42065
|
1 |
/*
|
|
2 |
* Copyright (c) 2016, Oracle and/or its affiliates. All rights reserved.
|
|
3 |
* Copyright (c) 2016 SAP SE. All rights reserved.
|
|
4 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
5 |
*
|
|
6 |
* This code is free software; you can redistribute it and/or modify it
|
|
7 |
* under the terms of the GNU General Public License version 2 only, as
|
|
8 |
* published by the Free Software Foundation.
|
|
9 |
*
|
|
10 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
11 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
12 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
13 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
14 |
* accompanied this code).
|
|
15 |
*
|
|
16 |
* You should have received a copy of the GNU General Public License version
|
|
17 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
18 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
19 |
*
|
|
20 |
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
21 |
* or visit www.oracle.com if you need additional information or have any
|
|
22 |
* questions.
|
|
23 |
*
|
|
24 |
*/
|
|
25 |
|
|
26 |
#ifndef CPU_S390_VM_REGISTER_S390_HPP
|
|
27 |
#define CPU_S390_VM_REGISTER_S390_HPP
|
|
28 |
|
|
29 |
#include "asm/register.hpp"
|
|
30 |
#include "vm_version_s390.hpp"
|
|
31 |
|
|
32 |
class Address;
|
|
33 |
class VMRegImpl;
|
|
34 |
|
|
35 |
typedef VMRegImpl* VMReg;
|
|
36 |
|
|
37 |
// Use Register as shortcut.
|
|
38 |
class RegisterImpl;
|
|
39 |
typedef RegisterImpl* Register;
|
|
40 |
|
|
41 |
// The implementation of integer registers for z/Architecture.
|
|
42 |
|
|
43 |
// z/Architecture registers, see "LINUX for zSeries ELF ABI Supplement", IBM March 2001
|
|
44 |
//
|
|
45 |
// r0-r1 General purpose (volatile)
|
|
46 |
// r2 Parameter and return value (volatile)
|
|
47 |
// r3 TOC pointer (volatile)
|
|
48 |
// r3-r5 Parameters (volatile)
|
|
49 |
// r6 Parameter (nonvolatile)
|
|
50 |
// r7-r11 Locals (nonvolatile)
|
|
51 |
// r12 Local, often used as GOT pointer (nonvolatile)
|
|
52 |
// r13 Local, often used as toc (nonvolatile)
|
|
53 |
// r14 return address (volatile)
|
|
54 |
// r15 stack pointer (nonvolatile)
|
|
55 |
//
|
|
56 |
// f0,f2,f4,f6 Parameters (volatile)
|
|
57 |
// f1,f3,f5,f7 General purpose (volatile)
|
|
58 |
// f8-f15 General purpose (nonvolatile)
|
|
59 |
|
|
60 |
inline Register as_Register(int encoding) {
|
|
61 |
return (Register)(long)encoding;
|
|
62 |
}
|
|
63 |
|
|
64 |
class RegisterImpl: public AbstractRegisterImpl {
|
|
65 |
public:
|
|
66 |
enum {
|
|
67 |
number_of_registers = 16,
|
|
68 |
number_of_arg_registers = 5
|
|
69 |
};
|
|
70 |
|
|
71 |
// general construction
|
|
72 |
inline friend Register as_Register(int encoding);
|
|
73 |
|
|
74 |
inline VMReg as_VMReg();
|
|
75 |
|
|
76 |
// accessors
|
|
77 |
int encoding() const { assert(is_valid(), "invalid register"); return value(); }
|
|
78 |
const char* name() const;
|
|
79 |
|
|
80 |
// testers
|
|
81 |
bool is_valid() const { return (0 <= (value()&0x7F) && (value()&0x7F) < number_of_registers); }
|
|
82 |
bool is_even() const { return (encoding() & 1) == 0; }
|
|
83 |
bool is_volatile() const { return (0 <= (value()&0x7F) && (value()&0x7F) <= 5) || (value()&0x7F)==14; }
|
|
84 |
bool is_nonvolatile() const { return is_valid() && !is_volatile(); }
|
|
85 |
|
|
86 |
public:
|
|
87 |
// derived registers, offsets, and addresses
|
|
88 |
Register predecessor() const { return as_Register((encoding()-1) & (number_of_registers-1)); }
|
|
89 |
Register successor() const { return as_Register((encoding() + 1) & (number_of_registers-1)); }
|
|
90 |
};
|
|
91 |
|
|
92 |
// The integer registers of the z/Architecture.
