author | pliden |
Fri, 11 Apr 2014 11:00:12 +0200 | |
changeset 24093 | 095cc0a63ed9 |
parent 22876 | 57aa8995d43b |
child 24660 | a9b2a80f5afa |
permissions | -rw-r--r-- |
1 | 1 |
/* |
7397 | 2 |
* Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved. |
1 | 3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 |
* |
|
5 |
* This code is free software; you can redistribute it and/or modify it |
|
6 |
* under the terms of the GNU General Public License version 2 only, as |
|
7 |
* published by the Free Software Foundation. |
|
8 |
* |
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT |
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that |
|
13 |
* accompanied this code). |
|
14 |
* |
|
15 |
* You should have received a copy of the GNU General Public License version |
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation, |
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 |
* |
|
5547
f4b087cbb361
6941466: Oracle rebranding changes for Hotspot repositories
trims
parents:
5377
diff
changeset
|
19 |
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
f4b087cbb361
6941466: Oracle rebranding changes for Hotspot repositories
trims
parents:
5377
diff
changeset
|
20 |
* or visit www.oracle.com if you need additional information or have any |
f4b087cbb361
6941466: Oracle rebranding changes for Hotspot repositories
trims
parents:
5377
diff
changeset
|
21 |
* questions. |
1 | 22 |
* |
23 |
*/ |
|
24 |
||
7397 | 25 |
#include "precompiled.hpp" |
26 |
#include "prims/jni.h" |
|
27 |
#include "runtime/interfaceSupport.hpp" |
|
28 |
#include "runtime/sharedRuntime.hpp" |
|
1 | 29 |
|
30 |
// This file contains copies of the fdlibm routines used by |
|
31 |
// StrictMath. It turns out that it is almost always required to use |
|
32 |
// these runtime routines; the Intel CPU doesn't meet the Java |
|
33 |
// specification for sin/cos outside a certain limited argument range, |
|
34 |
// and the SPARC CPU doesn't appear to have sin/cos instructions. It |
|
35 |
// also turns out that avoiding the indirect call through function |
|
36 |
// pointer out to libjava.so in SharedRuntime speeds these routines up |
|
37 |
// by roughly 15% on both Win32/x86 and Solaris/SPARC. |
|
38 |
||
39 |
// Enabling optimizations in this file causes incorrect code to be |
|
40 |
// generated; can not figure out how to turn down optimization for one |
|
41 |
// file in the IDE on Windows |
|
42 |
#ifdef WIN32 |
|
43 |
# pragma optimize ( "", off ) |
|
44 |
#endif |
|
45 |
||
5377 | 46 |
/* The above workaround now causes more problems with the latest MS compiler. |
47 |
* Visual Studio 2010's /GS option tries to guard against buffer overruns. |
|
48 |
* /GS is on by default if you specify optimizations, which we do globally |
|
49 |
* via /W3 /O2. However the above selective turning off of optimizations means |
|
50 |
* that /GS issues a warning "4748". And since we treat warnings as errors (/WX) |
|
51 |
* then the compilation fails. There are several possible solutions |
|
52 |
* (1) Remove that pragma above as obsolete with VS2010 - requires testing. |
|
53 |
* (2) Stop treating warnings as errors - would be a backward step |
|
54 |
* (3) Disable /GS - may help performance but you lose the security checks |
|
55 |
* (4) Disable the warning with "#pragma warning( disable : 4748 )" |
|
56 |
* (5) Disable planting the code with __declspec(safebuffers) |
|
57 |
* I've opted for (5) although we should investigate the local performance |
|
58 |
* benefits of (1) and global performance benefit of (3). |
|
59 |
*/ |
|
60 |
#if defined(WIN32) && (defined(_MSC_VER) && (_MSC_VER >= 1600)) |
|
61 |
#define SAFEBUF __declspec(safebuffers) |
|
62 |
#else |
|
63 |
#define SAFEBUF |
|
64 |
#endif |
|
65 |
||
1 | 66 |
#include <math.h> |
67 |
||
68 |
// VM_LITTLE_ENDIAN is #defined appropriately in the Makefiles |
|
69 |
// [jk] this is not 100% correct because the float word order may different |
|
70 |
// from the byte order (e.g. on ARM) |
|
71 |
#ifdef VM_LITTLE_ENDIAN |
|
72 |
# define __HI(x) *(1+(int*)&x) |
|
73 |
# define __LO(x) *(int*)&x |
|
74 |
#else |
|
75 |
# define __HI(x) *(int*)&x |
|
76 |
# define __LO(x) *(1+(int*)&x) |
|
77 |
#endif |
|
78 |
||
79 |
static double copysignA(double x, double y) { |
|
80 |
__HI(x) = (__HI(x)&0x7fffffff)|(__HI(y)&0x80000000); |
|
81 |
return x; |
|
82 |
} |
|
83 |
||
84 |
/* |
|
85 |
* scalbn (double x, int n) |
|
86 |
* scalbn(x,n) returns x* 2**n computed by exponent |
|
87 |
* manipulation rather than by actually performing an |
|
88 |
* exponentiation or a multiplication. |
|
89 |
*/ |
|
90 |
||
91 |
static const double |
|
