Mach()->ideal_Opcode(); |
|
1884 |
||
1885 |
assert(op == Op_CountedLoopEnd || op == Op_If, "must be a If"); |
|
1886 |
assert(num_fall_throughs() == 2, "must be a two way branch block"); |
|
1887 |
||
1888 |
// Which successor is ub? |
|
1889 |
uint s; |
|
1890 |
for (s = 0; s <_num_succs; s++) { |
|
1891 |
if (_succs[s] == ub) break; |
|
1892 |
} |
|
1893 |
assert(s < 2, "uncommon successor must be found"); |
|
1894 |
||
1895 |
// If ub is the true path, make the proability small, else |
|
1896 |
// ub is the false path, and make the probability large |
|
1897 |
bool invert = (_nodes[s + eidx + 1]->Opcode() == Op_IfFalse); |
|
1898 |
||
1899 |
// Get existing probability |
|
1900 |
float p = n->as_MachIf()->_prob; |
|
1901 |
||
1902 |
if (invert) p = 1.0 - p; |
|
1903 |
if (p > PROB_MIN) { |
|
1904 |
p = PROB_MIN; |
|
1905 |
} |
|
1906 |
if (invert) p = 1.0 - p; |
|
1907 |
||
1908 |
n->as_MachIf()->_prob = p; |
|
1909 |
} |
|
1910 |
||
1 | 1911 |
//------------------------------update_succ_freq------------------------------- |
2131 | 1912 |
// Update the appropriate frequency associated with block 'b', a successor of |
1 | 1913 |
// a block in this loop. |
1914 |
void CFGLoop::update_succ_freq(Block* b, float freq) { |
|
1915 |
if (b->_loop == this) { |
|
1916 |
if (b == head()) { |
|
1917 |
// back branch within the loop |
|
1918 |
// Do nothing now, the loop carried frequency will be |
|
1919 |
// adjust later in scale_freq(). |
|
1920 |
} else { |
|
1921 |
// simple branch within the loop |
|
1922 |
b->_freq += freq; |
|
1923 |
} |
|
1924 |
} else if (!in_loop_nest(b)) { |
|
1925 |
// branch is exit from this loop |
|
1926 |
BlockProbPair bpp(b, freq); |
|
1927 |
_exits.append(bpp); |
|
1928 |
} else { |
|
1929 |
// branch into nested loop |
|
1930 |
CFGLoop* ch = b->_loop; |
|
1931 |
ch->_freq += freq; |
|
1932 |
} |
|
1933 |
} |
|
1934 |
||
1935 |
//------------------------------in_loop_nest----------------------------------- |
|
1936 |
// Determine if block b is in the receiver's loop nest. |
|
1937 |
bool CFGLoop::in_loop_nest(Block* b) { |
|
1938 |
int depth = _depth; |
|
1939 |
CFGLoop* b_loop = b->_loop; |
|
1940 |
int b_depth = b_loop->_depth; |
|
1941 |
if (depth == b_depth) { |
|
1942 |
return true; |
|
1943 |
} |
|
1944 |
while (b_depth > depth) { |
|
1945 |
b_loop = b_loop->_parent; |
|
1946 |
b_depth = b_loop->_depth; |
|
1947 |
} |
|
1948 |
return b_loop == this; |
|
1949 |
} |
|
1950 |
||
1951 |
//------------------------------scale_freq------------------------------------- |
|
1952 |
// Scale frequency of loops and blocks by trip counts from outer loops |
|
1953 |
// Do a top down traversal of loop tree (visit outer loops first.) |
|
1954 |
void CFGLoop::scale_freq() { |
|
1955 |
float loop_freq = _freq * trip_count(); |
|
2340 | 1956 |
_freq = loop_freq; |