|
|
93 |
|
|
94 |
CONSTANT_REGISTER_DECLARATION(Register, noreg, (-1));
|
|
95 |
|
|
96 |
CONSTANT_REGISTER_DECLARATION(Register, Z_R0, (0));
|
|
97 |
CONSTANT_REGISTER_DECLARATION(Register, Z_R1, (1));
|
|
98 |
CONSTANT_REGISTER_DECLARATION(Register, Z_R2, (2));
|
|
99 |
CONSTANT_REGISTER_DECLARATION(Register, Z_R3, (3));
|
|
100 |
CONSTANT_REGISTER_DECLARATION(Register, Z_R4, (4));
|
|
101 |
CONSTANT_REGISTER_DECLARATION(Register, Z_R5, (5));
|
|
102 |
CONSTANT_REGISTER_DECLARATION(Register, Z_R6, (6));
|
|
103 |
CONSTANT_REGISTER_DECLARATION(Register, Z_R7, (7));
|
|
104 |
CONSTANT_REGISTER_DECLARATION(Register, Z_R8, (8));
|
|
105 |
CONSTANT_REGISTER_DECLARATION(Register, Z_R9, (9));
|
|
106 |
CONSTANT_REGISTER_DECLARATION(Register, Z_R10, (10));
|
|
107 |
CONSTANT_REGISTER_DECLARATION(Register, Z_R11, (11));
|
|
108 |
CONSTANT_REGISTER_DECLARATION(Register, Z_R12, (12));
|
|
109 |
CONSTANT_REGISTER_DECLARATION(Register, Z_R13, (13));
|
|
110 |
CONSTANT_REGISTER_DECLARATION(Register, Z_R14, (14));
|
|
111 |
CONSTANT_REGISTER_DECLARATION(Register, Z_R15, (15));
|
|
112 |
|
|
113 |
// Use ConditionRegister as shortcut
|
|
114 |
class ConditionRegisterImpl;
|
|
115 |
typedef ConditionRegisterImpl* ConditionRegister;
|
|
116 |
|
|
117 |
// The implementation of condition register(s) for the z/Architecture.
|
|
118 |
|
|
119 |
class ConditionRegisterImpl: public AbstractRegisterImpl {
|
|
120 |
public:
|
|
121 |
|
|
122 |
enum {
|
|
123 |
number_of_registers = 1
|
|
124 |
};
|
|
125 |
|
|
126 |
// accessors
|
|
127 |
int encoding() const {
|
|
128 |
assert(is_valid(), "invalid register"); return value();
|
|
129 |
}
|
|
130 |
|
|
131 |
// testers
|
|
132 |
bool is_valid() const {
|
|
133 |
return (0 <= value() && value() < number_of_registers);
|
|
134 |
}
|
|
135 |
bool is_volatile() const {
|
|
136 |
return true;
|
|
137 |
}
|
|
138 |
bool is_nonvolatile() const {
|
|
139 |
return false;
|
|
140 |
}
|
|
141 |
|
|
142 |
// construction.
|
|
143 |
inline friend ConditionRegister as_ConditionRegister(int encoding);
|
|
144 |
|
|
145 |
inline VMReg as_VMReg();
|
|
146 |
};
|
|
147 |
|
|
148 |
inline ConditionRegister as_ConditionRegister(int encoding) {
|
|
149 |
assert(encoding >= 0 && encoding < ConditionRegisterImpl::number_of_registers, "bad condition register encoding");
|
|
150 |
return (ConditionRegister)(long)encoding;
|
|
151 |
}
|
|
152 |
|
|
153 |
// The condition register of the z/Architecture.