92 |
two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */ |
|
93 |
twom54 = 5.55111512312578270212e-17, /* 0x3C900000, 0x00000000 */ |
|
94 |
hugeX = 1.0e+300, |
|
95 |
tiny = 1.0e-300; |
|
96 |
||
97 |
static double scalbnA (double x, int n) { |
|
98 |
int k,hx,lx; |
|
99 |
hx = __HI(x); |
|
100 |
lx = __LO(x); |
|
101 |
k = (hx&0x7ff00000)>>20; /* extract exponent */ |
|
102 |
if (k==0) { /* 0 or subnormal x */ |
|
103 |
if ((lx|(hx&0x7fffffff))==0) return x; /* +-0 */ |
|
104 |
x *= two54; |
|
105 |
hx = __HI(x); |
|
106 |
k = ((hx&0x7ff00000)>>20) - 54; |
|
107 |
if (n< -50000) return tiny*x; /*underflow*/ |
|
108 |
} |
|
109 |
if (k==0x7ff) return x+x; /* NaN or Inf */ |
|
110 |
k = k+n; |
|
111 |
if (k > 0x7fe) return hugeX*copysignA(hugeX,x); /* overflow */ |
|
112 |
if (k > 0) /* normal result */ |
|
113 |
{__HI(x) = (hx&0x800fffff)|(k<<20); return x;} |
|
114 |
if (k <= -54) { |
|
115 |
if (n > 50000) /* in case integer overflow in n+k */ |
|
116 |
return hugeX*copysignA(hugeX,x); /*overflow*/ |
|
117 |
else return tiny*copysignA(tiny,x); /*underflow*/ |
|
118 |
} |
|
119 |
k += 54; /* subnormal result */ |
|
120 |
__HI(x) = (hx&0x800fffff)|(k<<20); |
|
121 |
return x*twom54; |
|
122 |
} |
|
123 |
||
124 |
/* |
|
125 |
* __kernel_rem_pio2(x,y,e0,nx,prec,ipio2) |
|
126 |
* double x[],y[]; int e0,nx,prec; int ipio2[]; |
|
127 |
* |
|
128 |
* __kernel_rem_pio2 return the last three digits of N with |
|
129 |
* y = x - N*pi/2 |
|
130 |
* so that |y| < pi/2. |
|
131 |
* |
|
132 |
* The method is to compute the integer (mod 8) and fraction parts of |
|
133 |
* (2/pi)*x without doing the full multiplication. In general we |
|
134 |
* skip the part of the product that are known to be a huge integer ( |
|
135 |
* more accurately, = 0 mod 8 ). Thus the number of operations are |
|
136 |
* independent of the exponent of the input. |
|
137 |
* |
|
138 |
* (2/pi) is represented by an array of 24-bit integers in ipio2[]. |
|
139 |
* |
|
140 |
* Input parameters: |
|
141 |
* x[] The input value (must be positive) is broken into nx |
|
142 |
* pieces of 24-bit integers in double precision format. |
|
143 |
* x[i] will be the i-th 24 bit of x. The scaled exponent |
|
144 |
* of x[0] is given in input parameter e0 (i.e., x[0]*2^e0 |
|
145 |
* match x's up to 24 bits. |
|
146 |
* |
|
147 |
* Example of breaking a double positive z into x[0]+x[1]+x[2]: |
|
148 |
* e0 = ilogb(z)-23 |
|
149 |
* z = scalbn(z,-e0) |
|
150 |
* for i = 0,1,2 |
|
151 |
* x[i] = floor(z) |
|
152 |
* z = (z-x[i])*2**24 |
|
153 |
* |
|
154 |
* |
|
155 |
* y[] ouput result in an array of double precision numbers. |
|
156 |
* The dimension of y[] is: |
|
157 |
* 24-bit precision 1 |
|
158 |
* 53-bit precision 2 |
|
159 |
* 64-bit precision 2 |
|
160 |
* 113-bit precision 3 |
|
161 |
* The actual value is the sum of them. Thus for 113-bit |
|
162 |
* precsion, one may have to do something like: |
|
163 |
* |
|
164 |
* long double t,w,r_head, r_tail; |
|
165 |
* t = (long double)y[2] + (long double)y[1]; |
|
166 |
* w = (long double)y[0]; |
|
167 |
* r_head = t+w; |
|
168 |
* r_tail = w - (r_head - t); |
|
169 |
* |
|
170 |
* e0 The exponent of x[0] |
|
171 |
* |
|
172 |
* nx dimension of x[] |
|
173 |
* |
|
174 |
* prec an interger indicating the precision: |
|
175 |
* 0 24 bits (single) |
|
176 |
* 1 53 bits (double) |
|
177 |
* 2 64 bits (extended) |
|
178 |
* 3 113 bits (quad) |
|
179 |
* |
|
180 |
* ipio2[] |
|
181 |
* integer array, contains the (24*i)-th to (24*i+23)-th |
|
182 |
* bit of 2/pi after binary point. The corresponding |
|
183 |
* floating value is |
|
184 |
* |
|
185 |
* ipio2[i] * 2^(-24(i+1)). |
|
186 |
* |
|
187 |
* External function: |
|
188 |
* double scalbn(), floor(); |
|
189 |
* |
|
190 |
* |
|
191 |
* Here is the description of some local variables: |
|
192 |
* |
|
193 |
* jk jk+1 is the initial number of terms of ipio2[] needed |
|
194 |
* in the computation. The recommended value is 2,3,4, |
|
195 |
* 6 for single, double, extended,and quad. |
|
196 |
* |
|
197 |
* jz local integer variable indicating the number of |
|
198 |
* terms of ipio2[] used. |
|
199 |
* |
|
200 |
* jx nx - 1 |
|
201 |
* |
|
202 |
* jv index for pointing to the suitable ipio2[] for the |
|
203 |
* computation. In general, we want |
|
204 |
* ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8 |
|
205 |
* is an integer. Thus |
|
206 |
* e0-3-24*jv >= 0 or (e0-3)/24 >= jv |
|
207 |
* Hence jv = max(0,(e0-3)/24). |
|
208 |
* |
|
209 |
* jp jp+1 is the number of terms in PIo2[] needed, jp = jk. |
|
210 |
* |
|
211 |
* q[] double array with integral value, representing the |
|
212 |