1 | 1957 |
for (int i = 0; i < _members.length(); i++) { |
1958 |
CFGElement* s = _members.at(i); |
|
2016
c1f73fa547fe
6784930: server jvm fails with assert(!n->is_SpillCopy(),"")
kvn
parents:
1498
diff
changeset
|
1959 |
float block_freq = s->_freq * loop_freq; |
2147 | 1960 |
if (g_isnan(block_freq) || block_freq < MIN_BLOCK_FREQUENCY) |
1961 |
block_freq = MIN_BLOCK_FREQUENCY; |
|
2016
c1f73fa547fe
6784930: server jvm fails with assert(!n->is_SpillCopy(),"")
kvn
parents:
1498
diff
changeset
|
1962 |
s->_freq = block_freq; |
1 | 1963 |
} |
1964 |
CFGLoop* ch = _child; |
|
1965 |
while (ch != NULL) { |
|
1966 |
ch->scale_freq(); |
|
1967 |
ch = ch->_sibling; |
|
1968 |
} |
|
1969 |
} |
|
1970 |
||
2340 | 1971 |
// Frequency of outer loop |
1972 |
float CFGLoop::outer_loop_freq() const { |
|
1973 |
if (_child != NULL) { |
|
1974 |
return _child->_freq; |
|
1975 |
} |
|
1976 |
return _freq; |
|
1977 |
} |
|
1978 |
||
1 | 1979 |
#ifndef PRODUCT |
1980 |
//------------------------------dump_tree-------------------------------------- |
|
1981 |
void CFGLoop::dump_tree() const { |
|
1982 |
dump(); |
|
1983 |
if (_child != NULL) _child->dump_tree(); |
|
1984 |
if (_sibling != NULL) _sibling->dump_tree(); |
|
1985 |
} |
|
1986 |
||
1987 |
//------------------------------dump------------------------------------------- |
|
1988 |
void CFGLoop::dump() const { |
|
1989 |
for (int i = 0; i < _depth; i++) tty->print(" "); |
|
1990 |
tty->print("%s: %d trip_count: %6.0f freq: %6.0f\n", |
|
1991 |
_depth == 0 ? "Method" : "Loop", _id, trip_count(), _freq); |
|
1992 |
for (int i = 0; i < _depth; i++) tty->print(" "); |
|
1993 |
tty->print(" members:", _id); |
|
1994 |
int k = 0; |
|
1995 |
for (int i = 0; i < _members.length(); i++) { |
|
1996 |
if (k++ >= 6) { |
|
1997 |
tty->print("\n "); |
|
1998 |
for (int j = 0; j < _depth+1; j++) tty->print(" "); |
|
1999 |
k = 0; |
|
2000 |
} |
|
2001 |
CFGElement *s = _members.at(i); |
|
2002 |
if (s->is_block()) { |
|
2003 |
Block *b = s->as_Block(); |
|
2004 |
tty->print(" B%d(%6.3f)", b->_pre_order, b->_freq); |
|
2005 |
} else { |
|
2006 |
CFGLoop* lp = s->as_CFGLoop(); |
|
2007 |
tty->print(" L%d(%6.3f)", lp->_id, lp->_freq); |
|
2008 |
} |
|
2009 |
} |
|
2010 |
tty->print("\n"); |
|
2011 |
for (int i = 0; i < _depth; i++) tty->print(" "); |
|
2012 |
tty->print(" exits: "); |
|
2013 |
k = 0; |
|
2014 |
for (int i = 0; i < _exits.length(); i++) { |
|
2015 |
if (k++ >= 7) { |
|
2016 |
tty->print("\n "); |
|
2017 |
for (int j = 0; j < _depth+1; j++) tty->print(" "); |
|
2018 |
k = 0; |
|
2019 |
} |
|
2020 |
Block *blk = _exits.at(i).get_target(); |
|
2021 |
float prob = _exits.at(i).get_prob(); |
|
2022 |
tty->print(" ->%d@%d%%", blk->_pre_order, (int)(prob*100)); |
|
2023 |
} |
|
2024 |
tty->print("\n"); |
|
2025 |
} |
|
2026 |
#endif |