|
|
154 |
|
|
155 |
CONSTANT_REGISTER_DECLARATION(ConditionRegister, Z_CR, (0));
|
|
156 |
|
|
157 |
// Because z/Architecture has so many registers, #define'ing values for them is
|
|
158 |
// beneficial in code size and is worth the cost of some of the
|
|
159 |
// dangers of defines.
|
|
160 |
// If a particular file has a problem with these defines then it's possible
|
|
161 |
// to turn them off in that file by defining
|
|
162 |
// DONT_USE_REGISTER_DEFINES. Register_definition_s390.cpp does that
|
|
163 |
// so that it's able to provide real definitions of these registers
|
|
164 |
// for use in debuggers and such.
|
|
165 |
|
|
166 |
#ifndef DONT_USE_REGISTER_DEFINES
|
|
167 |
#define noreg ((Register)(noreg_RegisterEnumValue))
|
|
168 |
|
|
169 |
#define Z_R0 ((Register)(Z_R0_RegisterEnumValue))
|
|
170 |
#define Z_R1 ((Register)(Z_R1_RegisterEnumValue))
|
|
171 |
#define Z_R2 ((Register)(Z_R2_RegisterEnumValue))
|
|
172 |
#define Z_R3 ((Register)(Z_R3_RegisterEnumValue))
|
|
173 |
#define Z_R4 ((Register)(Z_R4_RegisterEnumValue))
|
|
174 |
#define Z_R5 ((Register)(Z_R5_RegisterEnumValue))
|
|
175 |
#define Z_R6 ((Register)(Z_R6_RegisterEnumValue))
|
|
176 |
#define Z_R7 ((Register)(Z_R7_RegisterEnumValue))
|
|
177 |
#define Z_R8 ((Register)(Z_R8_RegisterEnumValue))
|
|
178 |
#define Z_R9 ((Register)(Z_R9_RegisterEnumValue))
|
|
179 |
#define Z_R10 ((Register)(Z_R10_RegisterEnumValue))
|
|
180 |
#define Z_R11 ((Register)(Z_R11_RegisterEnumValue))
|
|
181 |
#define Z_R12 ((Register)(Z_R12_RegisterEnumValue))
|
|
182 |
#define Z_R13 ((Register)(Z_R13_RegisterEnumValue))
|
|
183 |
#define Z_R14 ((Register)(Z_R14_RegisterEnumValue))
|
|
184 |
#define Z_R15 ((Register)(Z_R15_RegisterEnumValue))
|
|
185 |
|
|
186 |
#define Z_CR ((ConditionRegister)(Z_CR_ConditionRegisterEnumValue))
|
|
187 |
#endif // DONT_USE_REGISTER_DEFINES
|
|
188 |
|
|
189 |
// Use FloatRegister as shortcut
|
|
190 |
class FloatRegisterImpl;
|
|
191 |
typedef FloatRegisterImpl* FloatRegister;
|
|
192 |
|
|
193 |
// The implementation of float registers for the z/Architecture.
|
|
194 |
|
|
195 |
inline FloatRegister as_FloatRegister(int encoding) {
|
|
196 |
return (FloatRegister)(long)encoding;
|
|
197 |
}
|
|
198 |
|
|
199 |
class FloatRegisterImpl: public AbstractRegisterImpl {
|
|
200 |
public:
|
|
201 |
enum {
|
|
202 |
number_of_registers = 16,
|
|
203 |
number_of_arg_registers = 4
|
|
204 |
};
|
|
205 |
|
|
206 |
// construction
|
|
207 |
inline friend FloatRegister as_FloatRegister(int encoding);
|
|
208 |
|
|
209 |
inline VMReg as_VMReg();
|
|
210 |
|
|
211 |
// accessors
|
|
212 |
int encoding() const {
|
|
213 |
assert(is_valid(), "invalid register"); return value();
|
|
214 |
}
|
|
215 |
|
|
216 |
bool is_valid() const { return 0 <= value() && value() < number_of_registers; }
|
|
217 |
bool is_volatile() const { return (0 <= (value()&0x7F) && (value()&0x7F) <= 7); }
|
|
218 |
bool is_nonvolatile() const { return (8 <= (value()&0x7F) && (value()&0x7F) <= 15); }
|
|
219 |
|
|
220 |
const char* name() const;
|
|
221 |
|
|
222 |
FloatRegister successor() const { return as_FloatRegister(encoding() + 1); }
|
|
223 |
};
|
|
224 |
|
|
225 |
// The float registers of z/Architecture.