* 24-bits chunk of the product of x and 2/pi. |
|
213 |
* |
|
214 |
* q0 the corresponding exponent of q[0]. Note that the |
|
215 |
* exponent for q[i] would be q0-24*i. |
|
216 |
* |
|
217 |
* PIo2[] double precision array, obtained by cutting pi/2 |
|
218 |
* into 24 bits chunks. |
|
219 |
* |
|
220 |
* f[] ipio2[] in floating point |
|
221 |
* |
|
222 |
* iq[] integer array by breaking up q[] in 24-bits chunk. |
|
223 |
* |
|
224 |
* fq[] final product of x*(2/pi) in fq[0],..,fq[jk] |
|
225 |
* |
|
22551 | 226 |
* ih integer. If >0 it indicates q[] is >= 0.5, hence |
1 | 227 |
* it also indicates the *sign* of the result. |
228 |
* |
|
229 |
*/ |
|
230 |
||
231 |
||
232 |
/* |
|
233 |
* Constants: |
|
234 |
* The hexadecimal values are the intended ones for the following |
|
235 |
* constants. The decimal values may be used, provided that the |
|
236 |
* compiler will convert from decimal to binary accurately enough |
|
237 |
* to produce the hexadecimal values shown. |
|
238 |
*/ |
|
239 |
||
240 |
||
241 |
static const int init_jk[] = {2,3,4,6}; /* initial value for jk */ |
|
242 |
||
243 |
static const double PIo2[] = { |
|
244 |
1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */ |
|
245 |
7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */ |
|
246 |
5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */ |
|
247 |
3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */ |
|
248 |
1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */ |
|
249 |
1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */ |
|
250 |
2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */ |
|
251 |
2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */ |
|
252 |
}; |
|
253 |
||
254 |
static const double |
|
255 |
zeroB = 0.0, |
|
256 |
one = 1.0, |
|
257 |
two24B = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */ |
|
258 |
twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */ |
|
259 |
||
5377 | 260 |
static SAFEBUF int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int *ipio2) { |
1 | 261 |
int jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih; |
262 |
double z,fw,f[20],fq[20],q[20]; |
|
263 |
||
264 |
/* initialize jk*/ |
|
265 |
jk = init_jk[prec]; |
|
266 |
jp = jk; |
|
267 |
||
268 |
/* determine jx,jv,q0, note that 3>q0 */ |
|
269 |
jx = nx-1; |
|
270 |
jv = (e0-3)/24; if(jv<0) jv=0; |
|
271 |
q0 = e0-24*(jv+1); |
|
272 |
||
273 |
/* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */ |
|
274 |
j = jv-jx; m = jx+jk; |
|
275 |
for(i=0;i<=m;i++,j++) f[i] = (j<0)? zeroB : (double) ipio2[j]; |
|
276 |
||
277 |
/* compute q[0],q[1],...q[jk] */ |
|
278 |
for (i=0;i<=jk;i++) { |
|
279 |
for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw; |
|
280 |
} |
|
281 |
||
282 |
jz = jk; |
|
283 |
recompute: |
|
284 |
/* distill q[] into iq[] reversingly */ |
|
285 |
for(i=0,j=jz,z=q[jz];j>0;i++,j--) { |
|
286 |
fw = (double)((int)(twon24* z)); |
|
287 |
iq[i] = (int)(z-two24B*fw); |
|
288 |
z = q[j-1]+fw; |
|
289 |
} |
|
290 |
||
291 |
/* compute n */ |
|
292 |
z = scalbnA(z,q0); /* actual value of z */ |
|
293 |
z -= 8.0*floor(z*0.125); /* trim off integer >= 8 */ |
|
294 |
n = (int) z; |
|
295 |
z -= (double)n; |
|
296 |
ih = 0; |
|
297 |
if(q0>0) { /* need iq[jz-1] to determine n */ |
|
298 |
i = (iq[jz-1]>>(24-q0)); n += i; |
|
299 |
iq[jz-1] -= i<<(24-q0); |
|
300 |
ih = iq[jz-1]>>(23-q0); |
|
301 |
} |
|
302 |
else if(q0==0) ih = iq[jz-1]>>23; |
|
303 |
else if(z>=0.5) ih=2; |
|
304 |
||
305 |
if(ih>0) { /* q > 0.5 */ |
|
306 |
n += 1; carry = 0; |
|
307 |
for(i=0;i<jz ;i++) { /* compute 1-q */ |
|
308 |
j = iq[i]; |
|
309 |
if(carry==0) { |
|
310 |
if(j!=0) { |
|
311 |
carry = 1; iq[i] = 0x1000000- j; |
|
312 |
} |
|
313 |
} else iq[i] = 0xffffff - j; |
|
314 |
} |
|
315 |
if(q0>0) { /* rare case: chance is 1 in 12 */ |
|
316 |
switch(q0) { |
|
317 |
case 1: |
|
318 |
iq[jz-1] &= 0x7fffff; break; |
|
319 |
case 2: |
|
320 |
iq[jz-1] &= 0x3fffff; break; |
|
321 |
} |
|
322 |
} |
|
323 |
if(ih==2) { |
|
324 |
z = one - z; |
|
325 |
if(carry!=0) z -= scalbnA(one,q0); |
|
326 |
} |
|
327 |
} |
|
328 |
||
329 |
/* check if recomputation is needed */ |
|
330 |
if(z==zeroB) { |
|
331 |
j = 0; |
|
332 |
for (i=jz-1;i>=jk;i--) j |= iq[i]; |
|
333 |
if(j==0) { /* need recomputation */ |
|
334 |
for(k=1;iq[jk-k]==0;k++); /* k = no. of terms needed */ |
|
335 |
||
336 |
for(i=jz+1;i<=jz+k;i++) { /* add q[jz+1] to q[jz+k] */ |
|
337 |
f[jx+i] = (double) ipio2[jv+i]; |
|
338 |
for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; |
|
339 |
q[i] = fw; |
|
340 |
} |
|
341 |
jz += k; |
|
342 |
goto recompute; |
|
343 |
} |
|
344 |
} |