|
|
226 |
|
|
227 |
CONSTANT_REGISTER_DECLARATION(FloatRegister, fnoreg, (-1));
|
|
228 |
|
|
229 |
CONSTANT_REGISTER_DECLARATION(FloatRegister, Z_F0, (0));
|
|
230 |
CONSTANT_REGISTER_DECLARATION(FloatRegister, Z_F1, (1));
|
|
231 |
CONSTANT_REGISTER_DECLARATION(FloatRegister, Z_F2, (2));
|
|
232 |
CONSTANT_REGISTER_DECLARATION(FloatRegister, Z_F3, (3));
|
|
233 |
CONSTANT_REGISTER_DECLARATION(FloatRegister, Z_F4, (4));
|
|
234 |
CONSTANT_REGISTER_DECLARATION(FloatRegister, Z_F5, (5));
|
|
235 |
CONSTANT_REGISTER_DECLARATION(FloatRegister, Z_F6, (6));
|
|
236 |
CONSTANT_REGISTER_DECLARATION(FloatRegister, Z_F7, (7));
|
|
237 |
CONSTANT_REGISTER_DECLARATION(FloatRegister, Z_F8, (8));
|
|
238 |
CONSTANT_REGISTER_DECLARATION(FloatRegister, Z_F9, (9));
|
|
239 |
CONSTANT_REGISTER_DECLARATION(FloatRegister, Z_F10, (10));
|
|
240 |
CONSTANT_REGISTER_DECLARATION(FloatRegister, Z_F11, (11));
|
|
241 |
CONSTANT_REGISTER_DECLARATION(FloatRegister, Z_F12, (12));
|
|
242 |
CONSTANT_REGISTER_DECLARATION(FloatRegister, Z_F13, (13));
|
|
243 |
CONSTANT_REGISTER_DECLARATION(FloatRegister, Z_F14, (14));
|
|
244 |
CONSTANT_REGISTER_DECLARATION(FloatRegister, Z_F15, (15));
|
|
245 |
|
|
246 |
#ifndef DONT_USE_REGISTER_DEFINES
|
|
247 |
#define fnoreg ((FloatRegister)(fnoreg_FloatRegisterEnumValue))
|
|
248 |
#define Z_F0 ((FloatRegister)( Z_F0_FloatRegisterEnumValue))
|
|
249 |
#define Z_F1 ((FloatRegister)( Z_F1_FloatRegisterEnumValue))
|
|
250 |
#define Z_F2 ((FloatRegister)( Z_F2_FloatRegisterEnumValue))
|
|
251 |
#define Z_F3 ((FloatRegister)( Z_F3_FloatRegisterEnumValue))
|
|
252 |
#define Z_F4 ((FloatRegister)( Z_F4_FloatRegisterEnumValue))
|
|
253 |
#define Z_F5 ((FloatRegister)( Z_F5_FloatRegisterEnumValue))
|
|
254 |
#define Z_F6 ((FloatRegister)( Z_F6_FloatRegisterEnumValue))
|
|
255 |
#define Z_F7 ((FloatRegister)( Z_F7_FloatRegisterEnumValue))
|
|
256 |
#define Z_F8 ((FloatRegister)( Z_F8_FloatRegisterEnumValue))
|
|
257 |
#define Z_F9 ((FloatRegister)( Z_F9_FloatRegisterEnumValue))
|
|
258 |
#define Z_F10 ((FloatRegister)( Z_F10_FloatRegisterEnumValue))
|
|
259 |
#define Z_F11 ((FloatRegister)( Z_F11_FloatRegisterEnumValue))
|
|
260 |
#define Z_F12 ((FloatRegister)( Z_F12_FloatRegisterEnumValue))
|
|
261 |
#define Z_F13 ((FloatRegister)( Z_F13_FloatRegisterEnumValue))
|
|
262 |
#define Z_F14 ((FloatRegister)( Z_F14_FloatRegisterEnumValue))
|
|
263 |
#define Z_F15 ((FloatRegister)( Z_F15_FloatRegisterEnumValue))
|
|
264 |
#endif // DONT_USE_REGISTER_DEFINES
|
|
265 |
|
|
266 |
// Need to know the total number of registers of all sorts for SharedInfo.