|
345 |
||
346 |
/* chop off zero terms */ |
|
347 |
if(z==0.0) { |
|
348 |
jz -= 1; q0 -= 24; |
|
349 |
while(iq[jz]==0) { jz--; q0-=24;} |
|
22551 | 350 |
} else { /* break z into 24-bit if necessary */ |
1 | 351 |
z = scalbnA(z,-q0); |
352 |
if(z>=two24B) { |
|
353 |
fw = (double)((int)(twon24*z)); |
|
354 |
iq[jz] = (int)(z-two24B*fw); |
|
355 |
jz += 1; q0 += 24; |
|
356 |
iq[jz] = (int) fw; |
|
357 |
} else iq[jz] = (int) z ; |
|
358 |
} |
|
359 |
||
360 |
/* convert integer "bit" chunk to floating-point value */ |
|
361 |
fw = scalbnA(one,q0); |
|
362 |
for(i=jz;i>=0;i--) { |
|
363 |
q[i] = fw*(double)iq[i]; fw*=twon24; |
|
364 |
} |
|
365 |
||
366 |
/* compute PIo2[0,...,jp]*q[jz,...,0] */ |
|
367 |
for(i=jz;i>=0;i--) { |
|
368 |
for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k]; |
|
369 |
fq[jz-i] = fw; |
|
370 |
} |
|
371 |
||
372 |
/* compress fq[] into y[] */ |
|
373 |
switch(prec) { |
|
374 |
case 0: |
|
375 |
fw = 0.0; |
|
376 |
for (i=jz;i>=0;i--) fw += fq[i]; |
|
377 |
y[0] = (ih==0)? fw: -fw; |
|
378 |
break; |
|
379 |
case 1: |
|
380 |
case 2: |
|
381 |
fw = 0.0; |
|
382 |
for (i=jz;i>=0;i--) fw += fq[i]; |
|
383 |
y[0] = (ih==0)? fw: -fw; |
|
384 |
fw = fq[0]-fw; |
|
385 |
for (i=1;i<=jz;i++) fw += fq[i]; |
|
386 |
y[1] = (ih==0)? fw: -fw; |
|
387 |
break; |
|
388 |
case 3: /* painful */ |
|
389 |
for (i=jz;i>0;i--) { |
|
390 |
fw = fq[i-1]+fq[i]; |
|
391 |
fq[i] += fq[i-1]-fw; |
|
392 |
fq[i-1] = fw; |
|
393 |
} |
|
394 |
for (i=jz;i>1;i--) { |
|
395 |
fw = fq[i-1]+fq[i]; |
|
396 |
fq[i] += fq[i-1]-fw; |
|
397 |
fq[i-1] = fw; |
|
398 |
} |
|
399 |
for (fw=0.0,i=jz;i>=2;i--) fw += fq[i]; |
|
400 |
if(ih==0) { |
|
401 |
y[0] = fq[0]; y[1] = fq[1]; y[2] = fw; |
|
402 |
} else { |
|
403 |
y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw; |
|
404 |
} |
|
405 |
} |
|
406 |
return n&7; |
|
407 |
} |
|
408 |
||
409 |
||
410 |
/* |
|
411 |
* ==================================================== |
|
22551 | 412 |
* Copyright (c) 1993 Oracle and/or its affiliates. All rights reserved. |
1 | 413 |
* |
414 |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
|
415 |
* Permission to use, copy, modify, and distribute this |
|
416 |
* software is freely granted, provided that this notice |
|
417 |
* is preserved. |
|
418 |
* ==================================================== |
|
419 |
* |
|
420 |
*/ |
|
421 |
||
422 |
/* __ieee754_rem_pio2(x,y) |
|
423 |
* |
|
424 |
* return the remainder of x rem pi/2 in y[0]+y[1] |
|
425 |
* use __kernel_rem_pio2() |
|
426 |
*/ |
|
427 |
||
428 |
/* |
|
429 |
* Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi |
|
430 |
*/ |
|
431 |
static const int two_over_pi[] = { |
|
432 |
0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62, |
|
433 |
0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A, |
|
434 |
0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129, |
|
435 |
0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41, |
|
436 |
0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8, |
|
437 |
0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF, |
|
438 |
0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5, |
|
439 |
0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08, |
|
440 |
0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3, |
|
441 |
0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880, |
|
442 |
0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B, |
|
443 |
}; |
|
444 |
||
445 |
static const int npio2_hw[] = { |
|
446 |
0x3FF921FB, 0x400921FB, 0x4012D97C, 0x401921FB, 0x401F6A7A, 0x4022D97C, |
|
447 |
0x4025FDBB, 0x402921FB, 0x402C463A, 0x402F6A7A, 0x4031475C, 0x4032D97C, |
|
448 |
0x40346B9C, 0x4035FDBB, 0x40378FDB, 0x403921FB, 0x403AB41B, 0x403C463A, |
|
449 |
0x403DD85A, 0x403F6A7A, 0x40407E4C, 0x4041475C, 0x4042106C, 0x4042D97C, |
|
450 |
0x4043A28C, 0x40446B9C, 0x404534AC, 0x4045FDBB, 0x4046C6CB, 0x40478FDB, |
|
451 |
0x404858EB, 0x404921FB, |
|
452 |
}; |
|
453 |
||
454 |
/* |
|
455 |
* invpio2: 53 bits of 2/pi |
|
456 |
* pio2_1: first 33 bit of pi/2 |
|
457 |
* pio2_1t: pi/2 - pio2_1 |
|
458 |
* pio2_2: second 33 bit of pi/2 |
|
459 |
* pio2_2t: pi/2 - (pio2_1+pio2_2) |
|
460 |
* pio2_3: third 33 bit of pi/2 |
|
461 |
* pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3) |
|
462 |
*/ |
|
463 |
||
464 |
static const double |
|
465 |
zeroA = 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ |
|
466 |
half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */ |
|
467 |
two24A = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */ |
|
468 |
invpio2 = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */ |
|
469 |