|
|
267 |
// Define a class that exports it.
|
|
268 |
|
|
269 |
class ConcreteRegisterImpl : public AbstractRegisterImpl {
|
|
270 |
public:
|
|
271 |
enum {
|
|
272 |
number_of_registers =
|
|
273 |
(RegisterImpl::number_of_registers +
|
|
274 |
FloatRegisterImpl::number_of_registers)
|
|
275 |
* 2 // register halves
|
|
276 |
+ 1 // condition code register
|
|
277 |
};
|
|
278 |
static const int max_gpr;
|
|
279 |
static const int max_fpr;
|
|
280 |
};
|
|
281 |
|
|
282 |
// Single, Double and Quad fp reg classes. These exist to map the ADLC
|
|
283 |
// encoding for a floating point register, to the FloatRegister number
|
|
284 |
// desired by the macroassembler. A FloatRegister is a number between
|
|
285 |
// 0 and 31 passed around as a pointer. For ADLC, an fp register encoding
|
|
286 |
// is the actual bit encoding used by the z/Architecture hardware. When ADLC used
|
|
287 |
// the macroassembler to generate an instruction that references, e.g., a
|
|
288 |
// double fp reg, it passed the bit encoding to the macroassembler via
|
|
289 |
// as_FloatRegister, which, for double regs > 30, returns an illegal
|
|
290 |
// register number.
|
|
291 |
//
|
|
292 |
// Therefore we provide the following classes for use by ADLC. Their
|
|
293 |
// sole purpose is to convert from z/Architecture register encodings to FloatRegisters.
|
|
294 |
// At some future time, we might replace FloatRegister with these classes,
|
|
295 |
// hence the definitions of as_xxxFloatRegister as class methods rather
|
|
296 |
// than as external inline routines.
|
|
297 |
|
|
298 |
class SingleFloatRegisterImpl;
|
|
299 |
typedef SingleFloatRegisterImpl *SingleFloatRegister;
|
|
300 |
|
|
301 |
class SingleFloatRegisterImpl {
|
|
302 |
public:
|
|
303 |
friend FloatRegister as_SingleFloatRegister(int encoding) {
|
|
304 |
assert(encoding < 32, "bad single float register encoding");
|
|
305 |
return as_FloatRegister(encoding);
|
|
306 |
}
|
|
307 |
};
|
|
308 |
|
|
309 |
class DoubleFloatRegisterImpl;
|
|
310 |
typedef DoubleFloatRegisterImpl *DoubleFloatRegister;
|
|
311 |
|
|
312 |
class DoubleFloatRegisterImpl {
|
|
313 |
public:
|
|
314 |
friend FloatRegister as_DoubleFloatRegister(int encoding) {
|
|
315 |
assert(encoding < 32, "bad double float register encoding");
|
|
316 |
return as_FloatRegister(((encoding & 1) << 5) | (encoding & 0x1e));
|
|
317 |
}
|
|
318 |
};
|
|
319 |
|
|
320 |
class QuadFloatRegisterImpl;
|
|
321 |
typedef QuadFloatRegisterImpl *QuadFloatRegister;
|
|
322 |
|
|
323 |
class QuadFloatRegisterImpl {
|
|
324 |
public:
|
|
325 |
friend FloatRegister as_QuadFloatRegister(int encoding) {
|
|
326 |
assert(encoding < 32 && ((encoding & 2) == 0), "bad quad float register encoding");
|
|
327 |
return as_FloatRegister(((encoding & 1) << 5) | (encoding & 0x1c));
|
|
328 |
}
|
|
329 |
};
|
|
330 |
|
|
331 |
|
|
332 |
// Common register declarations used in assembler code.