pio2_1 = 1.57079632673412561417e+00, /* 0x3FF921FB, 0x54400000 */ |
|
470 |
pio2_1t = 6.07710050650619224932e-11, /* 0x3DD0B461, 0x1A626331 */ |
|
471 |
pio2_2 = 6.07710050630396597660e-11, /* 0x3DD0B461, 0x1A600000 */ |
|
472 |
pio2_2t = 2.02226624879595063154e-21, /* 0x3BA3198A, 0x2E037073 */ |
|
473 |
pio2_3 = 2.02226624871116645580e-21, /* 0x3BA3198A, 0x2E000000 */ |
|
474 |
pio2_3t = 8.47842766036889956997e-32; /* 0x397B839A, 0x252049C1 */ |
|
475 |
||
5377 | 476 |
static SAFEBUF int __ieee754_rem_pio2(double x, double *y) { |
1 | 477 |
double z,w,t,r,fn; |
478 |
double tx[3]; |
|
479 |
int e0,i,j,nx,n,ix,hx,i0; |
|
480 |
||
481 |
i0 = ((*(int*)&two24A)>>30)^1; /* high word index */ |
|
482 |
hx = *(i0+(int*)&x); /* high word of x */ |
|
483 |
ix = hx&0x7fffffff; |
|
484 |
if(ix<=0x3fe921fb) /* |x| ~<= pi/4 , no need for reduction */ |
|
485 |
{y[0] = x; y[1] = 0; return 0;} |
|
486 |
if(ix<0x4002d97c) { /* |x| < 3pi/4, special case with n=+-1 */ |
|
487 |
if(hx>0) { |
|
488 |
z = x - pio2_1; |
|
489 |
if(ix!=0x3ff921fb) { /* 33+53 bit pi is good enough */ |
|
490 |
y[0] = z - pio2_1t; |
|
491 |
y[1] = (z-y[0])-pio2_1t; |
|
492 |
} else { /* near pi/2, use 33+33+53 bit pi */ |
|
493 |
z -= pio2_2; |
|
494 |
y[0] = z - pio2_2t; |
|
495 |
y[1] = (z-y[0])-pio2_2t; |
|
496 |
} |
|
497 |
return 1; |
|
498 |
} else { /* negative x */ |
|
499 |
z = x + pio2_1; |
|
500 |
if(ix!=0x3ff921fb) { /* 33+53 bit pi is good enough */ |
|
501 |
y[0] = z + pio2_1t; |
|
502 |
y[1] = (z-y[0])+pio2_1t; |
|
503 |
} else { /* near pi/2, use 33+33+53 bit pi */ |
|
504 |
z += pio2_2; |
|
505 |
y[0] = z + pio2_2t; |
|
506 |
y[1] = (z-y[0])+pio2_2t; |
|
507 |
} |
|
508 |
return -1; |
|
509 |
} |
|
510 |
} |
|
511 |
if(ix<=0x413921fb) { /* |x| ~<= 2^19*(pi/2), medium size */ |
|
512 |
t = fabsd(x); |
|
513 |
n = (int) (t*invpio2+half); |
|
514 |
fn = (double)n; |
|
515 |
r = t-fn*pio2_1; |
|
516 |
w = fn*pio2_1t; /* 1st round good to 85 bit */ |
|
517 |
if(n<32&&ix!=npio2_hw[n-1]) { |
|
518 |
y[0] = r-w; /* quick check no cancellation */ |
|
519 |
} else { |
|
520 |
j = ix>>20; |
|
521 |
y[0] = r-w; |
|
522 |
i = j-(((*(i0+(int*)&y[0]))>>20)&0x7ff); |
|
523 |
if(i>16) { /* 2nd iteration needed, good to 118 */ |
|
524 |
t = r; |
|
525 |
w = fn*pio2_2; |
|
526 |
r = t-w; |
|
527 |
w = fn*pio2_2t-((t-r)-w); |
|
528 |
y[0] = r-w; |
|
529 |
i = j-(((*(i0+(int*)&y[0]))>>20)&0x7ff); |
|
530 |
if(i>49) { /* 3rd iteration need, 151 bits acc */ |
|
531 |
t = r; /* will cover all possible cases */ |
|
532 |
w = fn*pio2_3; |
|
533 |
r = t-w; |
|
534 |
w = fn*pio2_3t-((t-r)-w); |
|
535 |
y[0] = r-w; |
|
536 |
} |
|
537 |
} |
|
538 |
} |
|
539 |
y[1] = (r-y[0])-w; |
|
540 |
if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;} |
|
541 |
else return n; |
|
542 |
} |
|
543 |
/* |
|
544 |
* all other (large) arguments |
|
545 |
*/ |
|
546 |
if(ix>=0x7ff00000) { /* x is inf or NaN */ |
|
547 |
y[0]=y[1]=x-x; return 0; |
|
548 |
} |
|
549 |
/* set z = scalbn(|x|,ilogb(x)-23) */ |
|
550 |
*(1-i0+(int*)&z) = *(1-i0+(int*)&x); |
|
551 |
e0 = (ix>>20)-1046; /* e0 = ilogb(z)-23; */ |
|
552 |
*(i0+(int*)&z) = ix - (e0<<20); |
|
553 |
for(i=0;i<2;i++) { |
|
554 |
tx[i] = (double)((int)(z)); |
|
555 |
z = (z-tx[i])*two24A; |
|
556 |
} |
|
557 |
tx[2] = z; |
|
558 |
nx = 3; |
|
559 |
while(tx[nx-1]==zeroA) nx--; /* skip zero term */ |
|
560 |
n = __kernel_rem_pio2(tx,y,e0,nx,2,two_over_pi); |
|
561 |
if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;} |
|
562 |
return n; |
|
563 |
} |
|
564 |
||
565 |
||
566 |
/* __kernel_sin( x, y, iy) |
|
567 |
* kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854 |
|
568 |
* Input x is assumed to be bounded by ~pi/4 in magnitude. |
|
569 |
* Input y is the tail of x. |
|
570 |
* Input iy indicates whether y is 0. (if iy=0, y assume to be 0). |
|
571 |
* |
|
572 |
* Algorithm |
|
573 |
* 1. Since sin(-x) = -sin(x), we need only to consider positive x. |
|
574 |
* 2. if x < 2^-27 (hx<0x3e400000 0), return x with inexact if x!=0. |
|
575 |
* 3. sin(x) is approximated by a polynomial of degree 13 on |
|
576 |
* [0,pi/4] |
|
577 |
* 3 13 |
|
578 |
* sin(x) ~ x + S1*x + ... + S6*x |
|
579 |
* where |
|
580 |
* |
|
581 |
* |sin(x) 2 4 6 8 10 12 | -58 |
|
582 |
* |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2 |
|
583 |
* | x | |
|
584 |
* |
|
585 |
* 4. sin(x+y) = sin(x) + sin'(x')*y |
|
586 |
* ~ sin(x) + (1-x*x/2)*y |
|
587 |
* For better accuracy, let |
|
588 |
* 3 2 2 2 2 |
|
589 |
* r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6)))) |
|
590 |
* then 3 2 |
|
591 |
* sin(x) = x + (S1*x + (x *(r-y/2)+y)) |
|
592 |
*/ |
|
593 |
||
594 |
static const double |
|
595 |
S1 = -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */ |
|
596 |
S2 = 8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */ |
|
597 |
S3 = -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */ |
|
598 |
S4 = 2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */ |
|
599 |
S5 = -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */ |
|
600 |
S6 = 1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */ |
|
601 |
||
602 |
static double __kernel_sin(double x, double y, int iy) |
|
603 |
{ |
|
604 |
double z,r,v; |
|
605 |
int ix; |
|
606 |
ix = __HI(x)&0x7fffffff; /* high word of x */ |
|
607 |
if(ix<0x3e400000) /* |x| < 2**-27 */ |
|
608 |
{if((int)x==0) return x;} /* generate inexact */ |
|
609 |
z = x*x; |
|
610 |
v = z*x; |
|
611 |
r = S2+z*(S3+z*(S4+z*(S5+z*S6))); |
|
612 |
if(iy==0) return x+v*(S1+z*r); |
|
613 |
else return x-((z*(half*y-v*r)-y)-v*S1); |
|
614 |
} |
|
615 |
||
616 |
/* |
|
617 |
* __kernel_cos( x, y ) |
|
618 |
* kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164 |
|
619 |
* Input x is assumed to be bounded by ~pi/4 in magnitude. |
|
620 |
* Input y is the tail of x. |
|
621 |
* |
|
622 |
* Algorithm |
|
623 |
* 1. Since cos(-x) = cos(x), we need only to consider positive x. |
|
624 |
* 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0. |
|
625 |
* 3. cos(x) is approximated by a polynomial of degree 14 on |
|
626 |
* [0,pi/4] |
|
627 |
* 4 14 |
|
628 |
* cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x |
|
629 |
* where the remez error is |
|
630 |
* |
|
631 |
* | 2 4 6 8 10 12 14 | -58 |
|
632 |
* |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2 |
|
633 |
* | | |
|
634 |
* |
|
635 |
* 4 6 8 10 12 14 |
|
636 |
* 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then |
|
637 |
* cos(x) = 1 - x*x/2 + r |
|
638 |
* since cos(x+y) ~ cos(x) - sin(x)*y |
|
639 |
* ~ cos(x) - x*y, |
|
640 |
* a correction term is necessary in cos(x) and hence |
|
641 |
* cos(x+y) = 1 - (x*x/2 - (r - x*y)) |
|
642 |
* For better accuracy when x > 0.3, let qx = |x|/4 with |
|
643 |
* the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125. |
|
644 |
* Then |
|
645 |
* cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)). |
|
646 |
* Note that 1-qx and (x*x/2-qx) is EXACT here, and the |
|
647 |
* magnitude of the latter is at least a quarter of x*x/2, |
|
648 |
* thus, reducing the rounding error in the subtraction. |
|
649 |
*/ |
|
650 |
||
651 |
static const double |
|
652 |
C1 = 4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */ |
|
653 |
C2 = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */ |
|
654 |
C3 = 2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */ |
|
655 |
C4 = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */ |
|
656 |
C5 = 2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */ |
|
657 |
C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */ |
|
658 |
||
659 |
static double __kernel_cos(double x, double y) |
|
660 |
{ |
|
22827 | 661 |
double a,h,z,r,qx; |
1 | 662 |
int ix; |
663 |
ix = __HI(x)&0x7fffffff; /* ix = |x|'s high word*/ |
|
664 |
if(ix<0x3e400000) { /* if x < 2**27 */ |
|
665 |
if(((int)x)==0) return one; /* generate inexact */ |
|
666 |
} |
|
667 |
z = x*x; |
|
668 |
r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6))))); |
|
669 |
if(ix < 0x3FD33333) /* if |x| < 0.3 */ |
|
670 |
return one - (0.5*z - (z*r - x*y)); |
|
671 |
else { |
|
672 |
if(ix > 0x3fe90000) { /* x > 0.78125 */ |
|
673 |
qx = 0.28125; |
|
674 |
} else { |
|
675 |
__HI(qx) = ix-0x00200000; /* x/4 */ |
|
676 |
__LO(qx) = 0; |
|
677 |
} |
|
22827 | 678 |
h = 0.5*z-qx; |
679 |
a = one-qx; |
|
680 |
return a - (h - (z*r-x*y)); |
|
1 | 681 |
} |
682 |
} |
|
683 |
||
684 |
/* __kernel_tan( x, y, k ) |
|
685 |
* kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854 |
|
686 |
* Input x is assumed to be bounded by ~pi/4 in magnitude. |
|
687 |
* Input y is the tail of x. |
|
688 |
* Input k indicates whether tan (if k=1) or |
|
689 |
* -1/tan (if k= -1) is returned. |
|
690 |
* |
|
691 |
* Algorithm |
|
692 |
* 1. Since tan(-x) = -tan(x), we need only to consider positive x. |
|
693 |
* 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0. |
|
694 |
* 3. tan(x) is approximated by a odd polynomial of degree 27 on |
|
695 |
* [0,0.67434] |
|
696 |
* 3 27 |
|
697 |
* tan(x) ~ x + T1*x + ... + T13*x |
|
698 |
* where |
|
699 |
* |
|
700 |
* |tan(x) 2 4 26 | -59.2 |
|
701 |
* |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2 |
|
702 |
* | x | |
|
703 |
* |
|
704 |
* Note: tan(x+y) = tan(x) + tan'(x)*y |
|
705 |
* ~ tan(x) + (1+x*x)*y |
|
706 |