|
|
333 |
REGISTER_DECLARATION(Register, Z_EXC_OOP, Z_R2);
|
|
334 |
REGISTER_DECLARATION(Register, Z_EXC_PC, Z_R3);
|
|
335 |
REGISTER_DECLARATION(Register, Z_RET, Z_R2);
|
|
336 |
REGISTER_DECLARATION(Register, Z_ARG1, Z_R2);
|
|
337 |
REGISTER_DECLARATION(Register, Z_ARG2, Z_R3);
|
|
338 |
REGISTER_DECLARATION(Register, Z_ARG3, Z_R4);
|
|
339 |
REGISTER_DECLARATION(Register, Z_ARG4, Z_R5);
|
|
340 |
REGISTER_DECLARATION(Register, Z_ARG5, Z_R6);
|
|
341 |
REGISTER_DECLARATION(Register, Z_SP, Z_R15);
|
|
342 |
REGISTER_DECLARATION(FloatRegister, Z_FRET, Z_F0);
|
|
343 |
REGISTER_DECLARATION(FloatRegister, Z_FARG1, Z_F0);
|
|
344 |
REGISTER_DECLARATION(FloatRegister, Z_FARG2, Z_F2);
|
|
345 |
REGISTER_DECLARATION(FloatRegister, Z_FARG3, Z_F4);
|
|
346 |
REGISTER_DECLARATION(FloatRegister, Z_FARG4, Z_F6);
|
|
347 |
|
|
348 |
#ifndef DONT_USE_REGISTER_DEFINES
|
|
349 |
#define Z_EXC_OOP AS_REGISTER(Register, Z_R2)
|
|
350 |
#define Z_EXC_PC AS_REGISTER(Register, Z_R3)
|
|
351 |
#define Z_RET AS_REGISTER(Register, Z_R2)
|
|
352 |
#define Z_ARG1 AS_REGISTER(Register, Z_R2)
|
|
353 |
#define Z_ARG2 AS_REGISTER(Register, Z_R3)
|
|
354 |
#define Z_ARG3 AS_REGISTER(Register, Z_R4)
|
|
355 |
#define Z_ARG4 AS_REGISTER(Register, Z_R5)
|
|
356 |
#define Z_ARG5 AS_REGISTER(Register, Z_R6)
|
|
357 |
#define Z_SP AS_REGISTER(Register, Z_R15)
|
|
358 |
#define Z_FRET AS_REGISTER(FloatRegister, Z_F0)
|
|
359 |
#define Z_FARG1 AS_REGISTER(FloatRegister, Z_F0)
|
|
360 |
#define Z_FARG2 AS_REGISTER(FloatRegister, Z_F2)
|
|
361 |
#define Z_FARG3 AS_REGISTER(FloatRegister, Z_F4)
|
|
362 |
#define Z_FARG4 AS_REGISTER(FloatRegister, Z_F6)
|
|
363 |
#endif
|
|
364 |
|
|
365 |
// Register declarations to be used in frame manager assembly code.
|
|
366 |
// Use only non-volatile registers in order to keep values across C-calls.
|
|
367 |
|
|
368 |
// Register to cache the integer value on top of the operand stack.
|
|
369 |
REGISTER_DECLARATION(Register, Z_tos, Z_R2);
|
|
370 |
// Register to cache the fp value on top of the operand stack.
|
|
371 |
REGISTER_DECLARATION(FloatRegister, Z_ftos, Z_F0);
|
|
372 |
// Expression stack pointer in interpreted java frame.
|
|
373 |
REGISTER_DECLARATION(Register, Z_esp, Z_R7);
|
|
374 |
// Address of current thread.
|
|
375 |
REGISTER_DECLARATION(Register, Z_thread, Z_R8);
|
|
376 |
// Address of current method. only valid in interpreter_entry.