* Therefore, for better accuracy in computing tan(x+y), let |
|
707 |
* 3 2 2 2 2 |
|
708 |
* r = x *(T2+x *(T3+x *(...+x *(T12+x *T13)))) |
|
709 |
* then |
|
710 |
* 3 2 |
|
711 |
* tan(x+y) = x + (T1*x + (x *(r+y)+y)) |
|
712 |
* |
|
713 |
* 4. For x in [0.67434,pi/4], let y = pi/4 - x, then |
|
714 |
* tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y)) |
|
715 |
* = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y))) |
|
716 |
*/ |
|
717 |
||
718 |
static const double |
|
719 |
pio4 = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */ |
|
720 |
pio4lo= 3.06161699786838301793e-17, /* 0x3C81A626, 0x33145C07 */ |
|
721 |
T[] = { |
|
722 |
3.33333333333334091986e-01, /* 0x3FD55555, 0x55555563 */ |
|
723 |
1.33333333333201242699e-01, /* 0x3FC11111, 0x1110FE7A */ |
|
724 |
5.39682539762260521377e-02, /* 0x3FABA1BA, 0x1BB341FE */ |
|
725 |
2.18694882948595424599e-02, /* 0x3F9664F4, 0x8406D637 */ |
|
726 |
8.86323982359930005737e-03, /* 0x3F8226E3, 0xE96E8493 */ |
|
727 |
3.59207910759131235356e-03, /* 0x3F6D6D22, 0xC9560328 */ |
|
728 |
1.45620945432529025516e-03, /* 0x3F57DBC8, 0xFEE08315 */ |
|
729 |
5.88041240820264096874e-04, /* 0x3F4344D8, 0xF2F26501 */ |
|
730 |
2.46463134818469906812e-04, /* 0x3F3026F7, 0x1A8D1068 */ |
|
731 |
7.81794442939557092300e-05, /* 0x3F147E88, 0xA03792A6 */ |
|
732 |
7.14072491382608190305e-05, /* 0x3F12B80F, 0x32F0A7E9 */ |
|
733 |
-1.85586374855275456654e-05, /* 0xBEF375CB, 0xDB605373 */ |
|
734 |
2.59073051863633712884e-05, /* 0x3EFB2A70, 0x74BF7AD4 */ |
|
735 |
}; |
|
736 |
||
737 |
static double __kernel_tan(double x, double y, int iy) |
|
738 |
{ |
|
739 |
double z,r,v,w,s; |
|
740 |
int ix,hx; |
|
741 |
hx = __HI(x); /* high word of x */ |
|
742 |
ix = hx&0x7fffffff; /* high word of |x| */ |
|
743 |
if(ix<0x3e300000) { /* x < 2**-28 */ |
|
744 |
if((int)x==0) { /* generate inexact */ |
|
745 |
if (((ix | __LO(x)) | (iy + 1)) == 0) |
|
746 |
return one / fabsd(x); |
|
747 |
else { |
|
748 |
if (iy == 1) |
|
749 |
return x; |
|
750 |
else { /* compute -1 / (x+y) carefully */ |
|
751 |
double a, t; |
|
752 |
||
753 |
z = w = x + y; |
|
754 |
__LO(z) = 0; |
|
755 |
v = y - (z - x); |
|
756 |
t = a = -one / w; |
|
757 |
__LO(t) = 0; |
|
758 |
s = one + t * z; |
|
759 |
return t + a * (s + t * v); |
|
760 |
} |
|
761 |
} |
|
762 |
} |
|
763 |
} |
|
764 |
if(ix>=0x3FE59428) { /* |x|>=0.6744 */ |
|
765 |
if(hx<0) {x = -x; y = -y;} |
|
766 |
z = pio4-x; |
|
767 |
w = pio4lo-y; |
|
768 |
x = z+w; y = 0.0; |
|
769 |
} |
|
770 |
z = x*x; |
|
771 |
w = z*z; |
|
772 |
/* Break x^5*(T[1]+x^2*T[2]+...) into |
|
773 |
* x^5(T[1]+x^4*T[3]+...+x^20*T[11]) + |
|
774 |
* x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12])) |
|
775 |
*/ |
|
776 |
r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11])))); |
|
777 |
v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12]))))); |
|
778 |
s = z*x; |
|
779 |
r = y + z*(s*(r+v)+y); |
|
780 |
r += T[0]*s; |
|
781 |
w = x+r; |
|
782 |
if(ix>=0x3FE59428) { |
|
783 |
v = (double)iy; |
|
784 |
return (double)(1-((hx>>30)&2))*(v-2.0*(x-(w*w/(w+v)-r))); |
|
785 |
} |
|
786 |
if(iy==1) return w; |
|
787 |
else { /* if allow error up to 2 ulp, |
|
788 |
simply return -1.0/(x+r) here */ |
|
789 |
/* compute -1.0/(x+r) accurately */ |
|
790 |
double a,t; |
|
791 |
z = w; |
|
792 |
__LO(z) = 0; |
|
793 |
v = r-(z - x); /* z+v = r+x */ |
|
794 |
t = a = -1.0/w; /* a = -1.0/w */ |
|
795 |
__LO(t) = 0; |
|
796 |
s = 1.0+t*z; |
|
797 |
return t+a*(s+t*v); |
|
798 |
} |
|
799 |
} |
|
800 |
||
801 |
||
802 |
//---------------------------------------------------------------------- |
|
803 |
// |
|
804 |
// Routines for new sin/cos implementation |
|
805 |
// |
|
806 |
//---------------------------------------------------------------------- |
|
807 |
||
808 |
/* sin(x) |
|
809 |
* Return sine function of x. |
|
810 |
* |
|
811 |
* kernel function: |
|
812 |
* __kernel_sin ... sine function on [-pi/4,pi/4] |
|
813 |
* __kernel_cos ... cose function on [-pi/4,pi/4] |
|
814 |
* __ieee754_rem_pio2 ... argument reduction routine |
|
815 |
* |
|
816 |
* Method. |
|
817 |
* Let S,C and T denote the sin, cos and tan respectively on |
|
818 |
* [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 |
|
819 |
* in [-pi/4 , +pi/4], and let n = k mod 4. |
|
820 |
* We have |
|
821 |
* |
|
822 |
* n sin(x) cos(x) tan(x) |
|
823 |
* ---------------------------------------------------------- |
|
824 |
* 0 S C T |
|
825 |
* 1 C -S -1/T |
|
826 |
* 2 -S -C T |
|
827 |
* 3 -C S -1/T |
|
828 |
* ---------------------------------------------------------- |
|
829 |
* |
|
830 |
* Special cases: |
|
831 |
* Let trig be any of sin, cos, or tan. |
|
832 |
* trig(+-INF) is NaN, with signals; |
|
833 |
* trig(NaN) is that NaN; |
|
834 |
* |
|
835 |
* Accuracy: |
|
836 |
* TRIG(x) returns trig(x) nearly rounded |
|
837 |
*/ |
|
838 |
||
839 |
JRT_LEAF(jdouble, SharedRuntime::dsin(jdouble x)) |
|
840 |
double y[2],z=0.0; |
|
841 |
int n, ix; |
|
842 |
||
843 |
/* High word of x. */ |
|
844 |
ix = __HI(x); |
|
845 |
||
846 |
/* |x| ~< pi/4 */ |
|
847 |
ix &= 0x7fffffff; |
|
848 |
if(ix <= 0x3fe921fb) return __kernel_sin(x,z,0); |
|
849 |
||
850 |
/* sin(Inf or NaN) is NaN */ |
|
851 |
else if (ix>=0x7ff00000) return x-x; |
|
852 |
||
853 |
/* argument reduction needed */ |
|
854 |
else { |
|
855 |
n = __ieee754_rem_pio2(x,y); |
|
856 |
switch(n&3) { |
|
857 |
case 0: return __kernel_sin(y[0],y[1],1); |
|
858 |
case 1: return __kernel_cos(y[0],y[1]); |
|
859 |
case 2: return -__kernel_sin(y[0],y[1],1); |
|
860 |
default: |
|
861 |
return -__kernel_cos(y[0],y[1]); |
|
862 |
} |
|
863 |
} |
|
864 |
JRT_END |
|
865 |
||
866 |
/* cos(x) |
|
867 |
* Return cosine function of x. |
|
868 |
* |
|
869 |
* kernel function: |
|
870 |
* __kernel_sin ... sine function on [-pi/4,pi/4] |
|
871 |
* __kernel_cos ... cosine function on [-pi/4,pi/4] |
|
872 |
* __ieee754_rem_pio2 ... argument reduction routine |
|
873 |
* |
|
874 |
* Method. |
|
875 |
* Let S,C and T denote the sin, cos and tan respectively on |
|
876 |
* [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 |
|
877 |
* in [-pi/4 , +pi/4], and let n = k mod 4. |
|
878 |
* We have |
|
879 |
* |
|
880 |
* n sin(x) cos(x) tan(x) |
|
881 |
* ---------------------------------------------------------- |
|
882 |
* 0 S C T |
|
883 |
* 1 C -S -1/T |
|
884 |
* 2 -S -C T |
|
885 |
* 3 -C S -1/T |
|
886 |
* ---------------------------------------------------------- |
|
887 |
* |
|
888 |
* Special cases: |
|
889 |
* Let trig be any of sin, cos, or tan. |
|
890 |
* trig(+-INF) is NaN, with signals; |
|
891 |
* trig(NaN) is that NaN; |
|
892 |
* |
|
893 |
* Accuracy: |
|
894 |
* TRIG(x) returns trig(x) nearly rounded |
|
895 |
*/ |
|
896 |
||
897 |
JRT_LEAF(jdouble, SharedRuntime::dcos(jdouble x)) |
|
898 |
double y[2],z=0.0; |
|
899 |
int n, ix; |
|
900 |
||
901 |
/* High word of x. */ |
|
902 |
ix = __HI(x); |
|
903 |
||
904 |
/* |x| ~< pi/4 */ |
|
905 |
ix &= 0x7fffffff; |
|
906 |
if(ix <= 0x3fe921fb) return __kernel_cos(x,z); |
|
907 |
||
908 |
/* cos(Inf or NaN) is NaN */ |
|
909 |
else if (ix>=0x7ff00000) return x-x; |
|
910 |
||
911 |
/* argument reduction needed */ |
|
912 |
else { |
|
913 |
n = __ieee754_rem_pio2(x,y); |
|
914 |
switch(n&3) { |
|
915 |
case 0: return __kernel_cos(y[0],y[1]); |
|
916 |
case 1: return -__kernel_sin(y[0],y[1],1); |
|
917 |
case 2: return -__kernel_cos(y[0],y[1]); |
|
918 |
default: |
|
919 |
return __kernel_sin(y[0],y[1],1); |
|
920 |
} |
|
921 |
} |
|
922 |
JRT_END |
|
923 |
||
924 |
/* tan(x) |
|
925 |
* Return tangent function of x. |
|
926 |
* |
|
927 |
* kernel function: |
|
928 |
* __kernel_tan ... tangent function on [-pi/4,pi/4] |
|
929 |
* __ieee754_rem_pio2 ... argument reduction routine |
|
930 |
* |
|
931 |
* Method. |
|
932 |
* Let S,C and T denote the sin, cos and tan respectively on |
|
933 |
* [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 |
|
934 |
* in [-pi/4 , +pi/4], and let n = k mod 4. |
|
935 |
* We have |
|
936 |
* |
|
937 |
* n sin(x) cos(x) tan(x) |
|
938 |
* ---------------------------------------------------------- |
|
939 |
* 0 S C T |
|
940 |
* 1 C -S -1/T |
|
941 |
* 2 -S -C T |
|
942 |
* 3 -C S -1/T |
|
943 |
* ---------------------------------------------------------- |
|
944 |
* |
|
945 |
* Special cases: |
|
946 |
* Let trig be any of sin, cos, or tan. |
|
947 |
* trig(+-INF) is NaN, with signals; |
|
948 |
* trig(NaN) is that NaN; |
|
949 |
* |
|
950 |
* Accuracy: |
|
951 |
* TRIG(x) returns trig(x) nearly rounded |
|
952 |
*/ |
|
953 |
||
954 |
JRT_LEAF(jdouble, SharedRuntime::dtan(jdouble x)) |
|
955 |
double y[2],z=0.0; |
|
956 |
int n, ix; |
|
957 |
||
958 |
/* High word of x. */ |
|
959 |
ix = __HI(x); |
|
960 |
||
961 |
/* |x| ~< pi/4 */ |
|
962 |
ix &= 0x7fffffff; |
|
963 |
if(ix <= 0x3fe921fb) return __kernel_tan(x,z,1); |
|
964 |
||
965 |
/* tan(Inf or NaN) is NaN */ |
|
966 |
else if (ix>=0x7ff00000) return x-x; /* NaN */ |
|
967 |
||
968 |
/* argument reduction needed */ |
|
969 |
else { |
|
970 |
n = __ieee754_rem_pio2(x,y); |
|
971 |
return __kernel_tan(y[0],y[1],1-((n&1)<<1)); /* 1 -- n even |
|
972 |
-1 -- n odd */ |
|
973 |
} |
|
974 |
JRT_END |
|
975 |
||
976 |
||
977 |
#ifdef WIN32 |
|
978 |
# pragma optimize ( "", on ) |
|
979 |
#endif |