|
|
377 |
REGISTER_DECLARATION(Register, Z_method, Z_R9);
|
|
378 |
// Inline cache register. used by c1 and c2.
|
|
379 |
REGISTER_DECLARATION(Register, Z_inline_cache,Z_R9);
|
|
380 |
// Frame pointer of current interpreter frame. only valid while
|
|
381 |
// executing bytecodes.
|
|
382 |
REGISTER_DECLARATION(Register, Z_fp, Z_R9);
|
|
383 |
// Address of the locals array in an interpreted java frame.
|
|
384 |
REGISTER_DECLARATION(Register, Z_locals, Z_R12);
|
|
385 |
// Bytecode pointer.
|
|
386 |
REGISTER_DECLARATION(Register, Z_bcp, Z_R13);
|
|
387 |
// Bytecode which is dispatched (short lived!).
|
|
388 |
REGISTER_DECLARATION(Register, Z_bytecode, Z_R14);
|
|
389 |
#ifndef DONT_USE_REGISTER_DEFINES
|
|
390 |
#define Z_tos AS_REGISTER(Register, Z_R2)
|
|
391 |
#define Z_ftos AS_REGISTER(FloatRegister, Z_F0)
|
|
392 |
#define Z_esp AS_REGISTER(Register, Z_R7)
|
|
393 |
#define Z_thread AS_REGISTER(Register, Z_R8)
|
|
394 |
#define Z_method AS_REGISTER(Register, Z_R9)
|
|
395 |
#define Z_inline_cache AS_REGISTER(Register, Z_R9)
|
|
396 |
#define Z_fp AS_REGISTER(Register, Z_R9)
|
|
397 |
#define Z_locals AS_REGISTER(Register, Z_R12)
|
|
398 |
#define Z_bcp AS_REGISTER(Register, Z_R13)
|
|
399 |
#define Z_bytecode AS_REGISTER(Register, Z_R14)
|
|
400 |
#endif
|
|
401 |
|
|
402 |
// Temporary registers to be used within frame manager. We can use
|
|
403 |
// the nonvolatiles because the call stub has saved them.
|
|
404 |
// Use only non-volatile registers in order to keep values across C-calls.
|
|
405 |
REGISTER_DECLARATION(Register, Z_tmp_1, Z_R10);
|
|
406 |
REGISTER_DECLARATION(Register, Z_tmp_2, Z_R11);
|
|
407 |
REGISTER_DECLARATION(Register, Z_tmp_3, Z_R12);
|
|
408 |
REGISTER_DECLARATION(Register, Z_tmp_4, Z_R13);
|
|
409 |
#ifndef DONT_USE_REGISTER_DEFINES
|
|
410 |
#define Z_tmp_1 AS_REGISTER(Register, Z_R10)
|
|
411 |
#define Z_tmp_2 AS_REGISTER(Register, Z_R11)
|
|
412 |
#define Z_tmp_3 AS_REGISTER(Register, Z_R12)
|
|
413 |
#define Z_tmp_4 AS_REGISTER(Register, Z_R13)
|
|
414 |
#endif
|
|
415 |
|
|
416 |
// Scratch registers are volatile.
|
|
417 |
REGISTER_DECLARATION(Register, Z_R0_scratch, Z_R0);
|
|
418 |
REGISTER_DECLARATION(Register, Z_R1_scratch, Z_R1);
|
|
419 |
REGISTER_DECLARATION(FloatRegister, Z_fscratch_1, Z_F1);
|
|
420 |
#ifndef DONT_USE_REGISTER_DEFINES
|
|
421 |
#define Z_R0_scratch AS_REGISTER(Register, Z_R0)
|
|
422 |
#define Z_R1_scratch AS_REGISTER(Register, Z_R1)
|
|
423 |
#define Z_fscratch_1 AS_REGISTER(FloatRegister, Z_F1)
|
|
424 |
#endif
|
|
425 |
|
|
426 |
|
|
427 |
#endif // CPU_S390_VM_REGISTER_S390_HPP
|